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Introduction

This book is a discussion of calculus of functions of real variables. It is written to be a
first course in Calculus and to be used in the first three semesters of calculus. However,
it would also work as an advanced calculus book for those who have had the typical un-
dergraduate calculus course by emphasizing those chapters which are more theoretical in
nature, although there is a lot more on one variable ideas in my single variable advanced
calculus text, Analysis of Functions of One Variable. I am assuming the reader has had
college algebra and trigonometry although most of what is needed is reviewed. This book
is an extensively re-written version of my earlier Calculus text published with World Scien-
tific [21]. This one has a lot more on algebra and fundamental ideas. It is more theoretical
than my earlier book and somewhat shorter. It is not as close to the voluminous standard
texts on Calculus. I have also included in the text simple techniques for using MATLAB
which I think will be very helpful. It does include all the standard techniques however
which I have attempted to present as simply as possible. I believe, based on my experience
teaching engineering math, that these techniques are usually not mastered by students in
their introductory calculus course, especially the technique of partial fractions. I hope that
my presentation will be short enough to be easily remembered.

That which has the most mathematical significance is often marginalized, thus ignoring
what was learned early in the nineteenth century. In general, existence theorems are ne-
glected, which results in incomplete explanations of many of the most important theorems
like mean value theorem, fundamental theorem of calculus etc. Calculus is not geometry.
Neither is it algebra, and to neglect that which is tied to this observation is to misrepresent
what the subject is all about. However, the book will work for a course in which these
important topics are left for interested students.

There are proofs of the intermediate value theorem which is due to Bolzano and dates
from around 1817 and the extreme value theorem, also done by Bolzano in the 1830’s and
later by Weierstrass. I will also show why the integral of a continuous function exists in two
different ways, one quite unusual. The integral was of interest throughout the nineteenth
century, beginning with the work of Cauchy. I don’t understand how anyone can make
sense of later courses like differential equations without this. What good is Picard iteration
if you don’t even know why the integrals you are writing down exist?

Also I am trying to present all of the main ideas in a somewhat shorter book than
usual. I don’t understand why it should be necessary to take over 1000 pages, even with
the inclusion of physical applications, which were the motivation for developing calculus
in the first place. I hope I have enough exercises but it is also not clear to me why such long
lists of mostly routine or technical exercises are needed. This book is not like the “Think
and do” books I had in elementary school in the 1950’s. The book itself comes to a little
more than 700 pages.
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I have introduced some of the most important ideas more than once. For example,
existence of roots illustrates in a specific case the intermediate value theorem presented in
full generality later. The ideas leading to the integral are first encountered early in the book
in a discussion of the logarithm. This is an “early transcendentals” book. Of course it is
more efficient to present these functions only once later on, but I believe that calculus is
about continuous functions, integrals, completeness of R, and derivatives and that the ideas
associated with these things should be emphasized.

The book is divided into two parts. The first part is on functions of one variable with
some important theory pertaining to the second part (compact sets, extreme values theorem,
etc.). There is some repetition here since it is done first for functions of one variable. The
second part is on vector valued functions of many variables and is devoted to the standard
topics in vector calculus. I have in mind the first eight or nine chapters for the first semester
of calculus and the next eight for the second. Then the third semester would consist of
whatever can be covered in the remainder of the book. There is more there than can be
included in one semester.

The reason for the chapters on linear algebra is that multi-variable calculus is mostly
based on reduction to linear algebra ideas. Contrary to the pretensions of virtually all stan-
dard texts, there is such a thing as the derivative of a function of many variables, it is very
important, and it is a linear transformation. This seems to be the best kept secret in under-
graduate math. I think multi-variable calculus would be better understood after a course on
linear algebra. After all, linear functions are easier than nonlinear ones. Shouldn’t we study
the easy case first? If this is done, the chapters on linear algebra can be omitted or used as
a review. On the other hand, the more significant course in undergraduate math is linear
algebra, not calculus. Thus, if linear algebra is to come after multi-variable calculus, these
chapters will help make the linear algebra course easier to master and make it possible to
offer a better linear algebra course, since the stuff involving row operations and eigenvalues
will have been seen already in calculus. Either way, exposure to a limited amount of linear
algebra is a good idea in a multi-variable calculus book.

There is more in the book than will typically be discussed. Chapter 17 for example, is
not usually included in beginning calculus but gives physical applications which illustrate
the use of calculus and vector methods. To begin with, there are a few prerequisite topics.
These can be referred to as needed.

At the end of many chapters and possibly at other places there are links to on line
explanations. I am presently working on these.



Part I

Functions of One Variable
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Chapter 1

Fundamental Concepts

1.1 Numbers and Simple Algebra
To begin with, consider the real numbers, denoted by R, as a line extending infinitely far
in both directions. In this book, the notation, ≡ indicates something is being defined. Thus
the integers are defined as

Z≡{·· ·−1,0,1, · · ·} ,

the natural numbers,
N≡ {1,2, · · ·}

and the rational numbers, defined as the numbers which are the quotient of two integers.

Q≡
{m

n
such that m,n ∈ Z,n ̸= 0

}
are each subsets of R as indicated in the following picture.

0

1/2

1 2 3 4−1−2−3−4

As shown in the picture, 1
2 is half way between the number 0 and the number, 1. By

analogy, you can see where to place all the other rational numbers. It is assumed that R
has the following algebra properties, listed here as a collection of assertions called axioms.
These properties will not be proved which is why they are called axioms rather than theo-
rems. In general, axioms are statements which are regarded as true. Often these are things
which are “self evident” either from experience or from some sort of intuition but this does
not have to be the case. In the following list, it is always assumed that 0 ̸= 1 since oth-
erwise, everything reduces to consideration of 0. You would have x = 1x = 0x = 0 so all
numbers would be 0. We are not interested in this.

Axiom 1.1.1 x+ y = y+ x, (commutative law for addition)

Axiom 1.1.2 x+0 = x, (additive identity).

Axiom 1.1.3 For each x ∈ R, there exists −x ∈ R such that x+(−x) = 0, (existence of
additive inverse).

17
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Axiom 1.1.4 (x+ y)+ z = x+(y+ z) ,(associative law for addition).

Axiom 1.1.5 xy = yx,(commutative law for multiplication).

Axiom 1.1.6 (xy)z = x(yz) ,(associative law for multiplication).

Axiom 1.1.7 1x = x,(multiplicative identity).

Axiom 1.1.8 For each x ̸= 0, there exists x−1 such that xx−1 = 1.(existence of multiplica-
tive inverse).

Axiom 1.1.9 x(y+ z) = xy+ xz.(distributive law).

These axioms are known as the field axioms and any set (there are many others besides
R) which has two such operations satisfying the above axioms is called a field. Division
and subtraction are defined in the usual way by x− y ≡ x+(−y) and x/y ≡ x

(
y−1
)
. It is

assumed that the reader is completely familiar with these axioms in the sense that he or
she can do the usual algebraic manipulations taught in high school and junior high algebra
courses. The axioms listed above are just a careful statement of exactly what is necessary
to make the usual algebraic manipulations valid.

A word of advice regarding division and subtraction is in order here. Whenever you
feel a little confused about an algebraic expression which involves division or subtraction,
think of division as multiplication by the multiplicative inverse as just indicated and think
of subtraction as addition of the additive inverse. Thus, when you see x/y, think x

(
y−1
)

and
when you see x− y, think x+(−y) . In many cases the source of confusion will disappear
almost magically.

The reason for this is that subtraction and division do not satisfy the associative law.
This means there is a natural ambiguity in an expression like 6 − 3 − 4. Do you mean
(6−3)−4 =−1 or 6−(3−4) = 6−(−1) = 7? It makes a difference doesn’t it? However,
the so called binary operations of addition and multiplication are associative and so no such
confusion will occur. It is conventional to simply do the operations in order of appearance
reading from left to right. Thus, if you see 6− 3− 4, you would normally interpret it
as the first of the above alternatives, but what if you grew up reading Hebrew or Arabic
which reads from right to left according to my understanding? Shouldn’t mathematics be
independent of such things? Subtraction and division are abominations.

In the first part of the following theorem, the claim is made that the additive inverse and
the multiplicative inverse are unique. This means that for a given number, only one number
has the property that it is an additive inverse and that, given a nonzero number, only one
number has the property that it is a multiplicative inverse. The significance of this is that if
you are wondering if a given number is the additive inverse of a given number, all you have
to do is to check and see if it acts like one.

Theorem 1.1.10 The above axioms imply the following.

1. The multiplicative inverse and additive inverse are unique.

2. 0x = 0, −(−x) = x,

3. (−1)(−1) = 1, (−1)x =−x

4. If xy = 0 then either x = 0 or y = 0.
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Proof: Suppose then that x is a real number and that x+y = 0 = x+z. It is necessary to
verify y = z. From the above axioms, there exists an additive inverse, −x for x. Therefore,

−x+0 = (−x)+(x+ y) = (−x)+(x+ z)

and so by the associative law for addition, ((−x)+ x)+ y = ((−x)+ x)+ z which implies
0+ y = 0+ z. Now by the definition of the additive identity, this implies y = z. You should
prove the multiplicative inverse is unique.

Consider 2. It is desired to verify 0x = 0. From the definition of the additive identity
and the distributive law it follows that

0x = (0+0)x = 0x+0x.

From the existence of the additive inverse and the associative law it follows

0 = (−0x)+0x = (−0x)+(0x+0x)

= ((−0x)+0x)+0x = 0+0x = 0x

To verify the second claim in 2., it suffices to show x acts like the additive inverse of −x
in order to conclude that −(−x) = x. This is because it has just been shown that additive
inverses are unique. By the definition of additive inverse, x+(−x) = 0 and so x =−(−x)
as claimed.

To demonstrate 3., (−1)+(−1)(−1) = (−1)(1+(−1)) = (−1)0 = 0. It follows from
1. and 2. that 1 =−(−1) = (−1)(−1) . To verify (−1)x =−x, use 2. and the distributive
law to write

x+(−1)x = x(1+(−1)) = x0 = 0.

Therefore, by the uniqueness of the additive inverse proved in 1., it follows (−1)x =−x as
claimed.

To verify 4., suppose x ̸= 0. Then x−1 exists by the axiom about the existence of multi-
plicative inverses. Therefore, by 2. and the associative law for multiplication,

y =
(
x−1x

)
y = x−1 (xy) = x−10 = 0.

This proves 4. ■
Recall the notion of something raised to an integer power. Thus y2 = y×y and b−3 = 1

b3

etc.
Also, there are a few conventions related to the order in which operations are per-

formed. Exponents are always done before multiplication. Thus xy2 = x
(
y2
)

and is not
equal to (xy)2 . Division or multiplication is always done before addition or subtraction.
Thus x−y(z+w) = x− [y(z+w)] and is not equal to (x− y)(z+w) . Parentheses are done
before anything else. Be very careful of such things since they are a source of mistakes.
When you have doubts, insert parentheses to describe exactly what is meant.

Also recall summation notation.

Definition 1.1.11 Let x1,x2, · · · ,xm be numbers. Then

m

∑
j=1

x j ≡ x1 + x2 + · · ·+ xm.
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Thus this symbol, ∑
m
j=1 x j means to take all the numbers, x1,x2, · · · ,xm and add them. Note

the use of the j as a generic variable which takes values from 1 up to m. This notation will
be used whenever there are things which can be added, not just numbers. The notation
∑i∈S xi means to consider all xi for i ∈ S and add them.

Also, ∏
m
i=1 xi means to multiply all the xi together.∏m

i=1 xi ≡ x1x2 · · ·xm

As an example of the use of this notation, you should verify the following.

Example 1.1.12 ∑
6
k=1 (2k+1) = 48, ∏

3
i=1 (i+1) = 24.

Be sure you understand why ∑
m+1
k=1 xk = ∑

m
k=1 xk + xm+1. As a slight generalization of

this notation, ∑
m
j=k x j ≡ xk+· · ·+xm. It is also possible to change the variable of summation.

∑
m
j=1 x j = x1 + x2 + · · ·+ xm while if r is an integer, the notation requires ∑

m+r
j=1+r x j−r =

x1 + x2 + · · ·+ xm and so ∑
m
j=1 x j = ∑

m+r
j=1+r x j−r.

Summation notation will be used throughout the book whenever it is convenient to do
so.

When you have algebraic expressions, you treat the variables like they are numbers and
add like you would normally do. For example, consider the following.

Example 1.1.13 Add the fractions, x
x2+y +

y
x−1 .

You add these just like fractions. Write the first expression as x(x−1)
(x2+y)(x−1)

and the second

as
y(x2+y)

(x−1)(x2+y)
. Then since these have the same common denominator, you add them as

follows.

x
x2 + y

+
y

x−1
=

x(x−1)
(x2 + y)(x−1)

+
y
(
x2 + y

)
(x−1)(x2 + y)

=
x2 − x+ yx2 + y2

(x2 + y)(x−1)
.

I assume the reader knows all about this kind of thing.

1.2 Exercises
1. Consider the expression x+ y(x+ y)− x(y− x)≡ f (x,y) . Find f (−1,2) .

2. Show −(ab) = (−a)b.

3. Show on the number line the effect of multiplying a number by −1.

4. Add the fractions x
x2−1 +

x−1
x+1 .

5. Find a formula for (x+ y)2 ,(x+ y)3 , and (x+ y)4 . Based on what you observe for
these, give a formula for (x+ y)8 .

6. When is it true that (x+ y)n = xn + yn?

7. Find the error in the following argument. Let x= y= 1. Then xy= y2 and so xy−x2 =
y2 − x2. Therefore, x(y− x) = (y− x)(y+ x) . Dividing both sides by (y− x) yields
x = x+ y. Now substituting in what these variables equal yields 1 = 1+1.
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8. Find the error in the following argument.
√

x2 +1 = x + 1 and so letting x = 2,√
5 = 3. Therefore, 5 = 9.

9. Find the error in the following. Let x = 1 and y= 2. Then 1
3 = 1

x+y =
1
x +

1
y = 1+ 1

2 =
3
2 . Then cross multiplying, yields 2 = 9.

10. Find the error in the following argument. Let x = 3 and y = 1. Then 1 = 3− 2 =
3− (3−1) = x− y(x− y) = (x− y)(x− y) = 22 = 4.

11. Find the error in the following. xy+y
x = y+y = 2y. Now let x = 2 and y = 2 to obtain

3 = 4

12. Show the rational numbers satisfy the field axioms. You may assume the associative,
commutative, and distributive laws hold for the integers.

1.3 Set Notation

A set is just a collection of things called elements. Often these are also referred to as points
in calculus. For example {1,2,3,8} would be a set consisting of the elements 1,2,3, and
8. To indicate that 3 is an element of {1,2,3,8} , it is customary to write 3 ∈ {1,2,3,8} .
9 /∈ {1,2,3,8} means 9 is not an element of {1,2,3,8} . Sometimes a rule specifies a set.
For example you could specify a set as all integers larger than 2. This would be written as
S = {x ∈ Z : x > 2} . This notation says: the set of all integers x, such that x > 2.

If A and B are sets with the property that every element of A is an element of B, then
A is a subset of B. For example, {1,2,3,8} is a subset of {1,2,3,4,5,8} , in symbols,
{1,2,3,8} ⊆ {1,2,3,4,5,8} . The same statement about the two sets may also be written
as {1,2,3,4,5,8} ⊇ {1,2,3,8}.

The union of two sets is the set consisting of everything which is contained in at least
one of the sets, A or B. As an example of the union of two sets, {1,2,3,8}∪{3,4,7,8} =
{1,2,3,4,7,8} because these numbers are those which are in at least one of the two sets.
Note that 3 is in both of these sets. In general

A∪B ≡ {x : x ∈ A or x ∈ B} .

Be sure you understand that something which is in both A and B is in the union. It is not an
exclusive or.

The intersection of two sets, A and B consists of everything which is in both of the sets.
Thus {1,2,3,8}∩{3,4,7,8}= {3,8} because 3 and 8 are those elements the two sets have
in common. In general,

A∩B ≡ {x : x ∈ A and x ∈ B} .

The symbol AC indicates the set of things not in A. It makes sense when A ⊆ U, a
universal set and it more precisely written as U \A.

When K is a set whose elements are sets, ∩K means everything which is in each of
the sets of K . Also ∪K is defined similarly. It is everything which is in at least one set of
K . More precisely, ∩K ≡∩{K : K ∈ K } . The following proposition is on De’Morgan’s
laws.
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Proposition 1.3.1 Let K denote a set whose elements are subsets of some universal
set U. Then

(∩K )C = ∪
{

KC : K ∈ K
}
, (∪K )C = ∩

{
KC : K ∈ K

}
Here KC ≡U \K, everything outside of K.

Proof: This follows from the definition. To say x ∈ (∩K )C is to say that x is not in the
intersection of sets of K which is to say that there is some set K ∈ K such that x /∈ K so
x ∈ KC which is to say that x ∈ ∪

{
KC : K ∈ K

}
. The other claim is similar. ■

Intervals consist of sets of points on the real line which form a line segment or line.
They might consist of all real numbers to the right of some point a including a and to the
left of b not including b. This would be written as [a,b). Maybe it is desired to specify all
real numbers to the right of or equal to a. This would be written as [a,∞). Here are pictures
of these two.

a b

[a,b)

a

[a,∞)

Other examples would be (a,b) which consists of all real numbers to the right of a not
including a and also to the left of b. Note that this equals (a,∞)∩ (−∞,b) where (−∞,b)
denotes all real numbers left of b. In general, if the end point is included, you use ] or [ and
if it is not included, you use ( or ). This is the geometric description of intervals. In the
next section, they are described in terms of order.

A special set which needs to be given a name is the empty set also called the null set,
denoted by /0. Thus /0 is defined as the set which has no elements in it. Mathematicians like
to say the empty set is a subset of every set. The reason they say this is that if it were not
so, there would have to exist a set, A, such that /0 has something in it which is not in A.
However, /0 has nothing in it and so the least intellectual discomfort is achieved by saying
/0 ⊆ A.

If A and B are two sets, A\B denotes the set of things which are in A but not in B. Thus
A\B ≡ {x ∈ A : x /∈ B} . This is the same as A∩BC where BC indicates everything not in B.
Set notation is used whenever convenient.

1.4 Order

Geometrically, order is defined as follows: x < y means that y is right of x on the number
line. This is also written as y > x. Also y ≥ x means y is to the right of x or maybe y = x.
This is the way we usually think of order in calculus. However, there is a formal axiomatic
description of order which follows. Most of these things are fairly obvious but I want to
mention one especially. If x < y and a > 0, then ax < ay but in case a < 0, then ax > ay.
You can see why this is from geometric reasoning. It would be good to convince yourself
of this. Note that −a = (−1)a and it simply reflects a across the 0 on the number line. The
formal discussion follows.
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The real numbers also have an order defined on them. This order may be defined by
reference to the positive real numbers, those to the right of 0 on the number line, denoted
by R+, the positive numbers which is assumed to satisfy the following axioms.

Axiom 1.4.1 The sum of two positive real numbers is positive.

Axiom 1.4.2 The product of two positive real numbers is positive.

Axiom 1.4.3 For a given real number x one and only one of the following alternatives
holds. Either x is positive, x = 0, or −x is positive.

Definition 1.4.4 x < y exactly when y+(−x)≡ y−x ∈R+. In the usual way, x < y
is the same as y > x and x ≤ y means either x < y or x = y. The symbol ≥ is defined
similarly.

Theorem 1.4.5 The following hold for the order defined as above.

1. If x < y and y < z then x < z (Transitive law).

2. If x < y then x+ z < y+ z (addition to an inequality).

3. If x ≤ 0 and y ≤ 0, then xy ≥ 0.

4. If x > 0 then x−1 > 0.

5. If x < 0 then x−1 < 0.

6. If x < y then xz < yz if z > 0, (multiplication of an inequality).

7. If x < y and z < 0, then xz > zy (multiplication of an inequality).

8. Each of the above holds with > and < replaced by ≥ and ≤ respectively except for
4 and 5 in which we must also stipulate that x ̸= 0.

9. For any x and y, exactly one of the following must hold. Either x = y, x < y, or x > y
(trichotomy).

Proof: First consider 1, the transitive law. Suppose x < y and y < z. Why is x < z? In
other words, why is z−x ∈R+? It is because z−x = (z− y)+(y− x) and both z−y,y−x ∈
R+. Thus by 1.4.1 above, z− x ∈ R+ and so z > x.

Next consider 2, addition to an inequality. If x < y why is x+ z < y+ z? it is because

(y+ z)+−(x+ z) = (y+ z)+(−1)(x+ z)

= y+(−1)x+ z+(−1)z = y− x ∈ R+.

Next consider 3. If x ≤ 0 and y ≤ 0, why is xy ≥ 0? First note there is nothing to
show if either x or y equal 0 so assume this is not the case. By 1.4.3 −x > 0 and −y > 0.
Therefore, by 1.4.2 and what was proved about −x = (−1)x, (−x)(−y) = (−1)2 xy ∈ R+.

Is (−1)2 = 1? If so the claim is proved. But −(−1) = (−1)(−1)≡ (−1)2 and −(−1) = 1
because −1+1 = 0. Therefore, 1 = (−1)2.

Next consider 4. If x > 0 why is x−1 > 0? By 1.4.3 either x−1 = 0 or −x−1 ∈ R+.
It can’t happen that x−1 = 0 because then you would have to have 1 = 0x and as was
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shown earlier, 0x = 0. Therefore, consider the possibility that −x−1 ∈R+. This can’t work
either because then you would have (−1)x−1x = (−1)(1) =−1 and it would follow from
1.4.2 that −1 ∈ R+. But this is impossible because if x ∈ R+, then (−1)x =−x ∈ R+ and
contradicts 1.4.3 which states that either −x or x is in R+ but not both.

Next consider 5. If x < 0, why is x−1 < 0? As before, x−1 ̸= 0. If x−1 > 0, then as
before, −x

(
x−1
)
=−1 ∈ R+ which was just shown not to occur.

Next consider 6. If x < y why is xz < yz if z > 0? This follows because yz− xz =
z(y− x) ∈ R+ since both z and y− x ∈ R+.

Next consider 7. If x < y and z < 0, why is xz > zy? This follows because zx− zy =
z(x− y) ∈ R+ by what was proved in 3.

The last two claims are obvious and left for you. This proves the theorem. ■
Note that trichotomy could be stated by saying x ≤ y or y ≤ x. We say that two numbers

x,y have the same sign if they are both in R+ or both −x,−y are in R+. A convenient way
to tell is in the following proposition.

Proposition 1.4.6 Two numbers x,y have the same sign if and only if xy > 0.

Proof: ⇒This follows from Axiom 1.4.2 if both are positive. If they are both negative,
then −x,−y are both positive and so xy = (−x)(−y)> 0.

⇐ If xy > 0, then if −x > 0 and y > 0, then −xy > 0 so xy < 0. Hence y < 0. It is
similar if x > 0. ■

Definition 1.4.7 |x| ≡

{
x if x ≥ 0,

−x if x < 0.

Note that |x| can be thought of as the distance between x and 0.

Theorem 1.4.8 |xy|= |x| |y| .

Proof: You can verify this by checking all available cases. Do so. You need consider
both x,y nonnegative, both negative, and one negative and the other positive. ■

Theorem 1.4.9 The following inequalities hold.

|x+ y| ≤ |x|+ |y| , ||x|− |y|| ≤ |x− y| .

Either of these inequalities may be called the triangle inequality.

Proof: First note that if a,b ∈ R+ ∪ {0} then a ≤ b if and only if a2 ≤ b2. Here is
why. Suppose a ≤ b. Then by the properties of order proved above, a2 ≤ ab ≤ b2 because
b2 −ab = b(b−a) ∈ R+∪{0} . Next suppose a2 ≤ b2. If both a,b = 0 there is nothing to
show. Assume then they are not both 0. Then

b2 −a2 = (b+a)(b−a) ∈ R+∪{0} .

By the above theorem on order, (a+b)−1 ∈ R+ and so using the associative law,

(a+b)−1 ((b+a)(b−a)) = (b−a) ∈ R+∪{0}

Thus b ≥ a.
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Now

|x+ y|2 = (x+ y)2 = x2 +2xy+ y2

≤ |x|2 + |y|2 +2 |x| |y|= (|x|+ |y|)2

and so the first of the inequalities follows. Note I used xy ≤ |xy| = |x| |y| which follows
from the definition.

To verify the other form of the triangle inequality, x = x− y+ y so

|x| ≤ |x− y|+ |y|

and so |x|− |y| ≤ |x− y|= |y− x|. Now repeat the argument replacing the roles of x and y
to conclude |y|− |x| ≤ |y− x| . Therefore,

||y|− |x|| ≤ |y− x| .

This proves the triangle inequality. ■

Example 1.4.10 Solve the inequality 2x+4 ≤ x−8

Subtract 2x from both sides to yield 4≤−x−8. Next add 8 to both sides to get 12≤−x.
Then multiply both sides by (−1) to obtain x ≤ −12. Alternatively, subtract x from both
sides to get x+4 ≤−8. Then subtract 4 from both sides to obtain x ≤−12.

Example 1.4.11 Solve the inequality (x+1)(2x−3)≥ 0.

If this is to hold, either both of the factors, x+ 1 and 2x− 3 are nonnegative or they
are both non-positive. The first case yields x+1 ≥ 0 and 2x−3 ≥ 0 so x ≥−1 and x ≥ 3

2
yielding x ≥ 3

2 . The second case yields x+1 ≤ 0 and 2x−3 ≤ 0 which implies x ≤−1 and
x ≤ 3

2 . Therefore, the solution to this inequality is x ≤−1 or x ≥ 3
2 .

Example 1.4.12 Solve the inequality (x)(x+2)≥−4

Here the problem is to find x such that x2 + 2x + 4 ≥ 0. However, x2 + 2x + 4 =
(x+1)2 +3 ≥ 0 for all x. Therefore, the solution to this problem is all x ∈ R.

Example 1.4.13 Solve the inequality 2x+4 ≤ x−8

This is written as (−∞,−12].

Example 1.4.14 Solve the inequality (x+1)(2x−3)≥ 0.

This was worked earlier and x ≤ −1 or x ≥ 3
2 was the answer. In terms of set notation

this is denoted by (−∞,−1]∪ [ 3
2 ,∞).

Example 1.4.15 Solve the equation |x−1|= 2

This will be true when x−1 = 2 or when x−1 =−2. Therefore, there are two solutions
to this problem, x = 3 or x =−1.

Example 1.4.16 Solve the inequality |2x−1|< 2



26 CHAPTER 1. FUNDAMENTAL CONCEPTS

From the number line, it is necessary to have 2x− 1 between −2 and 2 because the
inequality says that the distance from 2x−1 to 0 is less than 2. Therefore, −2 < 2x−1 < 2
and so −1/2 < x < 3/2. In other words, −1/2 < x and x < 3/2.

Example 1.4.17 Solve the inequality |2x−1|> 2.

This happens if 2x−1 > 2 or if 2x−1 <−2. Thus the solution is x > 3/2 or x <−1/2.
Written in terms of intervals this is

( 3
2 ,∞

)
∪
(
−∞,− 1

2

)
.

Example 1.4.18 Solve |x+1|= |2x−2|

There are two ways this can happen. It could be the case that x+1 = 2x−2 in which
case x = 3 or alternatively, x+1 = 2−2x in which case x = 1/3.

Example 1.4.19 Solve |x+1| ≤ |2x−2|

In order to keep track of what is happening, it is a very good idea to graph the two
relations, y = |x+1| and y = |2x−2| on the same set of coordinate axes. This is not a hard
job. |x+1| = x+ 1 when x > −1 and |x+1| = −1− x when x ≤ −1. Therefore, it is not
hard to draw its graph. Similar considerations apply to the other relation. The result is

1/3 3

y = |x+1|

Equality holds exactly when x = 3 or x = 1
3 as in the preceding example. Consider x

between 1
3 and 3. You can see these values of x do not solve the inequality. For example

x = 1 does not work. Therefore,
( 1

3 ,3
)

must be excluded. The values of x larger than 3
do not produce equality so either |x+1|< |2x−2| for these points or |2x−2|< |x+1| for
these points. Checking examples, you see the first of the two cases is the one which holds.
Therefore, [3,∞) is included. Similar reasoning obtains (−∞, 1

3 ]. It follows the solution set
to this inequality is (−∞, 1

3 ]∪ [3,∞).

Example 1.4.20 Suppose ε > 0 is a given positive number. Obtain a number, δ > 0, such
that if |x−1|< δ , then

∣∣x2 −1
∣∣< ε .

First of all, note
∣∣x2 −1

∣∣ = |x−1| |x+1| ≤ (|x|+1) |x−1| . Now if |x−1| < 1, it fol-
lows |x|< 2 and so for |x−1|< 1, ∣∣x2 −1

∣∣< 3 |x−1| .

Now let δ = min
(
1, ε

3

)
. This notation means to take the minimum of the two numbers, 1

and ε

3 . Then if |x−1|< δ , ∣∣x2 −1
∣∣< 3 |x−1|< 3

ε

3
= ε.
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1.5 Exercises

1. Solve (3x+2)(x−3)≤ 0.

2. Solve (3x+2)(x−3)> 0.

3. Solve x+2
3x−2 < 0.

4. Solve x+1
x+3 < 1.

5. Solve (x−1)(2x+1)≤ 2.

6. Solve (x−1)(2x+1)> 2.

7. Solve x2 −2x ≤ 0.

8. Solve (x+2)(x−2)2 ≤ 0.

9. Solve 3x−4
x2+2x+2 ≥ 0.

10. Solve 3x+9
x2+2x+1 ≥ 1.

11. Solve x2+2x+1
3x+7 < 1.

12. Solve |x+1|= |2x−3| .

13. Solve |3x+1| < 8. Give your answer
in terms of intervals on the real line.

14. Sketch on the number line the solu-
tion to the inequality |x−3|> 2.

15. Sketch on the number line the solu-
tion to the inequality |x−3|< 2.

16. Show |x|=
√

x2.

17. Solve |x+2|< |3x−3| .

18. Tell when equality holds in the trian-
gle inequality.

19. Solve |x+2| ≤ 8+ |2x−4| .

20. Solve (x+1)(2x−2)x ≥ 0.

21. Solve x+3
2x+1 > 1.

22. Solve x+2
3x+1 > 2.

23. Describe the set of numbers, a such
that there is no solution to |x+1| =
4−|x+a| .

24. Suppose 0 < a < b. Show a−1 > b−1.

25. Show that if |x−6|< 1, then |x|< 7.

26. Suppose |x−8| < 2. How large can
|x−5| be?

27. Obtain a number, δ > 0, such that if
|x−1|< δ , then

∣∣x2 −1
∣∣< 1/10.

28. Obtain a number, δ > 0, such that if
|x−4|< δ , then |

√
x−2|< 1/10.

29. Suppose ε > 0 is a given positive
number. Obtain a number, δ >
0, such that if |x−1| < δ , then
|
√

x−1| < ε . Hint: This δ will de-
pend in some way on ε. You need to
tell how.

1.6 The Binomial Theorem
Consider the following problem: You have the integers Sn = {1,2, · · · ,n} and k is an integer
no larger than n. How many ways are there to fill k slots with these integers starting from
left to right if whenever an integer from Sn has been used, it cannot be re used in any
succeeding slot?

k of these slots︷ ︸︸ ︷
, , , , · · · ,

This number is known as permutations of n things taken k at a time and is denoted by
P(n,k). It is easy to figure it out. There are n choices for the first slot. For each choice
for the fist slot, there remain n− 1 choices for the second slot. Thus there are n(n−1)
ways to fill the first two slots. Now there remain n−2 ways to fill the third. Thus there are
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n(n−1)(n−2) ways to fill the first three slots. Continuing this way, you see there are

P(n,k) = n(n−1)(n−2) · · ·(n− k+1)

ways to do this. Note there are k factors in the above product.
Now define for k a positive integer,

k! ≡ k (k−1)(k−2) · · ·1, 0! ≡ 1.

This is called k factorial. Thus P(k,k) = k! and you should verify that

P(n,k) =
n!

(n− k)!

Now consider the number of ways of selecting a set of k different numbers from Sn. For
each set of k numbers there are P(k,k) = k! ways of listing these numbers in order. There-

fore, denoting by

(
n

k

)
the number of ways of selecting a set of k numbers from Sn, it

must be the case that (
n

k

)
k! = P(n,k) =

n!
(n− k)!

Therefore,

(
n

k

)
= n!

k!(n−k)! . How many ways are there to select no numbers from Sn?

Obviously one way. Note that the above formula gives the right answer in this case as well
as in all other cases due to the definition which says 0! = 1.

Now consider the problem of writing a formula for (x+ y)n where n is a positive integer.
Imagine writing it like this:

n times︷ ︸︸ ︷
(x+ y)(x+ y) · · ·(x+ y)

Then you know the result will be sums of terms of the form akxkyn−k. What is ak? In other
words, how many ways can you pick x from k of the factors above and y from the other

n− k. There are n factors so the number of ways to do it is

(
n

k

)
. Therefore, ak is the

above formula and so this proves the following important theorem known as the binomial
theorem.

Theorem 1.6.1 The following formula holds for any n a positive integer.

(x+ y)n =
n

∑
k=0

(
n

k

)
xkyn−k.

1.7 Well Ordering Principle, Math Induction

Definition 1.7.1 A set is well ordered if every nonempty subset S, contains a small-
est element z having the property that z ≤ x for all x ∈ S.
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Axiom 1.7.2 Any set of integers larger than a given number is well ordered.

In particular, the natural numbers defined as N≡{1,2, · · ·} is well ordered.
The above axiom implies the principle of mathematical induction.

Theorem 1.7.3 (Mathematical induction) A set S ⊆ Z, having the property that a ∈
S and n+1 ∈ S whenever n ∈ S contains all integers x ∈ Z such that x ≥ a.

Proof: Let T ≡ ([a,∞)∩Z) \ S. Thus T consists of all integers larger than or equal
to a which are not in S. The theorem will be proved if T = /0. If T ̸= /0 then by the well
ordering principle, there would have to exist a smallest element of T, denoted as b. It must
be the case that b > a since by definition, a /∈ T. Then the integer, b−1 ≥ a and b−1 /∈ S
because if b− 1 ∈ S, then b− 1+ 1 = b ∈ S by the assumed property of S. Therefore,
b−1 ∈ ([a,∞)∩Z)\S = T which contradicts the choice of b as the smallest element of T.
(b−1 is smaller.) Since a contradiction is obtained by assuming T ̸= /0, it must be the case
that T = /0 and this says that everything in [a,∞)∩Z is also in S. ■

Mathematical induction is a very useful device for proving theorems about the integers.

Example 1.7.4 Prove by induction that ∑
n
k=1 k2 = n(n+1)(2n+1)

6 .

By inspection, if n = 1 then the formula is true. The sum yields 1 and so does the
formula on the right. Suppose this formula is valid for some n ≥ 1 where n is an integer.
Then

n+1

∑
k=1

k2 =
n

∑
k=1

k2 +(n+1)2 =
n(n+1)(2n+1)

6
+(n+1)2 .

The step going from the first to the second line is based on the assumption that the formula
is true for n. This is called the induction hypothesis. Now simplify the expression in the
second line,

n(n+1)(2n+1)
6

+(n+1)2 .

This equals (n+1)
(

n(2n+1)
6 +(n+1)

)
and

n(2n+1)
6

+(n+1) =
6(n+1)+2n2 +n

6
=

(n+2)(2n+3)
6

Therefore, ∑
n+1
k=1 k2 = (n+1)(n+2)(2n+3)

6 = (n+1)((n+1)+1)(2(n+1)+1)
6 , showing the formula holds

for n+1 whenever it holds for n. This proves the formula by mathematical induction.

Example 1.7.5 Show that for all n ∈ N, 1
2 ·

3
4 · · ·

2n−1
2n < 1√

2n+1
.

If n = 1 this reduces to the statement that 1
2 < 1√

3
which is obviously true. Suppose

then that the inequality holds for n. Then

1
2
· 3

4
· · · 2n−1

2n
· 2n+1

2n+2
<

1√
2n+1

2n+1
2n+2

=

√
2n+1

2n+2

The theorem will be proved if this last expression is less than 1√
2n+3

. This happens if and

only if
(

1√
2n+3

)2
= 1

2n+3 >
2n+1

(2n+2)2 which occurs if and only if (2n+2)2 > (2n+3)(2n+1)
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and this is clearly true which may be seen from expanding both sides. This proves the in-
equality.

Lets review the process just used. If S is the set of integers at least as large as 1 for which
the formula holds, the first step was to show 1 ∈ S and then that whenever n ∈ S, it follows
n+ 1 ∈ S. Therefore, by the principle of mathematical induction, S contains [1,∞)∩Z,
all positive integers. In doing an inductive proof of this sort, the set, S is normally not
mentioned. One just verifies the steps above. First show the thing is true for some a ∈ Z
and then verify that whenever it is true for m it follows it is also true for m+1. When this
has been done, the theorem has been proved for all m ≥ a.

Definition 1.7.6 The Archimedean property states that whenever x ∈ R, and a > 0,
there exists n ∈ N such that na > x.

This is not hard to believe. Just look at the number line. Imagine the intervals

[0,a), [a,2a), [2a,3a), · · · .

If x < 0, you could consider a and it would be larger than x. If x ≥ 0, surely, it is reasonable
to suppose that x would be on one of these intervals, say [pa,(p+1)a). This Archimedean
property is quite important because it shows every fixed real number is smaller than some
integer. It also can be used to verify a very important property of the rational numbers.

Axiom 1.7.7 R has the Archimedean property.

Theorem 1.7.8 Suppose x < y and y− x > 1. Then there exists an integer, l ∈ Z,
such that x < l < y. If x is an integer, there is no integer y satisfying x < y < x+1.

Proof: Let x be the smallest positive integer. Not surprisingly, x = 1 but this can be
proved. If x< 1 then x2 < x contradicting the assertion that x is the smallest natural number.
Therefore, 1 is the smallest natural number. This shows there is no integer y, satisfying
x < y < x+ 1 since otherwise, you could subtract x and conclude 0 < y− x < 1 for some
integer y− x.

Now suppose y − x > 1 and let S ≡ {w ∈ N : w ≥ y} .The set S is nonempty by the
Archimedean property. Let k be the smallest element of S. Therefore, k − 1 < y. Either

k− 1 ≤ x or k− 1 > x. If k− 1 ≤ x, then y− x ≤ y− (k−1) =

≤0︷︸︸︷
y− k+ 1 ≤ 1 contrary to

the assumption that y− x > 1. Therefore, x < k− 1 < y and this proves the theorem with
l = k−1. ■

It is the next theorem which gives the density of the rational numbers. This means that
for any real number, there exists a rational number arbitrarily close to it.

Theorem 1.7.9 If x < y then there exists a rational number r such that x < r < y.

Proof: Let n ∈N be large enough that n(y− x)> 1.Thus (y− x) added to itself n times
is larger than 1. Therefore, n(y− x) = ny+n(−x) = ny−nx > 1. It follows from Theorem
1.7.8 there exists m ∈ Z such that nx < m < ny and so take r = m/n. ■

Definition 1.7.10 A set, S ⊆ R is dense in R if whenever a < b, S∩ (a,b) ̸= /0.
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Thus the above theorem says Q is “dense” in R.
You probably saw the process of division in elementary school. Even though you saw it

at a young age it is very profound and quite difficult to understand. Suppose you want to do
the following problem 79

22 . What did you do? You likely did a process of long division which
gave the following result. 79

22 = 3 with remainder 13. This meant 79= 3(22)+13.You were
given two numbers, 79 and 22 and you wrote the first as some multiple of the second added
to a third number which was smaller than the second number. Can this always be done?
The answer is in the next theorem and depends here on the Archimedean property of the
real numbers.

Theorem 1.7.11 Suppose 0 < a and let b ≥ 0. Then there exists a unique integer p
and real number r such that 0 ≤ r < a and b = pa+ r.

Proof: Let S ≡ {n ∈ N : an > b} . By the Archimedean property this set is nonempty.
Let p+ 1 be the smallest element of S. Then pa ≤ b because p+ 1 is the smallest in S.
Therefore,

r ≡ b− pa ≥ 0.

If r ≥ a then b− pa ≥ a and so b ≥ (p+1)a contradicting p+1 ∈ S. Therefore, r < a as
desired.

To verify uniqueness of p and r, suppose pi and ri, i = 1,2, both work and r2 > r1. Then
a little algebra shows

p1 − p2 =
r2 − r1

a
∈ (0,1) .

Thus p1 − p2 is an integer between 0 and 1, contradicting Theorem 1.7.8. The case that
r1 > r2 cannot occur either by similar reasoning. Thus r1 = r2 and it follows that p1 = p2.
■

This theorem is called the Euclidean algorithm when a and b are integers. In this case,
you would have r is an integer.

1.8 Exercises
1. By Theorem 1.7.9 it follows that for a < b, there exists a rational number between a

and b. Show there exists an integer k such that a < k
2m < b for some k,m integers.

2. Show there is no smallest number in (0,1) . Recall (0,1) means the real numbers
which are strictly larger than 0 and smaller than 1.

3. Show there is no smallest number in Q∩ (0,1) .

4. Show that if S ⊆ R and S is well ordered with respect to the usual order on R then S
cannot be dense in R.

5. Prove by induction that ∑
n
k=1 k3 = 1

4 n4 + 1
2 n3 + 1

4 n2.

6. It is a fine thing to be able to prove a theorem by induction but it is even better to
be able to come up with a theorem to prove in the first place. Derive a formula for
∑

n
k=1 k4 in the following way. Look for a formula in the form An5 +Bn4 +Cn3 +
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Dn2 +En+F. Then try to find the constants A,B,C,D,E, and F such that things
work out right. In doing this, show

(n+1)4 =
(

A(n+1)5 +B(n+1)4 +C (n+1)3 +D(n+1)2 +E (n+1)+F
)

−
(

An5 +Bn4 +Cn3 +Dn2 +En+F
)
,

so some progress can be made by matching the coefficients. When you get your
answer, prove it is valid by induction.

7. Prove by induction that whenever n ≥ 2,∑n
k=1

1√
k
>
√

n.

8. If r ̸= 0,1, show by induction that ∑
n
k=1 a(rk) = a rn+1

r−1 −a r
r−1 .

9. Prove by induction that ∑
n
k=1 k = n(n+1)

2 .

10. Let a and d be real numbers. Find a formula for ∑
n
k=1 (a+ kd) and then prove your

result by induction.

11. Consider the geometric series, ∑
n
k=1 ark−1. Prove by induction that if r ̸= 1, then

∑
n
k=1 ark−1 = a−arn

1−r .

12. This problem is a continuation of Problem 11. You put money in the bank and it
accrues interest at the rate of r per payment period. These terms need a little ex-
planation. If the payment period is one month, and you started with $100 then the
amount at the end of one month would equal 100(1+ r) = 100+100r. In this the sec-
ond term is the interest and the first is called the principal. Now you have 100(1+ r)
in the bank. How much will you have at the end of the second month? By analogy
to what was just done it would equal 100(1+ r)+ 100(1+ r)r = 100(1+ r)2 . In
general, the amount you would have at the end of n months would be 100(1+ r)n .
(When a bank says they offer 6% compounded monthly, this means r, the rate per
payment period equals .06/12.) In general, suppose you start with P and it sits in the
bank for n payment periods. Then at the end of the nth payment period, you would
have P(1+ r)n in the bank. In an ordinary annuity, you make payments, P at the end
of each payment period, the first payment at the end of the first payment period. Thus
there are n payments in all. Each accrue interest at the rate of r per payment period.
Using Problem 11, find a formula for the amount you will have in the bank at the end
of n payment periods? This is called the future value of an ordinary annuity. Hint:
The first payment sits in the bank for n− 1 payment periods and so this payment
becomes P(1+ r)n−1 . The second sits in the bank for n− 2 payment periods so it
grows to P(1+ r)n−2 , etc.

13. Now suppose you want to buy a house by making n equal monthly payments. Typi-
cally, n is pretty large, 360 for a thirty year loan. Clearly a payment made 10 years
from now can’t be considered as valuable to the bank as one made today. This is be-
cause the one made today could be invested by the bank and having accrued interest
for 10 years would be far larger. So what is a payment made at the end of k payment
periods worth today assuming money is worth r per payment period? Shouldn’t it
be the amount, Q which when invested at a rate of r per payment period would yield
P at the end of k payment periods? Thus from Problem 12 Q(1+ r)k = P and so
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Q = P(1+ r)−k . Thus this payment of P at the end of n payment periods, is worth
P(1+ r)−k to the bank right now. It follows the amount of the loan should equal the
sum of these “discounted payments”. That is, letting A be the amount of the loan,

A =
n

∑
k=1

P(1+ r)−k .

Using Problem 11, find a formula for the right side of the above formula. This is
called the present value of an ordinary annuity.

14. Suppose the available interest rate is 7% per year and you want to take a loan for
$100,000 with the first monthly payment at the end of the first month. If you want to
pay off the loan in 20 years, what should the monthly payments be? Hint: The rate
per payment period is .07/12. See the formula you got in Problem 13 and solve for
P.

15. Consider the first five rows of Pascal’s1 triangle

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

What is the sixth row? Now consider that (x+ y)1 = 1x+1y , (x+ y)2 = x2 +2xy+
y2, and (x+ y)3 = x3 +3x2y+3xy2 + y3. Give a conjecture about (x+ y)5.

16. Based on Problem 15 conjecture a formula for (x+ y)n and prove your conjecture by
induction. Hint: Letting the numbers of the nth row of Pascal’s triangle be denoted by(n

0

)
,
(n

1

)
, · · · ,

(n
n

)
in reading from left to right, there is a relation between the numbers

on the (n+1)st row and those on the nth row, the relation being
(n+1

k

)
=
(n

k

)
+
( n

k−1

)
.

This is used in the inductive step.

17. Let
(n

k

)
≡ n!

(n−k)!k! where 0! ≡ 1 and (n+1)! ≡ (n+1)n! for all n ≥ 0. Prove that

whenever k ≥ 1 and k ≤ n, then
(n+1

k

)
=
(n

k

)
+
( n

k−1

)
. Are these numbers,

(n
k

)
the

same as those obtained in Pascal’s triangle? Prove your assertion.

18. The binomial theorem states (a+b)n = ∑
n
k=0
(n

k

)
an−kbk. Prove the binomial theorem

by induction. Hint: You might try using the preceding problem.

19. Show that for p ∈ (0,1) ,∑n
k=0
(n

k

)
kpk (1− p)n−k = np.

20. Using the binomial theorem prove that for all n∈N,
(
1+ 1

n

)n ≤
(
1+ 1

n+1

)n+1
. Hint:

Show first that
(n

k

)
= n·(n−1)···(n−k+1)

k! . By the binomial theorem,

(
1+

1
n

)n

=
n

∑
k=0

(
n
k

)(
1
n

)k

=
n

∑
k=0

k factors︷ ︸︸ ︷
n · (n−1) · · ·(n− k+1)

k!nk .

1Blaise Pascal lived in the 1600’s and is responsible for the beginnings of the study of probability. He also did
fundamental experiments on fluids.
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Now consider the term n·(n−1)···(n−k+1)
k!nk and note that a similar term occurs in the

binomial expansion for
(
1+ 1

n+1

)n+1
except that n is replaced with n+1 whereever

this occurs. Argue the term got bigger and then note that in the binomial expansion
for
(
1+ 1

n+1

)n+1
, there are more terms.

21. Prove by induction that for all k ≥ 4, 2k ≤ k!

22. Use the Problems 21 and 20 to verify for all n ∈ N,
(
1+ 1

n

)n ≤ 3.

23. Prove by induction that 1+∑
n
i=1 i(i!) = (n+1)!.

24. I can jump off the top of the Empire State Building without suffering any ill effects.
Here is the proof by induction. If I jump from a height of one inch, I am unharmed.
Furthermore, if I am unharmed from jumping from a height of n inches, then jumping
from a height of n+1 inches will also not harm me. This is self evident and provides
the induction step. Therefore, I can jump from a height of n inches for any n. What
is the matter with this reasoning?

25. All horses are the same color. Here is the proof by induction. A single horse is the
same color as himself. Now suppose the theorem that all horses are the same color
is true for n horses and consider n+1 horses. Remove one of the horses and use the
induction hypothesis to conclude the remaining n horses are all the same color. Put
the horse which was removed back in and take out another horse. The remaining n
horses are the same color by the induction hypothesis. Therefore, all n+1 horses are
the same color as the n−1 horses which didn’t get moved. This proves the theorem.
Is there something wrong with this argument?

26. Let

(
n

k1,k2,k3

)
denote the number of ways of selecting a set of k1 things, a set of

k2 things, and a set of k3 things from a set of n things such that ∑
3
i=1 ki = n. Find a

formula for

(
n

k1,k2,k3

)
. Now give a formula for a trinomial theorem, one which

expands (x+ y+ z)n . Could you continue this way and get a multinomial formula?

1.9 Completeness of R
By Theorem 1.7.9, between any two real numbers, points on the number line, there exists
a rational number. This suggests there are a lot of rational numbers, but it is not clear from
this Theorem whether the entire real line consists of only rational numbers. Some people
might wish this were the case because then each real number could be described, not just as
a point on a line but also algebraically, as the quotient of integers. Before 500 B.C., a group
of mathematicians, led by Pythagoras believed in this, but they discovered their beliefs were
false. It happened roughly like this. They knew they could construct the square root of two
as the diagonal of a right triangle in which the two sides have unit length; thus they could
regard

√
2 as a number. Unfortunately, they were also able to show

√
2 could not be written

as the quotient of two integers. This discovery that the rational numbers could not even
account for the results of geometric constructions was very upsetting to the Pythagoreans,
especially when it became clear there were an endless supply of such “irrational” numbers.
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This shows that if it is desired to consider all points on the number line, it is necessary
to abandon the attempt to describe arbitrary real numbers in a purely algebraic manner
using only quotients of integers. Some might desire to throw out all the irrational numbers,
and considering only the rational numbers, confine their attention to algebra, but this is not
the approach to be followed here because it will effectively eliminate every major theorem
of calculus. In this book real numbers will continue to be the points on the number line,
a line which has no holes. This lack of holes is more precisely described in the following
way.

Definition 1.9.1 A non empty set, S ⊆ R is bounded above (below) if there exists
x ∈R such that x ≥ (≤)s for all s ∈ S. If S is a nonempty set in R which is bounded above,
then a number, l which has the property that l is an upper bound and that every other upper
bound is no smaller than l is called a least upper bound, l.u.b.(S) or often sup(S) . If S is a
nonempty set bounded below, define the greatest lower bound, g.l.b.(S) or inf(S) similarly.
Thus g is the g.l.b.(S) means g is a lower bound for S and it is the largest of all lower
bounds. If S is a nonempty subset of R which is not bounded above, this information is
expressed by saying sup(S) = +∞ and if S is not bounded below, inf(S) =−∞.

Every existence theorem in calculus depends on some form of the completeness axiom.
Bolzano was using this axiom in the early 1800’s. It wasn’t until late in that century that
a construction of the real numbers from the rational numbers was completed by Dedikind.
In this book, we will use this axiom whenever needed. Constructing the real numbers can
be done later.

Axiom 1.9.2 (completeness) Every nonempty set of real numbers which is bounded above
has a least upper bound and every nonempty set of real numbers which is bounded below
has a greatest lower bound.

It is this axiom which distinguishes Calculus from Algebra. A fundamental result about
sup and inf is the following.

Proposition 1.9.3 Let S be a nonempty set and suppose sup(S) exists. Then for every
δ > 0,

S∩ (sup(S)−δ ,sup(S)] ̸= /0.

If inf(S) exists, then for every δ > 0,

S∩ [inf(S) , inf(S)+δ ) ̸= /0.

Proof:Consider the first claim. If the indicated set equals /0, then sup(S)−δ is an upper
bound for S which is smaller than sup(S) , contrary to the definition of sup(S) as the least
upper bound. In the second claim, if the indicated set equals /0, then inf(S)+δ would be a
lower bound which is larger than inf(S) contrary to the definition of inf(S) .■

1.10 Existence of Roots
What is 5

√
7 and does it even exist? You can ask for it on your calculator and the calculator

will give you a number which multiplied by itself 5 times will yield a number which is
close to 7 but it isn’t exactly right. Why should there exist a number which works exactly?
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Every one you find, appears to be some sort of approximation at best. If you can’t produce
one, why should you believe it is even there? Are you to accept it on faith like religion?
Indeed, you must accept something without proof, but the appropriate thing to accept in the
context of calculus is the completeness axiom of the real line on which every significant
topic in calculus depends. In calculus, roots exist because of completeness of the real line
as do integrals and all the major existence theorems in calculus, not because of algebraic
techniques involving field extensions. Here is a lemma.

Lemma 1.10.1 Suppose n ∈ N and a > 0. Then if xn − a ̸= 0, there exists δ > 0 such
that whenever y ∈ (x−δ ,x+δ ) , it follows yn −a ̸= 0 and has the same sign as xn −a.

Proof: From the binomial theorem, assuming always that |y− x|< 1,

yn −a = ((y− x)+ x)n −a =
n

∑
k=0

(
n

k

)
(y− x)n−k xk −a

=
n−1

∑
k=0

(
n

k

)
(y− x)n−k xk + xn −a = (y− x)

n−1

∑
k=0

(
n

k

)
(y− x)n−(k+1) xk + xn −a

Now from the triangle inequality and |x− y|< 1,

(xn −a)(yn −a) = (xn −a)

(
(y− x)

n−1

∑
k=0

(
n

k

)
(y− x)n−(k+1) xk +(xn −a)

)

≥
=|xn−a|2

(xn −a)2 −|y− x| |xn −a|
n−1

∑
k=0

(
n

k

)
|x|k

Let 0 < δ < min

1, |x
n−a|
2

(
1+∑

n−1
k=0

(
n

k

)
|x|k
)−1

 Then if |y− x| < δ , from the

above,

(xn −a)(yn −a)≥ |xn −a|2 − |xn −a|2

2
> 0

and so xn −a and yn −a have the same sign. ■

Theorem 1.10.2 Let a > 0 and let n > 1. Then there exists a unique x > 0 such that
xn = a.

Proof: Let S denote those numbers y ≥ 0 such that tn − a < 0 for all t ∈ [0,y]. Now
note that from the binomial theorem,

(1+a)n −a =
n

∑
k=0

(
n

k

)
ak1n−k −a ≥ 1+a−a = 1 > 0

Thus S is bounded above by 1+ a and 0 ∈ S. Let x ≡ sup(S). Then by definition of sup,
for every δ > 0, there exists t ∈ S with |x− t|< δ .

If xn −a > 0, then by the above lemma, for t ∈ S sufficiently close to x,

(tn −a)(xn −a)> 0
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which is a contradiction because the first factor is negative and the second is positive.
Hence xn −a ≤ 0. If xn −a < 0, then from the above lemma, there is a δ > 0 such that if
t ∈ (x−δ ,x+δ ) ,xn−a and tn−a have the same sign. This is also a contradiction because
then x ̸= sup(S). It follows xn = a. ■

From now on, we will use this fact that nth roots exist and are unique whenever it is
convenient to do so.

1.11 Completing the Square
There is a very important process called completing the square. The idea is as follows. For
a,b,c real numbers with a ̸= 0, it is desired to write the expression ax2 +bx+c in the form
a(x− γ)2 + β . I will now show how to do this. It is very important because if you have
done it, you can see that letting x = γ yields the smallest possible value of the expression
ax2 +bx+ c for all x a real number provided a > 0 and it yields the largest possible value
if a < 0. Here are the steps for doing it:

1. ax2 +bx+ c = a
(
x2 + b

a x+ c
a

)
2. a

(
x2 + b

a x+ c
a

)
= a

(
x2 + b

a x+ b2

4a2 − b2

4a2 +
c
a

)
3. a

(
x2 + b

a x+ b2

4a2 − b2

4a2 +
c
a

)
= a

((
x+ b

2a

)2 −
(

b2

4a2 − 4ac
4a2

))
4. a

((
x+ b

2a

)2 −
(

b2

4a2 − 4ac
4a2

))
= a

(
x+ b

2a

)2
+
(

4ac−b2

4a

)
The following fundamental theorem gives a formula for finding solutions to a quadratic

equation, one of the form ax2 +bx+ c = 0.

Theorem 1.11.1 If x is such that ax2 +bx+ c = 0 then

x =
−b±

√
b2 −4ac

2a
Proof: From the process of completing the square,(

x+
b

2a

)2

=

(
b2 −4ac

4a2

)
and so on taking square roots, one obtains the two solutions described,

−b+
√

b2 −4ac
2a

,
−b−

√
b2 −4ac

2a
■

Example 1.11.2 Complete the square for 3x2 +4x−5.

You can either go through the process or use the above formula. a = 3,b = 4,c = −5
and so, from the formula, this expression equals

3
(

x+
4

2(3)

)2

+

(
4(3)(−5)−42

4(3)

)
= 3

(
x+

2
3

)2

+

(
−19

3

)
Thus, in particular, the expression is minimized by letting x =− 2

3 and its smallest value is
− 19

3 .
Other situations are similar.
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1.12 Dividing Polynomials
It will be very important to be able to work with polynomials, especially in subjects like
linear algebra and with the technique of partial fractions. It is surprising how useful this
junior high material will be. In this section, a polynomial is an expression. Later, the
expression will be used to define a function. These two ways of looking at a polynomial
are very different.

Definition 1.12.1 A polynomial is an expression of the form

p(λ ) = anλ
n +an−1λ

n−1 + · · ·+a1λ +a0,

an ̸= 0 where the ai are numbers. Two polynomials are equal means that the coefficients
match for each power of λ . The degree of a polynomial is the largest power of λ . Thus the
degree of the above polynomial is n. Addition of polynomials is defined in the usual way
as is multiplication of two polynomials. The leading term in the above polynomial is anλ

n.
The coefficient of the leading term is called the leading coefficient. It is called a monic
polynomial if an = 1. A root of a polynomial p(λ ) is µ such that p(µ) = 0. This is also
called a zero. When all coefficients are 0, we call it the zero polynomial.

The degree of the zero polynomial is not defined. Polynomials of degree 0 are the
same as the numbers. The following is called the division algorithm. First is an important
observation about multiplication of polynomials.

Lemma 1.12.2 If f (λ )g(λ ) = 0, then either f (λ ) = 0 or g(λ ) = 0. That is, there are
no nonzero divisors of 0.

Proof: Let f (λ ) have degree n and g(λ ) degree m. If m+n= 0, it is easy to see that the
conclusion holds. Suppose the conclusion holds for m+n ≤ M and suppose m+n = M+1.
Then

0 =
(

a0 +a1λ + · · ·+an−1λ
n−1 +anλ

n
)(

b0 +b1λ + · · ·+bm−1λ
m−1 +bmλ

m
)

= (a(λ )+anλ
n)(b(λ )+bmλ

m)

= a(λ )b(λ )+bmλ
ma(λ )+anλ

nb(λ )+anbmλ
n+m

Either an = 0 or bm = 0 because their product is 0. Suppose bm = 0. Then you need
(a(λ )+anλ

n)b(λ ) = 0. By induction, one of these polynomials in the product is 0. If
b(λ ) ̸= 0, then this shows an = 0 and a(λ ) = 0 so f (λ ) = 0. If b(λ ) = 0, then g(λ ) = 0.
The argument is the same if an = 0. ■

Lemma 1.12.3 Let f (λ ) and g(λ ) ̸= 0 be polynomials. Then there exist polynomials,
q(λ ) and r (λ ) such that

f (λ ) = q(λ )g(λ )+ r (λ )

where the degree of r (λ ) is less than the degree of g(λ ) or r (λ ) = 0. These polynomials
q(λ ) and r (λ ) are unique.

Proof: Suppose that f (λ )− q(λ )g(λ ) is never equal to 0 for any q(λ ). If it is, then
the conclusion follows. Now suppose

r (λ ) = f (λ )−q(λ )g(λ ) (∗)
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where the degree of r (λ ) is as small as possible. Let it be m. Suppose m ≥ n where n is the
degree of g(λ ). Say r (λ ) = bλ

m +a(λ ) where a(λ ) is 0 or has degree less than m while
g(λ ) = b̂λ

n + â(λ ) where â(λ ) is 0 or has degree less than n. Then(
f (λ )−

(
q(λ )+

b
b̂

λ
m−n
)

g(λ )
)
= r (λ )− b

b̂
λ

m−ng(λ )

= bλ
m +a(λ )− b

b̂
λ

m−n (b̂λ
n + â(λ )

)
a polynomial having degree less than m. This is a contradiction because m was as small as
possible and the left side is in the form of ∗. Hence m < n after all.

As to uniqueness, if you have r (λ ) , r̂ (λ ) ,q(λ ) , q̂(λ ) which work, then you would
have (q̂(λ )−q(λ ))g(λ ) = r (λ )− r̂ (λ ) . Now if the polynomial on the right is not zero,
then neither is the one on the left. Hence this would involve two polynomials which are
equal although their degrees are different. This is impossible. Hence r (λ ) = r̂ (λ ) and so,
the above lemma gives q̂(λ ) = q(λ ). ■

Definition 1.12.4 Let all coefficients of all polynomials come from a given field F.
For us, F will be the real numbers R. Let p(λ ) = anλ

n + · · ·+a1λ +a0 be a polynomial.
Recall it is called monic if an = 1. If you have polynomials

{p1 (λ ) , · · · , pm (λ )} ,

the greatest common divisor q(λ ) is defined as the monic polynomial such that

1. pk (λ ) = q(λ ) lk (λ ) for some lk (k) written as q(λ )/pk (λ ) (q(λ ) divides pk (λ ))

2. If q̂(λ )/pk (λ ) for each k, then q̂(λ )/q(λ ) .

A set of polynomials {p1 (λ ) , · · · , pm (λ )} is relatively prime if the greatest common
divisor is 1.

Lemma 1.12.5 There is at most one greatest common divisor.

Proof: If you had two, q̂(λ ) and q(λ ) , then q̂(λ )/q(λ ) and q(λ )/q̂(λ ) so q(λ ) =
q̂(λ ) l̂ (λ ) = q(λ ) l (λ ) l̂ (λ ) and now it follows, since both q̂(λ ) and q(λ ) are monic that
l̂ (λ ) and l (λ ) are both equal to 1. ■

The next proposition is remarkable. It describes the greatest common divisor in a very
useful way.

Proposition 1.12.6 The greatest common divisor of {p1 (λ ) , · · · , pm (λ )} exists and is
characterized as the monic polynomial of smallest degree equal to an expression of the
form

m

∑
k=1

ak (λ ) pk (λ ) , the ak (λ ) being polynomials. (1.1)

Proof: First I need show that if q(λ ) is monic of the above form with smallest de-
gree, then it is the greatest common divisor. If q(λ ) fails to divide pk (λ ) , then pk (λ ) =
q(λ ) l (λ )+ r (λ ) where the degree of r (λ ) is smaller than the degree of q(λ ). Thus,

r (λ ) = pk (λ )− l (λ )

q(λ )︷ ︸︸ ︷
m

∑
k=1

ak (λ ) pk (λ )
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which violates the condition that q(λ ) has smallest degree because the right side is of the
form in 1.1. Thus q(λ )/pk (λ ) for each k. If q̂(λ ) divides each pk (λ ) then it must divide
q(λ ) because q(λ ) is given by 1.1. Hence q(λ ) is the greatest common divisor.

Next, why does such greatest common divisor exist? Simply pick the monic polynomial
which has smallest degree which is of the form ∑

m
k=1 ak (λ ) pk (λ ) . Then from what was

just shown, it is the greatest common divisor. ■

Proposition 1.12.7 Let p(λ ) be a polynomial. Then there are polynomials pi (λ ) such
that

p(λ ) = a
m

∏
i=1

pi (λ )
mi (1.2)

where mi ∈ N and {p1 (λ ) , · · · , pm (λ )} are monic and every subset of

{p1 (λ ) , · · · , pm (λ )}

is relatively prime.

Proof: If there is no polynomial of degree larger than 0 dividing p(λ ) , then we are
done. Simply pick a such that p(λ ) is monic. Otherwise p(λ ) = ap1 (λ ) p2 (λ ) where
pi (λ ) is monic and each has degree at least 1. These could be the same polynomial. If
some nonconstant polynomial divides either pi (λ ) , factor further. Continue doing this.
Eventually the process must end with a factorization as described in 1.2 because the degrees
of the factors are decreasing. Why is every subset of these pi (λ ) relatively prime? If not,
you could have factored the expression further. ■

1.13 The Complex Numbers
Recall that a real number is a point on the real number line. Just as a real number should be
considered as a point on the line, a complex number is considered a point in the plane which
can be identified in the usual way using the Cartesian coordinates of the point. Thus (a,b)
identifies a point whose x coordinate is a and whose y coordinate is b. In dealing with com-
plex numbers, such a point is written as a+ ib. For example, in the following picture, I have
graphed the point 3+2i. You see it corresponds to the point in the plane whose coordinates
are (3,2) .

•3+2i
Multiplication and addition are defined in the most obvious way sub-
ject to the convention that i2 =−1. Thus,

(a+ ib)+(c+ id) = (a+ c)+ i(b+d)

and
(a+ ib)(c+ id) = ac+ iad + ibc+ i2bd = (ac−bd)+ i(bc+ad) .

Every non zero complex number a + ib, with a2 + b2 ̸= 0, has a unique multiplicative
inverse.

1
a+ ib

=
a− ib

a2 +b2 =
a

a2 +b2 − i
b

a2 +b2 .

You should prove the following theorem.

Theorem 1.13.1 The complex numbers with multiplication and addition defined as
above form a field satisfying all the field axioms. These are the following properties.
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1. x+ y = y+ x, (commutative law for addition)

2. x+0 = x, (additive identity).

3. For each x ∈ R, there exists −x ∈ R such that x+(−x) = 0, (existence of additive
inverse).

4. (x+ y)+ z = x+(y+ z) ,(associative law for addition).

5. xy = yx,(commutative law for multiplication). You could write this as x× y = y× x.

6. (xy)z = x(yz) ,(associative law for multiplication).

7. 1x = x,(multiplicative identity).

8. For each x ̸= 0, there exists x−1 such that xx−1 = 1.(existence of multiplicative in-
verse).

9. x(y+ z) = xy+ xz.(distributive law).

Something which satisfies these axioms is called a field. In this book, the field of most
interest will be the field of real numbers. You have seen in earlier courses that the set of real
numbers with the usual operations also satisfies the above axioms. The field of complex
numbers is denoted as C and the field of real numbers is denoted as R. An important
construction regarding complex numbers is the complex conjugate denoted by a horizontal
line above the number. It is defined as follows.

a+ ib ≡ a− ib.

What it does is reflect a given complex number across the x axis. Algebraically, the follow-
ing formula is easy to obtain.(

a+ ib
)
(a+ ib) = (a− ib)(a+ ib) = a2 +b2 − i(ab−ab) = a2 +b2.

Observation 1.13.2 The conjugate of a sum of complex numbers equals the sum of the
complex conjugates and the conjugate of a product of complex numbers equals the product
of the conjugates. To illustrate, consider the claim about the product.

(a+ ib)(c+ id) = (ac−bd)+ i(bc+ad) = (ac−bd)− i(bc+ad)(
a+ ib

)(
c+ id

)
= (a− ib)(c− id) = (ac−bd)− i(bc+ad)

Showing the claim works for a sum is left for you. Of course this means the conclusion
holds for any finite product or finite sum. Indeed, for zk a complex number, the associative
law of multiplication above gives

z1 · · ·zn = (z1 · · ·zn−1)(zn) = (z1 · · ·zn−1)(zn)

Now by induction, the first product in the above can be split up into the product of the
conjugates. Similar observations hold for sums.

Definition 1.13.3 Define the absolute value of a complex number as follows.

|a+ ib| ≡
√

a2 +b2.

Thus, denoting by z the complex number z = a+ ib,

|z|= (zz)1/2 .
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Also from the definition, if z = x+ iy and w = u+ iv are two complex numbers, then
|zw|= |z| |w| . You should verify this.

Notation 1.13.4 Recall the following notation. ∑
n
j=1 a j ≡ a1 + · · ·+ an. There is also a

notation which is used to denote a product.

n

∏
j=1

a j ≡ a1a2 · · ·an

The triangle inequality holds for the absolute value for complex numbers just as it does
for the ordinary absolute value.

Proposition 1.13.5 Let z,w be complex numbers. Then the triangle inequality holds.

|z+w| ≤ |z|+ |w| , ||z|− |w|| ≤ |z−w| .

Proof: Let z = x+ iy and w = u+ iv. First note that

zw = (x+ iy)(u− iv) = xu+ yv+ i(yu− xv)

and so |xu+ yv| ≤ |zw|= |z| |w| .

|z+w|2 = (x+u+ i(y+ v))(x+u− i(y+ v))

= (x+u)2 +(y+ v)2 = x2 +u2 +2xu+2yv+ y2 + v2

≤ |z|2 + |w|2 +2 |z| |w|= (|z|+ |w|)2 ,

so this shows the first version of the triangle inequality. To get the second,

z = z−w+w, w = w− z+ z

and so by the first form of the inequality

|z| ≤ |z−w|+ |w| , |w| ≤ |z−w|+ |z|

and so both |z| − |w| and |w| − |z| are no larger than |z−w| and this proves the second
version because ||z|− |w|| is one of |z|− |w| or |w|− |z|. ■

With this definition, it is important to note the following. Be sure to verify this. It is not
too hard but you need to do it.

Remark 1.13.6 : Let z = a+ ib and w = c+ id. Then

|z−w|=
√

(a− c)2 +(b−d)2.

Thus the distance between the point in the plane determined by the ordered pair (a,b) and
the ordered pair (c,d) equals |z−w| where z and w are as just described.

For example, consider the distance between (2,5) and (1,8) . From the distance formula

this distance equals
√
(2−1)2 +(5−8)2 =

√
10. On the other hand, letting z = 2+ i5 and

w = 1+ i8, z−w = 1− i3 and so (z−w)(z−w) = (1− i3)(1+ i3) = 10 so |z−w|=
√

10,
the same thing obtained with the distance formula.
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1.14 Polar Form of Complex Numbers
In the remaining sections of this chapter, I am assuming the reader knows basic trigonom-
etry. If this is not the case, skip these sections and read them after the trig. functions have
been developed systematically in the next chapter.

Complex numbers, are often written in the so called polar form which is described next.
Suppose z = x+ iy is a complex number. Then

x+ iy =
√

x2 + y2

(
x√

x2 + y2
+ i

y√
x2 + y2

)
.

Now note that (
x√

x2 + y2

)2

+

(
y√

x2 + y2

)2

= 1

and so
(

x√
x2+y2

, y√
x2+y2

)
is a point on the unit circle. Therefore, there exists a unique

angle θ ∈ [0,2π) such that

cosθ =
x√

x2 + y2
, sinθ =

y√
x2 + y2

.

The polar form of the complex number is then r (cosθ + isinθ) where θ is this angle just
described and r =

√
x2 + y2 ≡ |z|.

θ

x+ iy = r(cos(θ)+ isin(θ))r =
√

x2 + y2
r

1.15 Roots of Complex Numbers
A fundamental identity is the formula of De Moivre which follows.

Theorem 1.15.1 Let r > 0 be given. Then if n is a positive integer,

[r (cos t + isin t)]n = rn (cosnt + isinnt) .

Proof: It is clear the formula holds if n = 1. Suppose it is true for n.

[r (cos t + isin t)]n+1 = [r (cos t + isin t)]n [r (cos t + isin t)]

which by induction equals

= rn+1 (cosnt + isinnt)(cos t + isin t)

= rn+1 ((cosnt cos t − sinnt sin t)+ i(sinnt cos t + cosnt sin t))

= rn+1 (cos(n+1) t + isin(n+1) t)

by the formulas for the cosine and sine of the sum of two angles. ■



44 CHAPTER 1. FUNDAMENTAL CONCEPTS

Corollary 1.15.2 Let z be a non zero complex number. Then there are always exactly k
kth roots of z in C.

Proof: Let z = x+ iy and let z = |z|(cos t + isin t) be the polar form of the complex
number. By De Moivre’s theorem, a complex number r (cosα + isinα) , is a kth root of z
if and only if

rk (coskα + isinkα) = |z|(cos t + isin t) .

This requires rk = |z| and so r = |z|1/k and also both cos(kα) = cos t and sin(kα) = sin t.
This can only happen if kα = t +2lπ for l an integer. Thus

α =
t +2lπ

k
, l ∈ Z

and so the kth roots of z are of the form

|z|1/k
(

cos
(

t +2lπ
k

)
+ isin

(
t +2lπ

k

))
, l ∈ Z.

Since the cosine and sine are periodic of period 2π, there are exactly k distinct numbers
which result from this formula. ■

Example 1.15.3 Find the three cube roots of i.

First note that i = 1
(
cos
(

π

2

)
+ isin

(
π

2

))
. Using the formula in the proof of the above

corollary, the cube roots of i are

1
(

cos
(
(π/2)+2lπ

3

)
+ isin

(
(π/2)+2lπ

3

))
where l = 0,1,2. Therefore, the roots are

cos
(

π

6

)
+ isin

(
π

6

)
,cos

(
5
6

π

)
+ isin

(
5
6

π

)
,cos

(
3
2

π

)
+ isin

(
3
2

π

)
.

Thus the cube roots of i are

√
3

2
+ i
(

1
2

)
,
−
√

3
2

+ i
(

1
2

)
, and −i.

The ability to find kth roots can also be used to factor some polynomials.

Example 1.15.4 Factor the polynomial x3 −27.

First find the cube roots of 27. By the above procedure using De Moivre’s theorem,

these cube roots are 3,3

(
−1
2

+ i

√
3

2

)
, and 3

(
−1
2

− i

√
3

2

)
. Therefore, x3 −27 =

(x−3)

(
x−3

(
−1
2

+ i

√
3

2

))(
x−3

(
−1
2

− i

√
3

2

))
.

Note also
(

x−3
(
−1
2 + i

√
3

2

))(
x−3

(
−1
2 − i

√
3

2

))
= x2 +3x+9 and so

x3 −27 = (x−3)
(
x2 +3x+9

)
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where the quadratic polynomial x2+3x+9 cannot be factored without using complex num-
bers.

Note that even though the polynomial x3 − 27 has all real coefficients, it has some

complex zeros,
−1
2

+ i

√
3

2
and

−1
2

− i

√
3

2
. These zeros are complex conjugates of each

other. It is always this way provided the coefficients of the polynomial are real. You should
show this is the case. To see how to do this, see Problems 31 and 32 below.

Another fact for your information is the fundamental theorem of algebra. This theorem
says that any polynomial of degree at least 1 having any complex coefficients always has
a root in C. This is sometimes referred to by saying C is algebraically complete. Gauss is
usually credited with giving a proof of this theorem in 1797 but many others worked on it
and the first completely correct proof was due to Argand in 1806. For more on this theo-
rem, you can google fundamental theorem of algebra and look at the interesting Wikipedia
article on it. Proofs of this theorem usually involve the use of techniques from calculus
even though it is really a result in algebra. A proof and plausibility explanation is given
later.

1.16 Exercises

1. Let S = [2,5] . Find supS. Now let S = [2,5). Find supS. Is supS always a number
in S? Give conditions under which supS ∈ S and then give conditions under which
infS ∈ S.

2. Show that if S ̸= /0 and is bounded above (below) then supS (infS) is unique. That is,
there is only one least upper bound and only one greatest lower bound. If S = /0 can
you conclude that 7 is an upper bound? Can you conclude 7 is a lower bound? What
about 13.5? What about any other number?

3. Let S be a set which is bounded above and let −S denote the set {−x : x ∈ S} . How
are inf(−S) and sup(S) related? Hint: Draw some pictures on a number line. What
about sup(−S) and infS where S is a set which is bounded below?

4. Which of the field axioms is being abused in the following argument that 0 = 2? Let
x = y = 1. Then 0 = x2 − y2 = (x− y)(x+ y) and so 0 = (x− y)(x+ y) . Now divide
both sides by x− y to obtain 0 = x+ y = 1+1 = 2.

5. Give conditions under which equality holds in the triangle inequality.

6. Prove by induction that n < 2n for all natural numbers, n ≥ 1.

7. Prove by the binomial theorem that the number of subsets of a given finite set con-
taining n elements is 2n.

8. Is it ever the case that (a+b)n = an +bn for a and b positive real numbers?

9. Is it ever the case that
√

a2 +b2 = a+b for a and b positive real numbers?

10. Is it ever the case that 1
x+y =

1
x +

1
y for x and y positive real numbers?
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11. Suppose a > 0 and that x is a real number which satisfies the quadratic equation,
ax2 + bx+ c = 0. Go through the derivation given in the chapter for the quadratic
formula. The expression b2 − 4ac is called the discriminant. When it is positive
there are two different real roots. When it is zero, there is exactly one real root and
when it equals a negative number there are no real roots. However, show that if
x is given by the quadratic formula, it is in fact a solution to ax2 + bx+ c = 0 even
though the square root will involve either of two complex numbers. Hint: You might
observe that if a square root of a complex number z is w then the other square root is
−w.

12. If α,β are roots of x2+bx+c= 0, then (x−α)(x−β ) = 0 so x2−(α +β )x+αβ =
0 which means −(α +β ) = b and so − b

2 is the average of the roots. Look for
solutions in the form − b

2 +u and − b
2 −u. Obtain the quadratic formula from this. 2

13. Suppose f (x) = 3x2 + 7x − 17. Find the value of x at which f (x) is smallest by
completing the square. Also determine f (R) and sketch the graph of f .

14. Suppose f (x) = −5x2 + 8x− 7. Find f (R) . In particular, find the largest value of
f (x) and the value of x at which it occurs. Can you conjecture and prove a result
about y = ax2 +bx+ c in terms of the sign of a based on these last two problems?

15. Show that if it is assumed R is complete, then the Archimedean property can be
proved. Hint: Suppose completeness and let a > 0. If there exists x ∈ R such that
na ≤ x for all n ∈N, then x/a is an upper bound for N. Let l be the least upper bound
and argue there exists n ∈ N∩ [l −1/4, l] . Now what about n+1?

16. For those who know about the trigonometric functions, De Moivre’s theorem says

[r (cos t + isin t)]n = rn (cosnt + isinnt)

for n a positive integer. Prove this formula by induction. Does this formula continue
to hold for all integers n, even negative integers? Explain. Hint: I assume the reader
knows the standard formulas for trig. functions like the sine and cosine of the sum of
two variables. This is discussed later in the book. This problem is really about math
induction.

17. Using De Moivre’s theorem Theorem 1.15.1, derive a formula for sin(5x) and one for
cos(5x). Hint: Use Problem 18 on Page 33 and if you like, you might use Pascal’s
triangle to construct the binomial coefficients.

18. De Moivre’s theorem Theorem 1.15.1 is really a grand thing. I plan to use it now for
rational exponents, not just integers.

1 = 1(1/4) = (cos2π + isin2π)1/4 = cos(π/2)+ isin(π/2) = i.

Therefore, squaring both sides it follows 1 = −1. What does this tell you about De
Moivre’s theorem? Is there a profound difference between raising numbers to integer
powers and raising numbers to non integer powers?

19. Review Problem 16 at this point. Now here is another question: If n is an integer, is
it always true that (cosθ − isinθ)n = cos(nθ)− isin(nθ)? Explain.

2The ancient Babylonians knew how to solve these quadratic equations sometime before 1700 B.C.
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20. Suppose you have any polynomial in cosθ and sinθ . By this I mean an expression
of the form ∑

m
α=0 ∑

n
β=0 aαβ cosα θ sinβ

θ where aαβ ∈R. Can this always be written
in the form ∑

m+n
γ=−(n+m)

bγ cosγθ +∑
n+m
τ=−(n+m)

cτ sinτθ? Explain.

21. Let z = 5+ i9. Find z−1.

22. Let z = 2+ i7 and let w = 3− i8. Find zw,z+w,z2, and w/z.

23. Give the complete solution to x4 +16 = 0.

24. Graph the complex cube roots of 8 in the complex plane. Do the same for the four
fourth roots of 16.

25. If z is a complex number, show there exists ω a complex number with |ω| = 1 and
ωz = |z| .

26. If z and w are two complex numbers and the polar form of z involves the angle θ

while the polar form of w involves the angle φ , show that in the polar form for zw
the angle involved is θ +φ . Also, show that in the polar form of a complex number
z, r = |z| .

27. Factor x3 +8 as a product of linear factors.

28. Write x3 +27 in the form (x+3)
(
x2 +ax+b

)
where x2 +ax+b cannot be factored

any more using only real numbers.

29. Completely factor x4 +16 as a product of linear factors.

30. Factor x4 +16 as the product of two quadratic polynomials each of which cannot be
factored further without using complex numbers.

31. If z,w are complex numbers prove zw= zw and then show by induction that ∏
n
j=1 z j =

∏
n
j=1 z j. Also verify that ∑

m
k=1 zk = ∑

m
k=1 zk. In words this says the conjugate of a

product equals the product of the conjugates and the conjugate of a sum equals the
sum of the conjugates.

32. Suppose p(x) = anxn +an−1xn−1 + · · ·+a1x+a0 where all the ak are real numbers.
Suppose also that p(z) = 0 for some z ∈ C. Show it follows that p(z) = 0 also.

33. Show that 1+ i,2+ i are the only two zeros to p(x) = x2−(3+2i)x+(1+3i) so the
zeros do not necessarily come in conjugate pairs if the coefficients are not real.

34. I claim that 1 =−1. Here is why. −1 = i2 =
√
−1

√
−1 =

√
(−1)2 =

√
1 = 1. This

is clearly a remarkable result but is there something wrong with it? If so, what is
wrong?

35. Suppose p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 is a polynomial and it has n ze-
ros, z1,z2, · · · ,zn listed according to multiplicity. (z is a root of multiplicity m if
the polynomial f (x) = (x− z)m divides p(x) but (x− z) f (x) does not.) Show that
p(x) = an (x− z1)(x− z2) · · ·(x− zn) .

36. Give the solutions to the following quadratic equations having real coefficients.
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(a) x2 −2x+2 = 0
(b) 3x2 + x+3 = 0
(c) x2 −6x+13 = 0

(d) x2 +4x+9 = 0

(e) 4x2 +4x+5 = 0

37. Give the solutions to the following quadratic equations having complex coefficients.
Note how the solutions do not come in conjugate pairs as they do when the equation
has real coefficients.

(a) x2 +2x+1+ i = 0
(b) 4x2 +4ix−5 = 0
(c) 4x2 +(4+4i)x+1+2i = 0

(d) x2 −4ix−5 = 0

(e) 3x2 +(1− i)x+3i = 0

38. Prove the fundamental theorem of algebra for quadratic polynomials having coef-
ficients in C. That is, show that an equation of the form ax2 + bx+ c = 0 where
a,b,c are complex numbers, a ̸= 0 has a complex solution. Hint: Consider the fact,
noted earlier that the expressions given from the quadratic formula do in fact serve
as solutions.

39. Suppose r (λ ) = a(λ )
p(λ )m where a(λ ) is a polynomial and p(λ ) is an irreducible poly-

nomial meaning that the only polynomials dividing p(λ ) are numbers and scalar
multiples of p(λ ). That is, you can’t factor it any further. Here we regard r (λ ) as a
function. More on this later, but I assume people know about functions at this point.
Show that r (λ ) is of the form

r (λ ) = q(λ )+
m

∑
k=1

bk (λ )

p(λ )k , where degree of bk (λ )< degree of p(λ )

40. ↑Suppose you have a rational function a(λ )
b(λ ) .

(a) Show it is of the form p(λ )+ n(λ )
∏

m
i=1 pi(λ )

mi where {p1 (λ ) , · · · , pm (λ )} are rela-

tively prime and the degree of n(λ ) is less than the degree of ∏
m
i=1 pi (λ )

mi .
(b) Using Proposition 1.12.6 and the division algorithm for polynomials, show that

the original rational function is of the form

p̂(λ )+
m

∑
i=1

mi

∑
k=1

nki (λ )

pi (λ )
k

where the degree of nki (λ ) is less than the degree of pi (λ ) and p̂(λ ) is some
polynomial.

This is the partial fractions expansion of the rational function. Actually carrying out
this computation may be impossible, but this shows the existence of such a partial
fractions expansion.

41. In the above problem, use the fundamental theorem of algebra to show that for real
polynomials, so all coefficients are in R, the degree of each pi (λ ) can always be
taken no more than 2. For complex polynomials, the degree of each pi (λ ) can be
taken as 1. See Problem 32 above.

1.17 Videos
Numbers Induction and binomial theorem polynomials and rational functions

https://www.youtube.com/watch?v=xQ6IBoDuCqE
https://www.youtube.com/watch?v=SIeL0kV6sjk
https://www.youtube.com/watch?v=3rgcmnZvnG4


Chapter 2

Functions

2.1 General Considerations
The concept of a function is that of something which gives a unique output for a given
input. This was likely first formulated in this way by Dirichlet. He wanted to consider
piecewise continuous functions which were not given by a single formula. Often we think
of functions in terms of formulas but the idea is more general and much older. In Luke
6:44, Jesus says essentially that you know a tree by its fruit. See also Matt. 7 about how
to recognize false prophets. You look at what it does to determine what it is. As it is with
people and trees, so it is with functions.

Definition 2.1.1 Consider two sets, D and R along with a rule which assigns a
unique element of R to every element of D. This rule is called a function and it is denoted
by a letter such as f . The symbol, D( f ) = D is called the domain of f . The set R, also
written R( f ) , is called the range of f . The set of all elements of R which are of the form
f (x) for some x ∈ D is often denoted by f (D) . When R = f (D), the function f is said to
be onto. It is common notation to write f : D( f )→ R to denote the situation just described
in this definition where f is a function defined on D having values in R.

Example 2.1.2 Consider the list of numbers, {1,2,3,4,5,6,7} ≡ D. Define a function
which assigns an element of D to R ≡ {2,3,4,5,6,7,8} by f (x)≡ x+1 for each x ∈ D.

In this example there was a clearly defined procedure which determined the function.
However, sometimes there is no discernible procedure which yields a particular function.

Example 2.1.3 Consider the ordered pairs, (1,2) ,(2,−2) ,(8,3) ,(7,6) and let the domain
be given by D ≡ {1,2,8,7} , the set of first entries in the given set of ordered pairs, R ≡
{2,−2,3,6} , the set of second entries, and let f (1) = 2, f (2) =−2, f (8) = 3, and f (7) =
6.

Sometimes functions are not given in terms of a formula. For example, consider the
following function defined on the positive real numbers having the following definition.

Example 2.1.4 For x ∈ R define

f (x) =

{
1
n if x = m

n in lowest terms for m,n ∈ Z
0 if x is not rational

(2.1)

49
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This is a very interesting function called the Dirichlet function. Note that it is not
defined in a simple way from a formula.

Example 2.1.5 My phone number has 10 digits. Let f : {1,2,3,4,5,6,7,8,9,10} → N be
defined as follows. f (k) is the kth digit in my phone number. Thus f (1) = 8 because my
area code starts with 8.

This is not a very interesting function. I want to emphasize that functions are defined
in terms of what they do rather than in terms of some formula although in calculus, we
usually use functions which do come from a formula.

Example 2.1.6 Let D consist of the set of people who have lived on the earth except for
Adam and for d ∈ D, let f (d)≡ the biological father of d. Then f is a function.

This function is not the sort of thing studied in calculus but it is a function just the same.
When D( f ) is not specified, it is understood to consist of everything for which f makes
sense. The following definition gives several ways to make new functions from old ones.

Definition 2.1.7 Let f ,g be functions with values in R. Let a,b be points of R. Then
a f +bg is the name of a function whose domain is D( f )∩D(g) which is defined as

(a f +bg)(x) = a f (x)+bg(x) .

The function f g is the name of a function which is defined on D( f )∩D(g) given by

( f g)(x) = f (x)g(x) .

Similarly for k an integer, f k is the name of a function defined as

f k (x) = ( f (x))k

The function f/g is the name of a function whose domain is

D( f )∩{x ∈ D(g) : g(x) ̸= 0}

defined as
( f/g)(x) = f (x)/g(x) .

If f : D( f )→ X and g : D(g)→ Y, then g◦ f is the name of a function whose domain is

{x ∈ D( f ) : f (x) ∈ D(g)}

which is defined as
g◦ f (x)≡ g( f (x)) .

This is called the composition of the two functions.

You should note that f (x) is not a function. It is the value of the function at the point x.
The name of the function is f . Nevertheless, people often write f (x) to denote a function
and it doesn’t cause too many problems in beginning courses. When this is done, the
variable x should be considered as a generic variable free to be anything in D( f ) .
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Example 2.1.8 Let f (t) = t and g(t) = 1+ t. Then f g : R→ R is given by

f g(t) = t (1+ t) = t + t2.

Example 2.1.9 Let f (t) = 2t +1 and g(t) =
√

1+ t. Then

g◦ f (t) =
√

1+(2t +1) =
√

2t +2

for t ≥ −1. If t < −1 the inside of the square root sign is negative so makes no sense.
Therefore, g◦ f : {t ∈ R : t ≥−1}→ R.

Note that in this last example, it was necessary to fuss about the domain of g◦ f because
g is only defined for certain values of t.

Example 2.1.10 Let f (t) = t2 for t ∈ [0,1] and let g(t) = t2 for t ∈ [0,3]. Then these are
different functions because they have different domains.

The concept of a one to one function is very important. This is discussed in the follow-
ing definition.

Definition 2.1.11 For any function f : D( f ) ⊆ X → Y, define the following set
known as the inverse image of y.

f−1 (y)≡ {x ∈ D( f ) : f (x) = y} .

There may be many elements in this set, but when there is always only one element in this
set for all y ∈ f (D( f )) , the function f is one to one sometimes written, 1−1. Thus f is one
to one, 1−1, if whenever f (x) = f (x1) , then x = x1. If f is one to one, the inverse function
f−1 is defined on f (D( f )) and f−1 (y) = x where f (x) = y. Thus from the definition,
f−1 ( f (x)) = x for all x ∈ D( f ) and f

(
f−1 (y)

)
= y for all y ∈ f (D( f )) . Defining id by

id(z)≡ z this says f ◦ f−1 = id and f−1 ◦ f = id . Note that this is sloppy notation because
the two id are totally different functions.

Polynomials and rational functions are particularly easy functions to understand be-
cause they do come from a simple formula.

Definition 2.1.12 A function f is a polynomial if

f (x) = anxn +an−1xn−1 + · · ·+a1x+a0

where the ai are real or complex numbers and n is a nonnegative integer. In this case the
degree of the polynomial, f (x) is n. Thus the degree of a polynomial is the largest exponent
appearing on the variable.

f is a rational function if

f (x) =
h(x)
g(x)

where h and g are polynomials.
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For example, f (x) = 3x5 +9x2 +7x+5 is a polynomial of degree 5 and

f (x)≡ 3x5 +9x2 +7x+5
x4 +3x+ x+1

is a rational function.
Note that in the case of a rational function, the domain of the function might not be all

of R. For example, if f (x) = x2+8
x+1 , the domain of f would be all complex numbers not

equal to −1. Also, f (x) is not a function. It is a function evaluated at x. The name of the
function is f . Another thing which is often done is to denote the function in terms of an
algorithm like

x → x2 − x+1
2x+6

This signifies the function f such that

f (x) =
x2 − x+1

2x+6
.

Closely related to the definition of a function is the concept of the graph of a function.

Definition 2.1.13 Given two sets, X and Y, the Cartesian product of the two sets,
written as X ×Y, is assumed to be a set described as follows.

X ×Y = {(x,y) : x ∈ X and y ∈ Y} .

R2 denotes the Cartesian product of R with R.

The notion of Cartesian product is just an abstraction of the concept of identifying a
point in the plane with an ordered pair of numbers.

Definition 2.1.14 Let f : D( f )→ R( f ) be a function. The graph of f consists of
the set,{(x,y) : y = f (x) for x ∈ D( f )} .

Note that knowledge of the graph of a function is equivalent to knowledge of the func-
tion. To find f (x) , simply observe the ordered pair which has x as its first position on left
and the value of y equals f (x) .

2.2 Graphs of Functions and Relations

Recall the notion of the Cartesian coordinate system you probably saw earlier. It involved
an x axis, a y axis, two lines which intersect each other at right angles and one identifies
a point by specifying a pair of numbers. For example, the number (2,3) involves going 2
units to the right on the x axis and then 3 units directly up on a line perpendicular to the x
axis. For example, consider the following picture.



2.3. CIRCULAR FUNCTIONS 53

y

x

•(2,3)

Because of the simple correspondence between points in the plane and the coordinates
of a point in the plane, it is often the case that people are a little sloppy in referring to these
things. Thus, it is common to see (x,y) referred to as a point in the plane. I will often
indulge in this sloppiness. In terms of relations, if you graph the points as just described,
you will have a way of visualizing the relation.

The reader has likely encountered the notion of graphing relations of the form y= 2x+3
or y = x2 + 5. The meaning of such an expression in terms of defining a relation is as
follows. The relation determined by the equation y = 2x+ 3 means the set of all ordered
pairs (x,y) which are related by this formula. Thus the relation can be written as{

(x,y) ∈ R2 : y = 2x+3
}
.

The relation determined by y = x2 + 5 is
{
(x,y) ∈ R2 : y = x2 +5

}
. Note that these rela-

tions are also functions. For the first, you could let f (x) = 2x+ 3 and this would tell you
a rule which tells what the function does to x. However, some relations are not functions.
For example, you could consider x2 +y2 = 1. Written more formally, the relation it defines
is {

(x,y) ∈ R2 : x2 + y2 = 1
}

Now if you give a value for x, there might be two values for y which are associated with
the given value for x. In fact y = ±√1− x2 Thus this relation would not be a function.

Recall how to graph a relation or more generally a relation. You first found lots of
ordered pairs which satisfied the relation. For example (0,3),(1,5), and (−1,1) all satisfy
y = 2x+3 which describes a straight line. Then you connected them with a curve.

2.3 Circular Functions
For a more thorough discussion of these functions along the lines given here, see my pre-
calculus book published by Worldwide Center of Math. For a non geometric treatment, see
my book Single variable advanced calculus or for a different way, Pure Mathematics by
Hardy [19]. I much prefer methods which do not depend on plane geometry because with
this approach, many of the most difficult and unpleasant considerations become obvious
and then one can use the machinery of calculus to discuss geometric significance instead
of relying so much on axioms from geometry which may or may not be well remembered.
However, I am giving the traditional development of this subject here.

An angle consists of two lines emanating from a point as described in the following
picture. How can angles be measured? This will be done by considering arcs on a circle.
To see how this will be done, let θ denote an angle and place the vertex of this angle at the
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center of the circle. Next, extend its two sides till they intersect the circle. Note the angle
could be opening in any of infinitely many different directions. Thus this procedure could
yield any of infinitely many different circular arcs. Each of these arcs is said to subtend
the angle.

arc subtended by the angle

Take an angle and place its vertex (the point) at the center of a circle of radius r. Then,
extending the sides of the angle if necessary till they intersect the circle, this determines
an arc on the circle which subtends the angle. If r were changed to R, this really amounts
to a change of units of length. Think, for example, of keeping the numbers the same but
changing centimeters to meters in order to produce an enlarged version of the same picture.
Thus the picture looks exactly the same, only larger. It is reasonable to suppose, based on
this reasoning that the way to measure the angle is to take the length of the arc subtended in
whatever units being used and divide this length by the radius measured in the same units,
thus obtaining a number which is independent of the units of length used, just as the angle
itself is independent of units of length. After all, it is the same angle regardless of how
far its sides are extended. This is how to define the radian measure of an angle and the
definition is well-defined. Thus, in particular, the ratio between the circumference (length)
of a circle and its radius is a constant which is independent of the radius of the circle1.
Since the time of Euler in the 1700’s, this constant has been denoted by 2π . In summary, if
θ is the radian measure of an angle, the length of the arc subtended by the angle on a circle
of radius r is rθ .

So how do we obtain the length of the subtended arc? For now, imagine taking a string,
placing one end of it on one end of the circular arc and then wrapping the string till you
reach the other end of the arc. Stretching this string out and measuring it would then give
you the length of the arc. Later a more precise way of finding lengths of curves is given.

Definition 2.3.1 Let A be an angle. Draw a circle centered at A which intersects
both sides of the angle. The radian measure of the angle is the length of this arc divided by
the radius of the circle.

1In 2 Chronicles 4:2 the “molten sea” used for “washing” by the priests and found in Solomon’s temple is
described. It sat on 12 oxen, was round, 5 cubits high, 10 across and 30 around. This was very large if you believe
what it says in Chronicles. A cubit is thought to have been about 1.5 feet. It is remarkable how much water was
called for in their rituals. Their sacrifices also required a great deal of wood to burn up dead animals. This temple
also exceeded the efficiency of a modern meat packing plant on some special occasions, according to the Bible.

Thus, from the above, the Bible gives the value of π as 3. This is not too far off and is much less pretentious
than the Indiana pi bill of 1897 which attempted to legislate a method for squaring the circle. A better value is
3.1415926535 and presently this number is known to millions of decimal places. It was proved by Linderman in
1882 that π is transcendental which implies that it is impossible to construct a square having area π using only
compass and unmarked straight edge (squaring the circle).



2.3. CIRCULAR FUNCTIONS 55

A
l

r

Thus the radian measure of A is l/r in the above. (Note that the radian measure of an
angle does not depend on units of length. )There is also the wrong way of measuring
angles. In this way, one degree consists of an angle which subtends an arc which goes
1/360 of the way around the circle. The measure of the angle consists of the number of
degrees which correspond to the given angle.

We avoid the wrong way of measuring angles in calculus. This is because all the theo-
rems about the circular functions having to do with calculus topics involve the angle being
given in radians.

In any triangle, the sum of the radian measures of the angles equals π . Lets review why
this is so.

Consider the following picture.

α

α

β

γ

γ

The line at the top is chosen to be parallel to the line on the base. Then from axioms
of geometry about alternate interior angles, the diagram is correctly labeled. Now if you
consider the angle formed by a point on a straight line, then it is obvious that the circle
centered at this point has exactly half of it subtended by the line. Thus the radian measure
of the angle is π . If we identify the radian measure of each of these angles with the label
used for the angle, it follows that the sum of the measures of the angles of the triangle,
α +β + γ equals π .

The following proof of the Pythagorean theorem is due to Euclid a few hundred years
B.C. A right triangle is one in which one of the angles has radian measure π/2. It is called
a right triangle. Thus if this angle is placed with its vertex at (0,0) its sides subtend an arc
of length π/2 on the unit circle, a circle with radius 1. The hypotenuse is by definition the
side of the right triangle which is opposite the right angle. From the above observation,
both of the other angles in a right triangle have radian measure less than π/2

Theorem 2.3.2 (Pythagoras) In a right triangle the square of the length of the hy-
potenuse equals the sum of the squares of the lengths of the other two sides.

Proof: Consider the following picture in which the large triangle is a right triangle and
D is the point where the line through C perpendicular to the line from A to B intersects the
line from A to B. Then c is defined to be the length of the line from A to B, a is the length
of the line from B to C, and b is the length of the line from A to C. Denote by DB the length
of the line from D to B.
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A
α

β

γ

δ

C

B

c a

b

D

Then δ + γ = π/2 and β + γ = π/2. Therefore, δ = β . Also from this same theorem,
α+δ = π/2 and so α = γ. Therefore, the three triangles shown in the picture are all similar
because they have the same angles at vertices. From the similar triangle axiom in geometry,
the corresponding parts are proportional. Then

c
a
=

a
DB

, and
c
b
=

b
c−DB

.

Therefore, cDB = a2 and c
(
c−DB

)
= b2 so c2 = cDB+ b2 = a2 + b2. This proves the

Pythagorean theorem. 2 ■
Points in the plane may be identified by giving a pair of numbers. Suppose there are

two points in the plane and it is desired to find the distance between them. There are
actually many ways used to measure this distance but the best way, is determined by the
Pythagorean theorem. Consider the following picture.

y

x

•

•

(x1,y1)

(x0,y0) (x1,y0)
•

In this picture, the distance between the points denoted by (x0,y0) and (x1,y1) should
be the square root of the sum of the squares of the lengths of the two sides. The length
of the side on the bottom is |x0 − x1| while the length of the side on the right is |y0 − y1| .
Therefore, by the Pythagorean theorem the distance between the two indicated points is√
(x0 − x1)

2 +(y0 − y1)
2. Note you could write√

(x1 − x0)
2 +(y1 − y0)

2

2This theorem is due to Pythagoras who lived about 572-497 B.C. This was during the Babylonian captivity
of the Jews. Thus Pythagoras lived only a little more recently than Jeremiah. Nebuchadnezzar died a little after
Pythagoras was born. Alexander the great would not come along for more than 100 years. There was, however,
an even earlier Greek mathematician named Thales, 624-547 B.C. who also did fundamental work in geometry.
Greek geometry was organized and published by Euclid about 300 B.C.
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or even √
(x0 − x1)

2 +(y1 − y0)
2

and it would make no difference in the resulting number. The distance between the two
points is written as |(x0,y0)− (x1,y1)| or sometimes when P0 is the point determined by
(x0,y0) and P1 is the point determined by (x1,y1) , as d (P0,P1) or |P0P| .

Thus, given an x and y axis at right angles to each other in the usual way, a relation
which describes a point on the circle of radius 1 which has center at (0,0) is x2 +y2 = 1 or
more precisely,

{
(x,y) : x2 + y2 = 1

}
.

This theorem implies there should exist some such number which deserves to be called√
a2 +b2 as mentioned earlier in the discussion on completeness of R.

Given a real number t ∈ R, I will describe a point p(t) on the unit circle.

Definition 2.3.3 Let t ∈R. If t is positive, take a string of length t, place one end at
the point (1,0) and wrap the string counter clockwise around the circle which has radius 1
and center at (0,0) till you come to the end. This is the point p(t). If t is negative, then take
a string of length |t| and with one end at (1,0) , wrap the string in the clockwise direction
around the unit circle till you come to the end. The point obtained is p(t).

t > 0
t < 0

Definition 2.3.4 Let t ∈ R. Then p(t) will denote the point on the unit circle which
was just described. Then sin(t) is the y coordinate of this point and cos(t) is the x coordi-
nate of this point.

We say that (cos t,sin t) parametrizes the unit circle with respect to arc length, but more
on this much later. The thing to notice here is that a small change in t leads to a small
change in p(t) and consequently a small change in the x and y coordinates of p(t) which
are defined as cos t and sin t respectively. This is an informal way to say that these functions
of t are continuous, but more about this will be discussed later.

Once you know about the sine and cosine, the other trigonometric functions are defined
as follows.

tan(x)≡ sin(x)
cos(x)

,cot(x)≡ cos(x)
sin(x)

, sec(x)≡ 1
cos(x)

, csc(x)≡ 1
sin(x)

Of course those which are not the circular functions, sine and cosine, must have a restriction
on their domains because one cannot divide by 0. Since (cos t,sin t) is a point on the unit
circle, it follows that

cos2 t + sin2 t = 1. (2.2)

This is the most fundamental identity in trigonometry. Also, directly from the definition it
follows that

sin(t) =−sin(−t) , cos(t) = cos(−t) (2.3)
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The above definitions are sufficient to determine approximately the values of the sine
and cosine. Thus it is possible to produce a graph of these functions. Here is the graph
of the function y = sin(x) on the interval [−π,2π]. From the definition, the function is
periodic of period 2π and so knowledge of the function on the interval [0,2π] is sufficient
to describe it for all real values. Recall 2π is the length of the unit circle.

- - /2 0 /2 3 /2 2
-1

-0.5

0

0.5

1
sin(x)

Now here is the graph of the function y = cos(x) on the interval [−π,2π]. It is also
periodic of period 2π .

- - /2 0 /2 3 /2 2
-1

-0.5

0

0.5

1
cos(x)

As for the other functions, one can obtain graphs for them also. The function x→ tan(x)
has the following graph on the interval [−π,3π] . The vertical dashed lines are vertical
asymptotes.

Finally, the graph of x → sec(x) is of the form
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- - /2 0 /2 3 /2 2 5 /2 3
-4

-2

0

2

4
sec(x)

Both of these functions have vertical asymptotes at odd multiples of π/2 although I
have not shown them with the secant function.

The formula for the cosine and sine of the sum of two angles is also important. Like
most of this material, I assume the reader has seen it. However, I am aware that many
people do not see these extremely important formulas, or if they do, they often see no
explanation for them so I shall give a review of it here.

The following theorem is the fundamental identity from which all the major trig. iden-
tities involving sums and differences of angles are derived.

Theorem 2.3.5 Let x,y ∈ R. Then

cos(x+ y)cos(x)+ sin(x+ y)sin(x) = cos(y) . (2.4)

Proof: Recall that for a real number z, there is a unique point p(z) on the unit circle
and the coordinates of this point are cosz and sinz. Now it seems geometrically clear that
the length of the arc between p(x+ y) and p(x) has the same length as the arc between
p(y) and p(0) . As in the following picture.

p(y)

p(x+ y)

p(x)

(1,0)

Also from geometric reasoning, rigorously examined later, the distance between the
points p(x+ y) and p(x) must be the same as the distance from p(y) to p(0) . In fact,
the two triangles have the same angles and the same sides. Writing this in terms of the
definition of the trig functions and the distance formula,

(cos(x+ y)− cosx)2 +(sin(x+ y)− sinx)2 = (cosy−1)2 + sin2 x.

Expanding the above,

cos2 (x+ y)+ cos2 x−2cos(x+ y)cosx+ sin2 (x+ y)+ sin2 x−2sin(x+ y)sinx

= cos2 y−2cosy+1+ sin2 y
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Now using that cos2+sin2 = 1,

2−2cos(x+ y)cos(x)−2sin(x+ y)sin(x) = 2−2cos(y) .

Therefore,
cos(x+ y)cos(x)+ sin(x+ y)sin(x) = cos(y) ■

2.3.1 Reference Angles and Other Identities
Recall that the length of the unit circle is defined as 2π . This started with Euler who decided
that π should be such that 2π is the length of the unit circle. Thus it becomes obvious what
the sine and cosine are for certain special angles. For example, sin

(
π

2

)
= 1,cos

(
π

2

)
= 0.

Letting x = π/2, 2.4 shows that

sin(y+π/2) = cosy. (2.5)

Now let u = x+ y and v = x. Then 2.4 implies

cosucosv+ sinusinv = cos(u− v) (2.6)

Also, from this and 2.3,

cos(u+ v) = cos(u− (−v)) = cosucos(−v)+ sinusin(−v)

= cosucosv− sinusinv (2.7)

Thus, letting v = π/2,

cos
(

u+
π

2

)
=−sinu. (2.8)

It follows

sin(x+ y) =−cos
(

x+
π

2
+ y
)

=−
[
cos
(

x+
π

2

)
cosy− sin

(
x+

π

2

)
siny

]
= sinxcosy+ sinycosx (2.9)

Then using 2.3, that sin(−y) =−sin(y) and cos(−x) = cos(x), this implies

sin(x− y) = sinxcosy− cosxsiny. (2.10)

In addition to this,

cos2x = cos2 x− sin2 x = 2cos2 x−1 = 1−2sin2 x (2.11)

Therefore, making use of the above identities,

cos(3x) = cos(2x+ x) = cos2xcosx− sin2xsinx

=
(
2cos2 x−1

)
cosx−2cosxsin2 x

= 4cos3 x−3cosx (2.12)

For a systematic way to find cosine or sine of a multiple of x, see De Moivre’s theorem
explained in Problem 16 on Page 46.
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Another very important theorem from Trigonometry is the law of cosines. Consider the
following picture of a triangle in which a,b and c are the lengths of the sides and A,B, and
C denote the angles indicated.

A

B

C

a

b

c

The law of cosines is the following.

Theorem 2.3.6 Let ABC be a triangle as shown above. Then

c2 = a2 +b2 −2abcosC

Also, c ≤ a+b so the length of a side of a triangle is no more than the sum of the lengths
of the other two sides.

Proof: Situate the triangle so the vertex of the angle C, is on the point whose coordi-
nates are (0,0) and so the side opposite the vertex B is on the positive x axis.

A

B

C

a

b

c

x

Then from the definition of the cosC, the coordinates of the vertex B are

(acosC,asinC)

while it is clear that the coordinates of A are (b,0). Therefore, from the distance formula,

c2 = (acosC−b)2 +a2 sin2 C

= a2 cos2 C−2abcosC+b2 +a2 sin2 C

= a2 +b2 −2abcosC

For the last claim, c2 = a2 +b2 −2abcosC ≤ a2 +b2 +2ab = (a+b)2 .■
As mentioned, you can find sine and cosine of certain special angles. However, all that

was considered was π/2, but various other angles are easy to figure out also.

Example 2.3.7 Find cos(π/6) .
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Using 2.12 and the observation that 3
(

π

6

)
= π

2 ,

0 = cos
(

π

2

)
= 4cos3

(
π

6

)
−3cos

(
π

6

)
and you can solve this for cos

(
π

6

)
4cos2

(
π

6

)
= 3, cos

(
π

6

)
=

√
3

2

Example 2.3.8 Find cos(7π/6) .

If you sketch where the point determined by 7π/6 is, you see that this should be
−cos(π/6) =−

√
3/2. Other examples are done similarly.

I assume the reader has done these sorts of things so I will not belabor this much more.
Good practice will be found in the exercises.

2.3.2 The sin(x)/x Inequality
There is an amazingly important inequality which to most of us is fairly obvious from the
picture. Here is a picture which illustrates the conclusion of this corollary.

θ

(cos(θ),sin(θ))

(1− cos(θ))

The corollary states that the length of the subtended arc shown in the picture is longer
than the vertical side of the triangle and smaller than the sum of the vertical side with the
segment having length 1− cosθ .

Corollary 2.3.9 Let 0 ≤ radian measure of θ < π/4. Then letting A be the arc on the
unit circle resulting from situating the angle with one side on the positive x axis and the
other side pointing up from the positive x axis,

(1− cosθ)+ sinθ ≥ l (A)≥ sinθ (2.13)

While this seems obvious and in fact you could easily convince yourself of its truth by
graphing circles and using string, to do this right, one must give a more mathematically
precise treatment of arc length on the circle. What exactly do we mean by “arc length”?
First note that for t ≥ 0, there is a unique nonnegative integer n such that t = 2πn + l
where l ∈ [0,2π). Similarly if t < 0 there is a unique nonnegative integer n such that
t = (−2π)n+ l where again l ∈ [0,2π). Then to get to the point p(t) , one starts at (0,0)
and on the unit circle and moves in the counter clockwise direction a distance of l using the
description of length of a circular arc about to be presented. Thus it suffices to consider the
length of an arc on the unit circle or more generally an arc on a circle of radius r.

To give a precise description of what is meant by the length of an arc, consider the
following picture.



2.3. CIRCULAR FUNCTIONS 63

A1

θ

A2

In this picture, there are two circles, a big one having radius R and a little one having
radius r. The angle θ is situated in two different ways subtending the arcs A1 and A2 as
shown.

Letting A be an arc of a circle, like those shown in the above picture, a subset of
A,{p0, · · · , pn} is a partition of A if p0 is one endpoint, pn is the other end point, and
the points are encountered in the indicated order as one moves in the counter clockwise
direction along the arc. To illustrate, see the following picture.

p1

p0

p2

p3

Also, denote by P (A) the set of all such partitions. For P = {p0, · · · , pn} , denote by
|pi − pi−1| the distance between pi and pi−1. Then for P ∈ P (A) , define

|P| ≡
n

∑
i=1

|pi − pi−1|

Thus |P| consists of the sum of the lengths of the little lines joining successive points of P
and appears to be an approximation to the length of the circular arc A. By Theorem 2.3.6 the
length of any of the straight line segments joining successive points in a partition is smaller
than the sum of the two sides of a right triangle having the given straight line segment as
its hypotenuse. Now consider the following picture.

A

B

C

D

The sum of the lengths of the straight line segments in the part of the picture found in
the right rectangle above is less than A+B and the sum of the lengths of the straight line
segments in the part of the picture found in the left rectangle above is less than C+D and
this would be so for any partition. Therefore, for any P ∈ P (A) , |P| ≤ M where M is the
perimeter of a rectangle containing the arc A. To be a little sloppy, simply pick M to be the
perimeter of a rectangle containing the whole circle of which A is a part. The only purpose
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for doing this is to obtain the existence of an upper bound. Therefore, {|P| : P ∈ P (A)} is
a set of numbers which is bounded above by M and by completeness of R it is possible to
define the length of A, l (A) , by l (A)≡ sup{|P| : P ∈ P (A)}.

A fundamental observation is that if P,Q ∈ P (A) and P ⊆ Q, then |P| ≤ |Q| . To see
this, add in one point at a time to P. This effect of adding in one point is illustrated in the
following picture.

Remember Theorem 2.3.6 that the length of a side of a triangle is no more than the sum
of the lengths of the other two sides.

Also, letting {p0, · · · , pn} be a partition of A, specify angles, θ i as follows. The angle
θ i is formed by the two lines, one from the center of the circle to pi and the other line
from the center of the circle to pi−1. Furthermore, a specification of these angles yields
the partition of A in the following way. Place the vertex of θ 1 on the center of the circle,
letting one side lie on the line from the center of the circle to p0 and the other side extended
resulting in a point further along the arc in the counter clockwise direction. When the
angles, θ 1, · · · ,θ i−1 have produced points, p0, · · · , pi−1 on the arc, place the vertex of θ i
on the center of the circle and let one side of θ i coincide with the side of the angle θ i−1
which is most counter clockwise, the other side of θ i when extended, resulting in a point
further along the arc A in the counterclockwise direction as shown below.

θ i−1
θ i

Now let ε > 0 be given and pick P1 ∈ P (A1) such that |P1|+ ε > l (A1) . Then deter-
mining the angles as just described, use these angles to produce a corresponding partition of
A2, P2. If |P2|+ε > l (A2) , then stop. Otherwise, pick Q∈P (A2) such that |Q|+ε > l (A2)
and let P′

2 = P2 ∪Q. Then use the angles determined by P′
2 to obtain P′

1 ∈ P (A1) . Then
|P′

1|+ ε > l (A1) , |P′
2|+ ε > l (A2) , and both P′

1 and P′
2 determine the same sequence of

angles. Using Problem 36 on Page 71 about the base angles of an isosceles triangle, the
two triangles are similar and so

|P′
1|∣∣P′
2

∣∣ = R
r

Therefore
l (A2)<

∣∣P′
2
∣∣+ ε =

r
R

∣∣P′
1
∣∣+ ε ≤ r

R
l (A1)+ ε.

Since ε is arbitrary, this shows Rl (A2)≤ rl (A1) . But now reverse the argument and write

l (A1)<
∣∣P′

1
∣∣+ ε =

R
r

∣∣P′
2
∣∣+ ε ≤ R

r
l (A2)+ ε

which implies, since ε is arbitrary that Rl (A2)≥ rl (A1) and this has proved the following
theorem.
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Theorem 2.3.10 Let θ be an angle which subtends two arcs, AR on a circle of
radius R and Ar on a circle of radius r. Then denoting by l (A) the length of a circular arc
as described above, Rl (Ar) = rl (AR) .

Now, with this theorem, one can prove the fundamental inequality of Corollary 2.3.9.
Proof: Situate the angle θ such that one side is on the positive x axis and extend the

other side till it intersects the unit circle at the point (cosθ ,sinθ) . Then denoting the re-
sulting arc on the circle by A, it follows that for all P ∈ P (A) the inequality (1− cosθ)+
sinθ ≥ |P| ≥ sinθ . It follows that (1− cosθ) + sinθ is an upper bound for all the |P|
where P ∈ P (A) and so (1− cosθ)+ sinθ is at least as large as the sup or least upper
bound of the |P| . This proves the top half of the inequality. The bottom half follows be-
cause l (A) ≥ L where L is the length of the line segment joining (cosθ ,sinθ) and (1,0)
due to the definition of l (A) . However, L ≥ sinθ because L is the length of the hypotenuse
of a right triangle having sinθ as one of the sides. ■

2.3.3 The Area of a Circular Sector
Consider an arc A, of a circle of radius r which subtends an angle θ . The circular sector
determined by A is obtained by joining the ends of the arc A, to the center of the circle.

S(θ) A

r

The sector, S (θ) denotes the points which lie between the arc A and the two lines just
mentioned. The angle between the two lines is called the central angle of the sector. The
problem is to define the area of this shape. First a fundamental inequality must be obtained.

Lemma 2.3.11 Let 1 > ε > 0 be given. Then whenever the positive number α, is small
enough,

1 ≤ α

sinα
≤ 1+ ε (2.14)

and
1+ ε ≥ α

tanα
≥ 1− ε (2.15)

Proof: This follows from Corollary 2.3.9 on Page 62. In this corollary, l (A) = α and
so

1− cosα + sinα ≥ α ≥ sinα.

Therefore, dividing by sinα,

1− cosα

sinα
+1 ≥ α

sinα
≥ 1. (2.16)

Now using the properties of the trig functions,

1− cosα

sinα
=

1− cos2 α

sinα (1+ cosα)
=

sin2
α

sinα (1+ cosα)
=

sinα

1+ cosα
.
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From the definition of the sin and cos, whenever α is small enough, sinα

1+cosα
< ε and so 2.16

implies that for such α, 2.14 holds. To obtain 2.15, let α be small enough that 2.14 holds
and multiply by cosα. Then for such α,

cosα ≤ α

tanα
≤ (1+ ε)cosα

Taking α smaller if necessary, and noting that for all α small enough, cosα is very close
to 1, yields 2.15. ■

This lemma is very important in another context.

Theorem 2.3.12 Let S (θ) denote the sector of a circle of radius r having central

angle θ . Then the area of S (θ) equals
r2

2
θ .

Proof: Let the angle which A subtends be denoted by θ and divide this sector into n
equal sectors each of which has a central angle equal to θ/n. The following is a picture of
one of these.

r

S(θ/n)

In the picture, there is a circular sector, S (θ/n) and inside this circular sector is a
triangle while outside the circular sector is another triangle. Thus any reasonable definition
of area would require

r2

2
sin(θ/n)≤ area of S (θ/n)≤ r2

2
tan(θ/n) .

It follows the area of the whole sector having central angle θ must satisfy the following
inequality.

nr2

2
sin(θ/n)≤ area of S (θ)≤ nr2

2
tan(θ/n) .

Therefore, for all n, the area of S (θ) is trapped between the two numbers,

r2

2
θ

sin(θ/n)
(θ/n)

,
r2

2
θ

tan(θ/n)
(θ/n)

.

Now let ε > 0 be given, a small positive number less than 1, and let n be large enough that

1 ≥ sin(θ/n)
(θ/n)

≥ 1
1+ ε

and
1

1+ ε
≤ tan(θ/n)

(θ/n)
≤ 1

1− ε
.

Therefore,
r2

2
θ

(
1

1+ ε

)
≤ Area of S (θ) ≤

(
1

1− ε

)
r2

2
θ .

Since ε is an arbitrary small positive number, it follows the area of the sector equals r2

2 θ as
claimed. (Why?) ■
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2.4 Exercises
1. Find cosθ and sinθ using only knowledge of angles in the first quadrant for θ ∈{ 2π

3 , 3π

4 , 5π

6 ,π, 7π

6 , 5π

4 , 4π

3 , 3π

2 , 5π

3 , 7π

4 , 11π

6 ,2π
}
.

2. Prove cos2 θ =
1+ cos2θ

2
and sin2

θ =
1− cos2θ

2
.

3. π/12 = π/3−π/4. Therefore, from Problem 2,

cos(π/12) =

√
1+
(√

3/2
)

2
.

On the other hand,

cos(π/12) = cos(π/3−π/4) = cosπ/3cosπ/4+ sinπ/3sinπ/4

and so cos(π/12) =
√

2/4+
√

6/4. Is there a problem here? Please explain.

4. Prove 1+ tan2 θ = sec2 θ and 1+ cot2 θ = csc2 θ .

5. Prove that sinxcosy =
1
2
(sin(x+ y)+ sin(x− y)) .

6. Prove that sinxsiny =
1
2
(cos(x− y)− cos(x+ y)) .

7. Prove that cosxcosy =
1
2
(cos(x+ y)+ cos(x− y)) .

8. Using Problem 5, find an identity for sinx− siny.

9. Suppose sinx = a where 0 < a < 1. Find all possible values for

(a) tanx
(b) cotx
(c) secx

(d) cscx

(e) cosx

10. Solve the equations and give all solutions.

(a) sin(3x) =
1
2

(b) cos(5x) =

√
3

2
(c) tan(x) =

√
3

(d) sec(x) = 2

(e) sin(x+7) =

√
2

2

(f) cos2 (x) =
1
2

(g) sin4 (x) = 4

11. Sketch a graph of y = sinx.

12. Sketch a graph of y = cosx.

13. Sketch a graph of y = sin2x.
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14. Sketch a graph of y = tanx.

15. Find a formula for sinxcosy in terms of sines and cosines of x+ y and x− y.

16. Using Problem 2 graph y = cos2 x.

17. If f (x) = Acosαx+Bsinαx, show there exists φ such that

f (x) =
√

A2 +B2 sin(αx+φ) .

Show there also exists ψ such that f (x) =
√

A2 +b2 cos(αx−ψ) . This is a very
important result, enough that some of these quantities are given names.

√
A2 +B2 is

called the amplitude and φ or ψ are called phase shifts.

18. Using Problem 17 graph y = sinx+
√

3cosx.

19. Give all solutions to sinx+
√

3cosx =
√

3. Hint: Use Problem 18.

20. As noted above 45o is the same angle as π/4 radians. Explain why 90o is the same
angle as π/2 radians. Next find a simple formula which will change the degree
measure of an angle to radian measure and radian measure into degree measure.

21. Find a formula for tan(θ +β ) in terms of tanθ and tanβ

22. Find a formula for tan(2θ) in terms of tanθ .

23. Find a formula for tan
(

θ

2

)
in terms of tanθ .

24. Show tan(4θ) =
4tanθ −4tan3 θ

1−6tan2 θ + tan4 θ
. Use to show that

π

4
= 4arctan

(
1
5

)
− arctan

(
1

239

)
.

Here arctan(x) is defined to be the angle in
(
−π

2 ,
π

2

)
whose tangent is x. That is,

arctan(x) ∈
(
−π

2 ,
π

2

)
and tan(arctan(x)) = x. This formula and others like it have

been used to compute π for hundreds of years.

25. The function, sin has domain equal to R and range [−1,1] . However, this function is
not one to one because sin(x+2π) = sinx. Show that if the domain of the function is

restricted to be
[
−π

2
,

π

2

]
, then sin still maps onto [−1,1] but is now also one to one

on this restricted domain. Therefore, there is an inverse function, called arcsin which
is defined by arcsin(x)≡ the angle whose sin is x which is in the interval,

[
−π

2
,

π

2

]
.

Thus arcsin
(

1
2

)
is the angle whose sin is

1
2

which is in
[
−π

2
,

π

2

]
. This angle is

π

6
. Suppose you wanted to find tan(arcsin(x)) . How would you do it? Consider the

following picture which corresponds to the case where x > 0.
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θ√
1− x2

x
1

Then letting θ = arcsin(x) , the thing which is wanted is tanθ . Now from the picture,
you see this is

x√
1− x2

. If x were negative, you would have the little triangle pointing

down rather than up as in the picture. The result would be the same for tanθ . Find
the following:

(a) cot(arcsin(x))

(b) sec(arcsin(x))

(c) csc(arcsin(x))

(d) cos(arcsin(x))

26. Using Problem 25 and the formulas for the trig functions of a sum of angles, find the
following. Assume x,y are small and positive.

(a) cot(arcsin(2x))

(b) sec(arcsin(x+ y))

(c) csc
(
arcsin

(
x2
))

(d) cos(2arcsin(x))

(e) tan(arcsin(x)+ arcsin(y))

(f) csc(arcsin(x)− arcsin(y))

27. The function, cos, is onto [−1,1] but fails to be one to one. Show that if the domain
of cos is restricted to be [0,π] , then cos is one to one on this restricted domain and
still is onto [−1,1] . Define arccos(x)≡ the angle whose cosine is x which is in [0,π] .
Find the following.

(a) tan(arccos(x))
(b) cot(arccos(x))
(c) sin(arccos(x))

(d) csc(arccos(x))

(e) sec(arccos(x))

28. Using Problem 27 and the formulas for the trig functions of a sum of angles, find the
following. Assume x,y are small and positive if desired.

(a) cot(arccos(2x))

(b) sec(arccos(x+ y))

(c) csc
(
arccos

(
x2
))

(d) cos(arcsin(x)+ arccos(y))

(e) tan(arcsin(x)+ arccos(y))

29. The function, arctan is defined as arctan(x) ≡ the angle whose tangent is x which

is in
(
−π

2
,

π

2

)
. Show this is well-defined and is the inverse function for tan if the

domain of tan is restricted to be
(
−π

2
,

π

2

)
. Find
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(a) cos(arctan(x))
(b) cot(arctan(x))
(c) sin(arctan(x))
(d) csc(arctan(x))
(e) sec(arctan(x))

30. Using the formulas for the trig functions of a sum of angles, find the following.
Assume x,y are small and positive if this is helpful.

(a) cot(arctan(2x))
(b) sec(arctan(x+ y))
(c) csc

(
arccos

(
x2
))

(d) cos(2arctan(x)+ arcsin(y))

31. The graphs of tan and cot suggest that these functions are periodic of period π verify
that this is indeed the case using the identities presented.

32. Give another argument which verifies the Pythagorean theorem by supplying the
details for the following argument3. Take the given right triangle and situate copies
of it as shown below.

c a
b

33. Another very simple and convincing proof of the Pythagorean theorem4 is based on
writing the area of the following trapezoid two ways. Explain why the angle denoted
with a square has radian measure equal to π/2 and find the area of the trapezoid two
ways.

c

c

a

b

a

b
3This argument is old and was known to the Indian mathematician Bhaskar who lived 1114-1185 A.D.
4This argument involving the area of a trapezoid is due to James Garfield 1831-1881 who was one of the

presidents of the United States. Garfield was shot early in his term as president and lingered for a couple of
months during which time he was attended by a physician who did not believe in the latest knowledge about the
importance of keeping wounds clean, although he was otherwise a very experienced physician who had saved the
lives of many wounded men in the Civil War. It is likely that Garfield would have survived if he had received
better medical care. They never found the bullet and kept probing the wound looking for it, thus introducing
more infection. If you look up Garfield, you will find many other interesting things. He was made the republican
nominee by acclamation.
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34. Make up your own proof of the Pythagorean theorem based on the following picture.

c

c

c

c b

b

b a

b a

a

a

35. If A,B are two angles in a triangle, and cos(A) = cos(B), explain why A = B. Hint:
Note that cos is one to one on [0,π] and all angles of a triangle have radian measure
less than π .

36. An isosceles triangle is one which has two equal sides. For example the following
picture is of an isosceles triangle

θα

aa

the two equal sides having length a. Show the “base angles” θ and α are equal. Hint:
You might want to use the law of cosines and the observation in the above problem.

2.5 Exponential and Logarithmic Functions

Logarithms were first considered by Napier5 and were based on an assumption that an
exponential function exists. However, by the latter half of the seventeenth century, it was
realized that the best way to consider exponential functions and logarithms is through the
general approach discussed in this section where the natural logarithm ln is defined first
and used to obtain the exponential function.

Let A(a,b) denote the area of the region R(a,b) which is under the graph of y = 1/x,
above the x axis, and between the graphs of the lines x = a and x = b.

5Napier was a Scottish nobleman. He lived from 1550 - 1617. In addition to inventing logarithms, he also
predicted the end of the world would occur in 1770 based on his study of the Book of Revelations and other
ancient manuscripts. Those who developed calculus were often interested in theology and some made strange
predictions determining the end of the world. A belief in the inerrancy of the Bible can lead to many strange
conclusions. Napier was certainly not unique in this. We don’t hear such predictions all that often now, but they
were very fashionable in the eighteenth and nineteenth centuries. Napier did not worry about the sort of thing in
this section.
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Upper and Lower sums for y = 1/x

The above picture illustrates lower and upper sums for this region. The sum of the areas
of the rectangles below the graph is a lower sum and the sum of the rectangles which are
each too tall is an upper sum.

The area is defined to be the number which is between all such upper sums and all
such lower sums. Denote by Un (a,b) the sum of the areas of the rectangles which enclose
R(a,b) in case there are n of them having equal length and Ln (a,b) the sum of the areas of
the rectangles which are contained in R(a,b). You would think that the approximation to
the area would improve by having more of these rectangles.

In the picture n = 10. What is Un (a,b)−Ln (a,b) , the discrepancy between the two
sums of areas of rectangles? The width of each rectangle is (b−a)/n. Thus Un (a,b) =

a−1 b−a
n

+

(
a+

b−a
n

)−1 b−a
n

+ · · ·+
(

a+(n−1)
b−a

n

)−1 b−a
n

=
n−1

∑
k=0

(
a+ k

b−a
n

)−1 b−a
n

a similar formula holding for Ln (a,b) in which ∑
n−1
k=0 is replaced with ∑

n
k=1. Hence,

Un (a,b)−Ln (a,b) =

n−1

∑
k=0

(
a+ k

b−a
n

)−1 b−a
n

−
n

∑
k=1

(
a+ k

b−a
n

)−1 b−a
n

=
(

a−1 − (a+b−a)−1
) b−a

n
=

1
ab

(b−a)2 1
n

This shows that if n is large, the sum of the areas of the small rectangles inside the region
and the sum of the areas of the large rectangles enclosing the region, are both approximately
equal to what should be defined as the area of the region just described.

Now notice that if r > 0,

Un (ar,br) =Un (a,b) , Ln (ar,br) = Ln (a,b) .

The reason for this is that the width of the rectangles in the sum for Un (ar,br) is multiplied
by r and the height is multiplied by 1/r, leaving the area unchanged for each rectangle in
the sum. Similar considerations apply to Ln (a,b). Therefore,

A(a,b)−A(ra,rb) ≤
too large

Un (a,b)−
too small

Ln (ra,rb)

= Un (a,b)−Ln (a,b)≤
1
ab

(b−a)2 1
n
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Similarly,

A(ra,rb)−A(a,b) ≤ Un (ra,rb)−Ln (a,b)

= Un (a,b)−Ln (a,b)≤
1
ab

(b−a)2 1
n

Thus |A(ra,rb)−A(a,b)| ≤ 1
ab (b−a)2 1

n and since n is arbitrary, A(ra,rb)=A(a,b) . This
also holds for a > b if A(a,b)≡−A(b,a) . This is summarized in the following lemma.

Lemma 2.5.1 Let a,b> 0 and denote by A(a,b) the area of the region which is bounded
by the lines x = a,x = b, the graph of y = 1/x, and the x axis if a ≤ b and if a > b, then
A(a,b)≡−A(b,a). Then if r > 0,A(ra,rb) = A(a,b).

Definition 2.5.2 For a > b,A(a,b) ≡ −A(b,a). For x > 0 define L(x) as follows.
Letting A(a,b) be as just defined, L(x)≡ A(1,x) .

x1

y = 1/x

L(x)

Lemma 2.5.3 Whenever x,y are positive, A(x,y) = A(1,y)− A(1,x). Whenever x,y

positive, L
(

x
y

)
= L(x)−L(y) and L(xy) = L(x)+L(y) ,L(1) = 0, and L(y) =−L

(
y−1
)
.

Proof: First suppose x≤ y. If 1≤ x, the claim is clearly so from the definition of A(a,b)
as area under the curve for a ≤ x ≤ b.

1 x y

A(x,y)

If x < 1, Then similarly, A(x,y) = A(x,1)+A(1,y) = A(1,y)−A(1,x). If y ≤ 1, then
A(x,y) + A(y,1) = A(x,1) = −A(1,x) and so A(x,y) = −A(y,1)− A(1,x) = A(1,y)−
A(1,x) again. This completes the case that x ≤ y.

Now suppose x > y. Then from the definition and what was just shown, A(x,y) ≡
−A(y,x) =−(A(1,x)−A(1,y)) = A(1,y)−A(1,x).

For the claim about L, and Lemma 2.5.1, L
(

x
y

)
≡ A

(
1, x

y

)
= A

(
y
y ,

x
y

)
= A(y,x) =

A(1,x)−A(1,y) = L(x)−L(y). Finally, from the above,

L(xy) = L
(

x
y−1

)
= L(x)−L

(
y−1)

Now L
(
y−1
)
≡ A

(
1,y−1

)
= A

(
y
y ,

1
y

)
= A(y,1) = −A(1,y) = −L(y) and so the above

yields L(xy) = L(x)+L(y). In particular, L(1) = L
(
12
)
= L(1)+L(1) so L(1) = 0 and

L(y) =−L
(
y−1
)
. ■
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Theorem 2.5.4 The function of Definition 2.5.2 for x,y > 0 has the following prop-
erties.

1. L(xy) = L(x)+L(y) , L(1) = 0, L
(

x
y

)
= L(x)−L(y) , L(x) =−L

( 1
x

)
2. x → L(x) is strictly increasing so L is one to one and L(x) = −L

( 1
x

)
< 0 if x < 1

while L(x)> 0 if x > 1.

3. If x > 0, then if y > x/2, |L(y)−L(x)| ≤ 2|x−y|
|x| .

4. L : (0,∞)→ R is onto.

Proof: The first claim is in the above lemma.
Consider the second claim. To see this, first note that if x < y, then L(y)− L(x) =

L(y/x) by the first claim, and L(y/x)> 0 so it follows that L is strictly increasing. Hence
the function L is also one to one. From the definition and the first part, L(x) =−L

( 1
x

)
< 0

if x < 1 and L(x)> 0 if x > 1.
Now consider the third claim. If a ≤ b, then L(b/a)+L(a) = L(b) and so, from the

definition in terms of area,

0 ≤ L(b)−L(a) = L(b/a) = A(1,b/a)≤
(

b
a
−1
)

1 =
b−a

a
.

1 b/a

If x/2 < y ≤ x. Then, from the above,

|L(x)−L(y)|= L(x)−L(y)≤ x− y
y

≤ |x− y|
x/2

=
2 |x− y|

x

If y > x, then since 2/x > 1/x,

|L(x)−L(y)|= L(y)−L(x)≤ y− x
x

≤ 2 |x− y|
x

Finally consider the last claim. From the definition, it follows that L(2)> 1/2. (Draw
a picture.) Therefore, from the first claim,

L(2n) = L

 n times︷ ︸︸ ︷
2×2×·· ·×2

= nL(2)> n/2, L
(

1
2n

)
= nL(1/2)<−n/2.

Thus L(x) achieves arbitrarily large and arbitrarily small values for positive x. Let
y ∈ R and let S ≡ {x : L(x)> y} . Then S ̸= /0. Let l = inf(S) . It follows that l > 0 because
L achieves values smaller than y on positive numbers. Then there exists xn ∈ [l, l+n−1)∩S
since otherwise l is not the greatest lower bound. (l +n−1 would be a larger lower bound.)
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Also let yn ∈ (l −1/n, l) for n large enough that l−1/n > 0. Is L(l) = y? For large enough
n, xn,yn are both larger than l/2 so from Claim 3,

|y−L(l)| < L(xn)−L(yn) = (L(xn)−L(l))+(L(l)−L(yn))

≤ 2 |xn − l|
l

+
2 |yn − l|

l
<

2
l

2
n

Since n is arbitrarily large, y = L(l). Therefore, L is onto R. ■
This function L will be denoted as ln. It is the natural logarithm.

Definition 2.5.5 Since ln is one to one and onto, there exists a real number e such
that ln(e) = 1. This number e is called Euler’s number.

It can be computed directly from the above definition of ln . You would get a good table
of values of ln using the above definition and then go backwards in the table to obtain an
approximation for e. There are of course much more sophisticated ways to find it, and here
it is to several decimal places. e = 2.7183

From knowledge of ln and its properties, it is easy to get the existence of an exponential
function. Let exp : R 7→ (0,∞) be the inverse of ln .

exp is defined on all of R (2.17)

exp(x+ y) = exp(x)exp(y) (2.18)

exp : R 7→ (0,∞) is one to one and onto (2.19)

exp(0) = 1 (2.20)

Each is satisfied. Since ln maps (0,∞) onto R, its inverse function is defined on R and
has values which are positive numbers. This inverse function exp is one to one and onto.
Indeed, if exp(y1) = exp(y2) , then since each is positive, you can take ln of both sides
and conclude that y1 = y2. Thus exp is one to one. If y ∈ (0,∞), then ln(y) ∈ R and so
y = exp(ln(y)). Thus exp is also onto.

ln(exp(x+ y)) = x+ y

ln(exp(x)exp(y)) = ln(exp(x))+ ln(exp(y)) = x+ y

Since ln is one to one, this verifies 2.18.

Observation 2.5.6 From 2.18, it follows that for n an integer, (exp(x))n = exp(nx).
Also, for m an integer, it follows from Theorem 2.5.4 that for n an integer, n ln(x) = ln(xn) .
If n is a positive integer, this is obvious from that theorem so consider −n with n positive.
By the same theorem,

−n ln(x) = n ln(1/x) = ln(1/xn) = ln
(
x−n) .

2.6 The Function bx

You have no idea what 2
√

2 is. You do know what 2n is for n an integer. You also know
what 2m/n is for m,n integers. It is n

√
2m. For b a positive real number and r a real number,

define br ≡ exp(r lnb). Does this definition contradict what we already know?
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Proposition 2.6.1 For b > 0 and r a real number, define br ≡ exp(r ln(b)) . Then if
r = m/n, for m,n integers,exp

(m
n lnb

)
= n

√
bm, the positive nth root of bm.

Proof: From the above observation,(
exp
(m

n
lnb
))n

= exp
(

n
(m

n
lnb
))

= exp(m ln(b)) = exp(ln(bm)) = bm

Therefore, taking nth roots, exp
(m

n lnb
)
= n

√
bm. Recall that from Theorem 1.10.2 there is

a unique positive nth root of a positive number so everything makes sense here. ■
This is a very important observation because it shows that if we define br as the ex-

pression involving known functions exp(r ln(b)) , there is no contradiction between this
definition and what was already accepted for r rational. It is not like what is done in some
religions where new policies contradict that which was earlier identified as god’s will, and
everyone is supposed to choose to believe both even though they contradict. Here we can
make the following definition of br for r real and b > 0 with no cognitive dissonance. This
definition avoids the pretense that we know what a number raised to a real power means
when we really don’t.

Definition 2.6.2 Let b > 0 and let r be a real number. Then br ≡ exp(r ln(b)).

Proposition 2.6.3 The usual rules of exponents hold.

Proof: These properties follow directly from the definition.

br+r̂ ≡ exp((r+ r̂) ln(b)) = exp(r ln(b))exp(r̂ ln(b)) = brbr̂.

b0 ≡ exp(0ln(b)) = exp(0) = 1.

(br)r̂ ≡ exp(r̂ ln(br))≡ exp(r̂ ln(exp(r ln(b)))) = exp(r̂r ln(b))≡ brr̂ ■

Observation 2.6.4 Note that for e the number such that ln(e) = 1,ex ≡ exp(x ln(e)) =
exp(x) and so from now on, I will use either ex or exp(x) because they are exactly the same
thing.

If you have x = f (t) and y = g(t) for t in some interval, then ( f (t) ,g(t)) for t ∈
[a,b] traces out a curve in the plane. These equations x = f (t) and y = g(t) are called
parametrizations of this curve. This will be discussed more later but it is convenient to
introduce the term now.

Definition 2.6.5 The hyperbolic functions, denoted as cosh(x) ,sinh(x) are defined
as follows:

cosh(x)≡ ex + e−x

2
, sinh(x)≡ ex − e−x

2
The reason these are called hyperbolic functions is that

cosh2 (x)− sinh2 (x) = 1

Thus if x = cosh(t) and y = sinh(t) , then x2 − y2 = 1 so (x,y) = (cosh(t) ,sinh(t)) par-
ametrizes a hyperbola given by x2 − y2 = 1. The circular functions cos(t) , sin(t) are so
called because cos2 (t)+ sin2 (t) = 1. Thus if (x,y) = (cos(t) ,sin(t)) , this parametrizes a
circle.

Note that cosh(t)+ sinh(t) = et and cosh(t) = cosh(−t) while sinh(−t) =−sinh(t).
These are the even and odd parts of the function t → et . This has just given all essential
features of the hyperbolic functions.
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2.7 Applications

2.7.1 Interest Compounded Continuously

It is possible to compound interest continuously. If time is measured in years and if the
interest rate is r per year, compounded n times a year, then it can be shown that the amount
after t years is P

(
1+ r

n

)nt . The idea is to let n get larger and larger. From material presented
later, the amount becomes increasingly close to Pexp(rt) . This explains the following
procedure for compounding interest continuously.

Procedure 2.7.1 If the interest rate is r and the interest is compounded continu-
ously, to find the future value after t years you compute Pexp(rt) .

Example 2.7.2 The interest rate is 10% and the payment is $1000. What is the future value
after 5 years if interest is compounded daily and if interest is compounded continuously.

To compound daily, you would have 365 payment periods in each year so the fu-
ture value is 1000

(
1+ .1

360

)5×360
= $1648.60. Now compounding it continuously you get

1000exp(5× .1) = $1648.70. You see, compounding continuously is better than com-
pounding daily. If you wait 5 years you get an extra 10 cents. Well, every little bit helps.

2.7.2 Exponential Growth and Decay

Suppose you have a bacteria culture and you feed it all it needs and there is no restriction on
its growth due to crowding for example. Then in this case, the rate of growth is proportional
to the amount of bacteria present. This is because the more you have, the more bacteria
there are to divide and make new bacteria. Consider equally spaced intervals of time such
that n of them equal one unit of time where n is large. The unit might be years, days, etc.
Also let Ak denote the amount of whatever is growing at the end of the kth increment of
time. In exponential growth

Ak+1 −Ak ≈ rAk (1/n) , A0 = P

where r is a proportionality constant called the growth rate and the above difference equa-
tion should give a good description of the amount provided n is large enough. The symbol
≈ indicates approximately equal. Now this is easy to solve. Ak+1 ≈

(
1+ r

n

)
Ak, A0 = P

and you look for Ak = αk and find α. This is easily seen to be α =
(
1+ r

n

)
and so

Ak ≈ P
(
1+ r

n

)k
. Now let A(t) denote the amount at time t. What is it? There are tn

time intervals so k goes up to tn and you get

A(t)≈ P
(

1+
r
n

)nt
≈ P

(
1+

rt
nt

)nt

the approximation for A(t) getting better as n → ∞. As will be shown later, this becomes
very close to A(t) = Pexp(rt) when n is large which is the formula for exponential growth.
As an example, consider P= 10 and r = .01. Then the following is the graph of the function
y = 10e.01t .
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When the rate of change is negative, the process is called exponential decay. This is the
process which governs radioactive substances. It is the same formula which results, only
this time it is of the form A(t) = Pexp(−rt) where r > 0. Consider the same example only
this time consider y = 10e−.01t .
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Exercise 2.7.3 Carbon 14 has a half life of 5730 years. This means that if you start with
a given amount of it and wait 5730 years, there will be half as much left. Carbon 14 is as-
sumed to be constantly created by cosmic rays hitting the atmosphere so that the proportion
of carbon in a living organism is the same now as it was a long time ago. This is of course
an assumption and there is evidence it is not true but this does not concern us here. When
the living thing dies, it quits replenishing the carbon 14 and so that which it has decays
according to the above half life. By measuring the amount in the remains of the dead thing
and comparing with what it had when it was alive, one can determine an estimate for how
long it has been dead. Suppose then you measure the amount of carbon 14 in some dead
wood and find there is 1/3 the amount there would have been when it was alive. How long
ago did the tree from which the wood came die?

Let A(t) be the amount of carbon 14 in the sample and let A0 be the amount when
it died. Then A(t) = A0 exp(−rt) . By assumption .33A0 = A0 exp(−rt) and cancelling
the A0 one can solve for t as follows. ln(.33) = −rt. If I knew what r was, I could then
solve for t. The half life is 5730 and so .5 = exp(−r5730) and so ln(.5) =−r (5730) from
properties of ln described above, − ln(1/2) = ln

(
(1/2)−1

)
= ln(2) . Therefore, r = ln2

5730 =

1.2097× 10−4. To get this number, I just used the computer. As mentioned above ln has
been tabulated. Therefore, in the problem of interest, ln(.33) = −

(
1.2097×10−4

)
t and

so

t =
ln(.33)

−1.2097×10−4 = 9164.8 years.

So how did they find the half life of carbon 14? Did Noah have a sample of recently
dead wood in the ark and make some measurements which he recorded in the Book of the
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Law of Noah which were then compared to measurements made in the twentieth century
using chronology determined by Bishop Ussher to determine that exactly 5730 years had
passed? Actually, this is not the way it was done. The half life was also not established by
the decree of omniscient scientists. When I was young, I was constantly asked to believe
what “scientists” thought but never given any reason why they thought what they did. We
don’t have to do this in math.

Example 2.7.4 Find the half life of a radioactive substance if after 5 years there is .999395
of the original amount present.

This says .999395 = exp(−5r) and so r = ln(.999395)
−5 = 1.21036617× 10−4. Now to

find the half life T , you need to solve the equation 1
2 = e−(1.21036617×10−4)T . Thus ln(.5) =

−
(
1.21036617×10−4

)
T and so T = ln(.5)

−(1.21036617×10−4)
= 5726. Using the known prop-

erties of exponential decay, you can compute the half life without waiting for over 5000
years.

2.7.3 The Logistic Equation
There is a class of functions called logistic functions. These are studied in differential
equations and the derivation of these functions follows from the techniques of this subject.
Roughly you have a population called y and the rate at which it grows is proportional to
itself and (1− y/K) , the constant of proportionality being r. The idea is that the growth is
exponential which is attenuated by an approach to the maximum population K. When the
differential equation (discussed later) is solved, it yields a logistic function,

y(t) =
K

1+ e−rtCK

Typically t measures time and y is the population. One interesting application is to the
population of cancer cells or the size of a tumor. Typically r > 0 and K,C > 0. The
constant C is computed from information on y when t = 0. The constants r,K are given
parameters. Typically the initial value of y is given to be less than K and K is sometimes
called the carrying capacity. In population models, it is the maximum population. Here is
an example.

Example 2.7.5 Suppose r = 2,K = 10, and y(0) = 5. Find C and graph the resulting
function y.

From the information, you need to have 5 = 10
1+10C . Therefore, C = 1/10 and the

function is of the form y(t) = 10
1+exp(−2t) . Now here is the graph of this function.

0 1 2 3

t

0

5

10

y
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The red line is the asymptote y = 10. Note how as t increases, the function becomes
increasingly close to the value 10. This illustrates how 10 is the largest possible value for
y, the maximum population.

2.8 Using MATLAB to Graph
Suppose you want to graph the function y = sin

(
x2
)

for x ∈ [0,5] . In MATLAB, you would
do the following:

x=[0:.01:4];
plot(x,sin(x.ˆ2),’LineWidth’,2)
Then press enter and it will produce the graph of this function. Note that x is a list of

numbers between 0 and 4 which are .01 apart. x.ˆ2 says to make a list of numbers obtained
by squaring each number in the original list. This is why you need .ˆ rather than simply ˆ.
You also need to press shift enter to get to a new line. Don’t forget to put ; after the first
line. You don’t want to see the list of numbers.

2.9 Exercises
1. Define logarithms to the base b for b a positive real number, b ̸= 1, as follows. For

x > 0

logb (x)≡
ln(x)
ln(b)

Show logb is one to one and maps onto R. Then show it satisfies the same properties
as ln . That is,

logb (xy) = logb (x)+ logb (y)

Also show that blogb(x) = x and logb (b
x) = x and logb (a

x) = x logb (a) whenever a is
a positive real number.

2. Show that loge (x) = ln(x) .

3. Solve the following equation for x : log4 (2
x)+3log3 (9

x) = 2

4. Show that for positive a and x, loga (x) =
logb(x)
logb(a)

5. Simplify logb (a) loga (b) where a,b are positive numbers not equal to 1.

6. Solve the following equations in terms of logarithms. Hint: Take natural logarithms
of both sides.

(a) 23x+1 = 32x−2.

(b) 5x−1

23x+1 = 7x

(c) 5x7x+1 = 2x

7. Find x such that logx (8) = 3.

8. Find x such that logx
( 1

16

)
= 4.
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9. If 1 < a < b and x > 1, how are loga (x) and logb (x) related? Which is larger?
Explain why.

10. Find without using a calculator log3 (27) , log2 (64) , log10 (1000) , log1/2 (8) .

11. Find the domain of the function of x given by

log3

(
x+1

(x−1)(x+2)

)
Hint: You need x to be such that the expression inside the parenthesis is positive and
makes sense. Thus you can’t have for example x = 1.

12. Find the domain of the function f (x) =
√

ln
( x+1

x+2

)
.

13. Find all solutions to log2 (x+4) = log4 (x+16) .

14. If the interest rate is 4% compounded continuously, how long does it take a given
amount of money to double? This means the rate per year is .04.

15. If the interest rate is 6% compounded continuously, how long does it take a given
amount of money to double? This means the rate per year is .06.

16. The population of bacteria grows exponentially. It is observed that every hour this
population doubles. How long will it take to have eight times as many bacteria as at
the beginning?

17. A pesticide has a half life of 27 years. How long will it take to have only 1/4 the
initial amount?

18. Suppose 5% interest is compounded continuously and you make a payment of $100
at the end of every year, starting with an initial $1000. How much will you have at
the end of 10 years?

19. Measurements are taken of an exponentially decaying substance and it is found that
after 5 years there is .9 of the amount which was present at the start. What is the half
life of this substance?

20. Consider the logistic equation

y =
K

1+ e−rtCK

where y(0) = 20 and K = 30,r = 1. Find C in the logistic equation to conform with
this information. Then graph the resulting function.

21. In the logistic equation, explain why for large t it will always be close to K. In other
words, explain why it has a horizontal asymptote of the form y = K.

22. Suppose f : R→ R is any function. Let

h(t)≡ ( f (t)+ f (−t))
1
2
,g(t) =

1
2
( f (t)− f (−t)) .
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Show that h is even, meaning h(t) = h(−t) ,g is odd meaning g(−t) = −g(t) and
that f = g+ h. Then h is called the even part of f and g is called the odd part of
f . The hyperbolic functions are defined this way as the even and odd parts of the
exponential function.

23. Solve for x. 3log27(x) = 4.

2.10 Videos
circular functions logs and exponentials

https://www.youtube.com/watch?v=3dFll_MGK4I
https://www.youtube.com/watch?v=XOAal80062Y


Chapter 3

Sequences and Compactness

This chapter is devoted to the fundamental properties of the real line which make all exis-
tence theorems in Calculus possible. Of course you can follow stupid algorithms without
these things, but if you wish to understand what is going on, you need the concepts of this
chapter.

3.1 Sequences
Functions defined on the set of integers larger than a given integer are called sequences.
This turns out to be somewhat easier to consider in terms of limits than functions defined
on R which is why I am placing this early.

Definition 3.1.1 A function whose domain is defined as a set of the form

{k,k+1,k+2, · · ·}

for k an integer is known as a sequence. Thus you can consider

f (k) , f (k+1) , f (k+2) ,

etc. Usually the domain of the sequence is either N, the natural numbers consisting of
{1,2,3, · · ·} or the nonnegative integers, {0,1,2,3, · · ·} . Also, it is traditional to write
f1, f2, etc. instead of f (1) , f (2) , f (3) etc. when referring to sequences. In the above
context, fk is called the first term, fk+1 the second and so forth. It is also common to write
the sequence, not as f but as { fi}∞

i=k or just { fi} for short.

Example 3.1.2 Let {ak}∞

k=1 be defined by ak ≡ k2 +1.

This gives a sequence. In fact, a7 = a(7) = 72 +1 = 50 just from using the formula for
the kth term of the sequence.

It is nice when sequences come in this way from a formula for the kth term. However,
this is often not the case. Sometimes sequences are defined recursively. This happens, when
the first several terms of the sequence are given and then a rule is specified which deter-
mines an+1 from knowledge of a1, · · · ,an. This rule which specifies an+1 from knowledge
of ak for k ≤ n is known as a recurrence relation.

83
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Example 3.1.3 Let a1 = 1 and a2 = 1. Assuming a1, · · · ,an+1 are known, an+2 ≡ an+an+1.

Thus the first several terms of this sequence, listed in order, are 1, 1, 2, 3, 5, 8,· · · . This
particular sequence is called the Fibonacci sequence and is important in the study of repro-
ducing rabbits. Note this defines a function without giving a formula for it. Such sequences
occur naturally in the solution of differential equations using power series methods and in
many other situations of great importance.

3.2 Exercises
1. Let g(t)≡

√
2− t and let f (t) = 1

t . Find g◦ f . Include the domain of g◦ f .

2. Give the domains of the following functions.

(a) f (x) = x+3
3x−2

(b) f (x) =
√

x2 −4

(c) f (x) =
√

4− x2

(d) f (x) =
√

x 4
3x+5

(e) f (x) =
√

x2−4
x+1

3. Let f : R→ R be defined by f (t)≡ t3 +1. Is f one to one? Can you find a formula
for f−1?

4. Suppose a1 = 1,a2 = 3, and a3 = −1. Suppose also that for n ≥ 4 it is known that
an = an−1+2an−2+3an−3. Find a7. Are you able to guess a formula for the kth term
of this sequence?

5. Let f : {t ∈ R : t ̸=−1}→ R be defined by f (t)≡ t
t+1 . Find f−1 if possible.

6. A function f : R→ R is a strictly increasing function if whenever x < y, it follows
that f (x) < f (y) . If f is a strictly increasing function, does f−1 always exist? Ex-
plain your answer.

7. Let f (t) be defined by

f (t) =

{
2t +1 if t ≤ 1

t if t > 1
.

Find f−1 if possible.

8. Suppose f : D( f )→ R( f ) is one to one, R( f )⊆ D(g) , and g : D(g)→ R(g) is one
to one. Does it follow that g◦ f is one to one?

9. If f : R→ R and g : R→ R are two one to one functions, which of the following are
necessarily one to one on their domains? Explain why or why not by giving a proof
or an example.

(a) f +g

(b) f g

(c) f 3

(d) f/g

10. Draw the graph of the function f (x) = x3 +1.
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11. Draw the graph of the function f (x) = x2 +2x+2.

12. Draw the graph of the function f (x) = x
1+x .

13. Suppose an =
1
n and let nk = 2k. Find bk where bk = ank .

14. Suppose f (x)+ f
( 1

x

)
= 7x and f is a function defined on R\{0} , the nonzero real

numbers. Find all values of x where f (x) = 1 if there are any. Does there exist any
such function?

15. Does there exist a function f , satisfying f (x)− f
( 1

x

)
= 3x which has both x and 1

x
in the domain of f ?

16. In the situation of the Fibonacci sequence show that the formula for the nth term can
be found and is given by

an =

√
5

5

(
1+

√
5

2

)n

−
√

5
5

(
1−

√
5

2

)n

.

Hint: You might be able to do this by induction but a better way would be to look
for a solution to the recurrence relation, an+2 ≡ an + an+1 of the form rn. You will
be able to show that there are two values of r which work, one of which is r = 1+

√
5

2 .
Next you can observe that if rn

1 and rn
2 both satisfy the recurrence relation then so

does crn
1 +drn

2 for any choice of constants c,d. Then you try to pick c and d such that
the conditions, a1 = 1 and a2 = 1 both hold. This general approach often works for
finding solutions to such recurrence relations.

17. In an annuity, you make constant payments P at the end of each payment period.
These accrue interest at the rate of r per payment period. Let An be the amount at the
end of the nth payment period. Then rAn +An +P = (1+ r)An +P = An+1 and the
initial amount is 0 = A0,P = A1. Find An. Hint: Look for An =Czn + s. A0 = 0 so

18. A well known puzzle consists of three pegs and several disks each of a different
diameter, each having a hole in the center which allows it to be slid down each of
the pegs. These disks are piled one on top of the other on one of the pegs, in order
of decreasing diameter, the larger disks always being below the smaller disks. The
problem is to move the whole pile of disks to another peg such that you never place
a disk on a smaller disk. If you have n disks, how many moves will it take? Of
course this depends on n. If n = 1, you can do it in one move. If n = 2, you would
need 3. Let An be the number required for n disks. Then in solving the puzzle,
you must first obtain the top n− 1 disks arranged in order on another peg before
you can move the bottom disk of the original pile. This takes An−1 moves. Explain
why An = 2An−1 + 1,A1 = 1 and give a formula for An. Look for one in the form
An = Crn + s. This puzzle is called the Tower of Hanoi. When you have found a
formula for An, explain why it is not possible to do this puzzle if n is very large.

3.3 The Limit of a Sequence
A little later, the limit of functions of real variables will be important. A sequence is just a
special kind of function and it turns out that it is easier to consider the limit of a sequence.
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This also helps considerably in understanding certain other concepts like continuity of a
function also presented later. This is why I am including this topic early in the book, to
make more difficult concepts easier to understand.

The concept of the limit of a sequence was defined precisely by Bolzano.1 It is now
expressed as follows.

Definition 3.3.1 A sequence {an}∞

n=1 converges to a, written

lim
n→∞

an = a or an → a

if and only if for every ε > 0 there exists nε such that whenever n ≥ nε ,

|an −a|< ε.

Here a and an are assumed to be real numbers but the same definition holds more generally.

In words the definition says that given any measure of closeness ε, the terms of the
sequence are eventually this close to a. Here, the word “eventually” refers to n being
sufficiently large. The above definition is always the definition of what is meant by the
limit of a sequence. However, in practice we usually say that something happens for n
sufficiently large rather than trying to specify a particular size for how large n must be.
First is a situation where the limit always exists. Nor do we determine limits by doing
experiments with calculators.

Proposition 3.3.2 Let {an}∞

n=1 be an increasing sequence meaning an ≤ an+1 for all n
and suppose a ≡ sup{an : n ≥ 1} < ∞. Then limn→∞ an = a. A similar result holds if the
sequence is decreasing and bounded below if a ≡ inf{an : n ≥ 1}.

Proof: For each ε > 0, there exists an ∈ [a− ε,a] since otherwise a is not equal to
what it is defined to be. Since {an} is increasing, it follows that an ∈ [a− ε,a] for all n
large enough. Hence limn→∞ an = a. The situation where the sequence is decreasing and
bounded below is exactly similar. ■

Next is the important theorem that the limit, if it exists, is unique.

Theorem 3.3.3 If limn→∞ an = a and limn→∞ an = â then â = a.
1Bernhard Bolzano lived from 1781 to 1848. He had an Italian father but was born in Bohemia, and he wrote

in German. He was a Catholic priest and held a position in philosophy at the University of Prague. It appears that
Bolzano believed in the words of Jesus and did not hesitate to enthusiastically promote what he knew was right.
This got him in trouble with the political establishment of Austria. When he refused to recant, he was forced out
of the university and forbidden to publish. He also displeased the Catholic hierarchy for being too rational.

Bolzano believed in absolute rigor in mathematics. He also was interested in physics, theology, and especially
philosophy. His contributions in philosophy are very influential. He originated anti-psychologism also called
logical objectivism which holds that logical truth exists independent of our opinions about it, contrary to the
notion that truth for one person may not be truth for another. His collected writings fill some 25 volumes.

The intermediate value theorem from calculus is due to him. These days, the intermediate value theorem is
considered obvious and is not discussed well in calculus texts, but Bolzano knew better and gave a proof which
identified exactly what was needed instead of relying on vague intuition and geometric speculation.

Like many of the other mathematicians, he was concerned with the notion of infinitesimals which had been
popularized by Leibniz. Some tried to strengthen this idea and others sought to get rid of it. They realized
that something needed to be done about this fuzzy idea. Bolzano was one who contributed to removing it from
calculus. He also proved the extreme value theorem in 1830’s and gave the first formal εδ description of continuity
and limits. This notion of infinitesimals did not completely vanish. These days, it is called non standard analysis.
It can be made mathematically respectable but not in this book.
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Proof: Suppose â ̸= a. Then let 0 < ε < |â−a|/2 in the definition of the limit. It
follows that there exists nε such that if n ≥ nε , then |an −a| < ε and |an − â| < ε. Just
let nε be the larger of two numbers, one which works for a and one which works for â.
Therefore, for such n,

|â−a| ≤ |â−an|+ |an −a|
< ε + ε < |â−a|/2+ |â−a|/2 = |â−a| ,

a contradiction. ■

Example 3.3.4 Let an =
1

n2+1 .

Then it seems clear that limn→∞
1

n2+1 = 0.In fact, this is true from the definition. Let

ε > 0 be given. Let nε ≥
√

ε−1. Then if n > nε ≥
√

ε−1, it follows that n2 +1 > ε−1 and
so 0 < 1

n2+1 = an < ε . Thus |an −0|< ε whenever n is this large.
Note the definition was of no use in finding a candidate for the limit. This had to be

produced based on other considerations. The definition is for verifying beyond any doubt
that something is the limit. It is also what must be referred to in establishing theorems
which are good for finding limits.

Example 3.3.5 Let an = n2

Then in this case limn→∞ an does not exist.

Example 3.3.6 Let an = (−1)n .

In this case, limn→∞ (−1)n does not exist. This follows from the definition. Let ε = 1/2.
If there exists a limit l, then eventually, for all n large enough, |an − l| < 1/2. However,
|an −an+1|= 2 and so,

2 = |an −an+1| ≤ |an − l|+ |l −an+1|< 1/2+1/2 = 1

which cannot hold. Therefore, there is no limit for this sequence.

Theorem 3.3.7 Suppose {an} and {bn} are sequences and that

lim
n→∞

an = a and lim
n→∞

bn = b.

Also suppose x and y are in R. Then

lim
n→∞

xan + ybn = xa+ yb (3.1)

lim
n→∞

anbn = ab (3.2)

If b ̸= 0,

lim
n→∞

an

bn
=

a
b
. (3.3)
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Proof: The first of these claims is left for you to do. To do the second, let ε > 0 be given
and choose n1 such that if n ≥ n1 then |an −a|< 1.Then for such n, the triangle inequality
implies

|anbn −ab| ≤ |anbn −anb|+ |anb−ab|
≤ |an| |bn −b|+ |b| |an −a|
≤ (|a|+1) |bn −b|+ |b| |an −a| .

Now let n2 be large enough that for n ≥ n2,

|bn −b|< ε

2(|a|+1)
, and |an −a|< ε

2(|b|+1)
.

Such a number exists because of the definition of limit. Therefore, let

nε > max(n1,n2) .

For n ≥ nε ,

|anbn −ab| ≤ (|a|+1) |bn −b|+ |b| |an −a|

< (|a|+1)
ε

2(|a|+1)
+ |b| ε

2(|b|+1)
≤ ε.

This proves 3.2. Next consider 3.3.
Let ε > 0 be given and let n1 be so large that whenever n ≥ n1,

|bn −b|< |b|
2
.

Thus for such n, ∣∣∣∣an

bn
− a

b

∣∣∣∣= ∣∣∣∣anb−abn

bbn

∣∣∣∣≤ 2

|b|2
[|anb−ab|+ |ab−abn|]

≤ 2
|b|

|an −a|+ 2 |a|
|b|2

|bn −b| .

Now choose n2 so large that if n ≥ n2, then

|an −a|< ε |b|
4

, and |bn −b|< ε |b|2

4(|a|+1)
.

Letting nε > max(n1,n2) , it follows that for n ≥ nε ,∣∣∣∣an

bn
− a

b

∣∣∣∣ ≤ 2
|b|

|an −a|+ 2 |a|
|b|2

|bn −b|

<
2
|b|

ε |b|
4

+
2 |a|
|b|2

ε |b|2

4(|a|+1)
< ε. ■

Another very useful theorem for finding limits is the squeezing theorem. It is like two
men supporting a drunk companion between them and the two are headed for a sink hole
into which they will fall. Then the drunk companion will also fall into the hole.
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Theorem 3.3.8 Suppose limn→∞ an = a= limn→∞ bn and an ≤ cn ≤ bn for all n large
enough. Then limn→∞ cn = a.

Proof: Let ε > 0 be given and let n1 be large enough that if n ≥ n1,

|an −a|< ε/2 and |bn −a|< ε/2.

Then for such n,
|cn −a| ≤ |an −a|+ |bn −a|< ε.

The reason for this is that if cn ≥ a, then

|cn −a|= cn −a ≤ bn −a ≤ |an −a|+ |bn −a|

because bn ≥ cn. On the other hand, if cn ≤ a, then

|cn −a|= a− cn ≤ a−an ≤ |a−an|+ |b−bn| . ■

As an example, consider the following.

Example 3.3.9 Let cn ≡ (−1)n 1
n and let bn =

1
n , and an =− 1

n . Then you may easily show
that

lim
n→∞

an = lim
n→∞

bn = 0.

Since an ≤ cn ≤ bn, it follows limn→∞ cn = 0 also.

Theorem 3.3.10 limn→∞ rn = 0. Whenever |r|< 1.

Proof: If 0 < r < 1 if follows r−1 > 1. Why? Letting α = 1
r − 1, it follows r = 1

1+α
.

Therefore, by the binomial theorem,

0 < rn =
1

(1+α)n ≤ 1
1+αn

.

Therefore, limn→∞ rn = 0 if 0 < r < 1. Now in general, if |r| < 1, |rn| = |r|n → 0 by the
first part. ■

For sequences, it is very important to consider something called a subsequence.

Definition 3.3.11 Let {an} be a sequence and let n1 < n2 < n3, · · · be any strictly
increasing list of integers such that n1 is at least as large as the first n for the original
sequence. Then if bk ≡ ank , {bk} is called a subsequence of {an} . We usually simply write{

ank

}
to denote this subsequence.

Example 3.3.12 Suppose an =
(
n2 +1

)
. Thus a1 = 2, a3 = 10, etc. If

n1 = 1,n2 = 3,n3 = 5, · · · ,nk = 2k−1,

then letting bk = ank , it follows

bk =
(
(2k−1)2 +1

)
= 4k2 −4k+2.

In general, a subsequence is just as defined. You won’t necessarily be able to give a
formula for the kth term.
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Example 3.3.13 Let an = n. Then let nk be the kth prime. Then there is no formula for ank .

An important theorem is the one which states that if a sequence converges, so does
every subsequence.

Theorem 3.3.14 Let {xn} be a sequence with limn→∞ xn = x and let
{

xnk

}
be a

subsequence. Then limk→∞ xnk = x.

Proof: Let ε > 0 be given. Then there exists nε such that if n > nε , then |xn − x| < ε.
Suppose k > nε . Then nk ≥ k > nε and so

∣∣xnk − x
∣∣< ε showing limk→∞ xnk = x as claimed.

■

Theorem 3.3.15 Let {xn} be a sequence of real numbers and suppose each xn ≤
l (≥ l)and limn→∞ xn = x. Then x ≤ l (≥ l) . More generally, let {xn} and {yn} be two
sequences such that limn→∞ xn = x and limn→∞ yn = y. Then if xn ≤ yn for all n sufficiently
large, then x ≤ y.

Proof: Suppose not. Suppose that xn ≤ l but x > l. Then for n large enough,

|xn − x|< x− l

and so
x− xn < x− l which implies xn > l

a contradiction. The case where each xn ≥ l is similar. Consider now the last claim. For n
large enough,

y− x ≥ (yn − ε)− (xn + ε)≥ (yn − xn)−2ε ≥−2ε

Since ε is arbitrary, it follows that y− x ≥ 0. ■
This last step is quite typical in calculus. To show something is nonnegative, you show

it is larger than every negative number.
Recall Proposition 3.3.2 about convergence of increasing and decreasing bounded se-

quences. These always converge in some sense.
However, many sequences are neither increasing nor decreasing. Sometimes these se-

quences do not have a limit. However, there are two things which always exist for any
sequence of real numbers.

Suppose {an} is a sequence, and let An ≡ inf{ak : k ≥ n} . Then {An} is an increasing
sequence in the sense An ≤ An+1 because the sets {ak : k ≥ n} are getting smaller as n
increases. Thus, by Proposition 3.3.2, either {An} is bounded above and limn→∞ An is a
real number equal to supn {An} or they are not bounded above and in this case, we say
liminfn→∞ An = ∞. Similarly, if Bn ≡ sup{ak : k ≥ n} , the Bn are decreasing and we can
also consider limn→∞ Bn which equals −∞ if not bounded below and some real number
equal to infn {Bn} otherwise. This explains the following definition.

Definition 3.3.16 Let An,Bn be as just described relative to a sequence {an}. Then

lim inf
n→∞

an ≡ lim
n→∞

An ≡ lim
n→∞

(inf{ak : k ≥ n})

lim sup
n→∞

an ≡ lim
n→∞

Bn ≡ lim
n→∞

(sup{ak : k ≥ n})

When liminf = limsup, this is when the limit exists.
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Lemma 3.3.17 Let {an} be a sequence in [−∞,∞] . Then limn→∞ an exists if and only if

lim inf
n→∞

an = lim sup
n→∞

an

and in this case, the limit equals the common value of these two numbers or ±∞ when not
bounded.

Proof: Suppose first limn→∞ an = a∈R. Then, letting ε > 0 be given, an ∈ (a− ε,a+ ε)
for all n large enough, say n ≥ N. Therefore, both inf{ak : k ≥ n} and sup{ak : k ≥ n} are
contained in [a− ε,a+ ε] whenever n ≥ N. It follows limsupn→∞ an and liminfn→∞ an are
both in [a− ε,a+ ε] , showing∣∣∣∣lim inf

n→∞
an − lim sup

n→∞

an

∣∣∣∣≤ 2ε.

Since ε is arbitrary, the two must be equal and they both must equal a. Next suppose
limn→∞ an = ∞. By definition, this means that if l ∈ R, there exists N such that for n ≥
N, l ≤ an and therefore, for such n, l ≤ inf{ak : k ≥ n} ≤ sup{ak : k ≥ n} and this shows,
since l is arbitrary that liminfn→∞ an = limsupn→∞ an = ∞.The case for −∞ is similar.

Conversely, suppose liminfn→∞ an = limsupn→∞ an = a. If a ∈ R, then, from the defi-
nition, since limsupn→∞ an = a, then for all n large enough,

sup{ak : k ≥ n} ∈ (a− ε,a+ ε)

so in particular, an < a+ ε . Similarly, since liminfn→∞ an = a, for all n large enough, an >
a− ε. Thus, for all n large enough, |a−an| < ε and so limn→∞ an = a. If liminfn→∞ an =
limsupn→∞ an = ∞, then for l ∈R, there exists N such that for n ≥ N, infn>N an > l. There-
fore, limn→∞ an = ∞. The case for −∞ is similar. ■

Here is a useful proposition.

Proposition 3.3.18 Let limn→∞ an = a > 0 and suppose that each bn > 0. Then

lim sup
n→∞

anbn = a lim sup
n→∞

bn.

Proof: This follows from the definition. Let λ n = sup{akbk : k ≥ n} . For all n large
enough, an ∈ (a− ε,a+ ε) where ε is small enough that a− ε > 0. Therefore,

λ n ≥ sup{bk : k ≥ n}(a− ε)

for all n large enough. Then

lim sup
n→∞

anbn = lim
n→∞

λ n ≡ lim sup
n→∞

anbn

≥ lim
n→∞

(sup{bk : k ≥ n}(a− ε)) = (a− ε) lim sup
n→∞

bn

Similar reasoning shows limsupn→∞ anbn ≤ (a+ ε) limsupn→∞ bn. Now since ε > 0 is ar-
bitrary, the conclusion follows. ■

You might think of many other similar propositions but the above will suffice.
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3.4 The Nested Interval Lemma
In Russia there is a kind of doll called a matrushka doll. You pick it up and notice it comes
apart in the center. Separating the two halves you find an identical doll inside. Then you
notice this inside doll also comes apart in the center. Separating the two halves, you find
yet another identical doll inside. This goes on quite a while until the final doll is in one
piece. The nested interval lemma is like a matrushka doll except the process never stops.
It involves a sequence of intervals, the first containing the second, the second containing
the third, the third containing the fourth and so on. The fundamental question is whether
there exists a point in all the intervals. Sometimes there is such a point and this comes from
completeness.

Lemma 3.4.1 Let Ik =
[
ak,bk

]
and suppose that for all k = 1,2, · · · , Ik ⊇ Ik+1. Then

there exists a point, c ∈ R which is an element of every Ik. If the diameters (length) of
these intervals, denoted as diam(Ik) converges to 0, then there is a unique point in the
intersection of all these intervals.

Proof: Since Ik ⊇ Ik+1, this implies

ak ≤ ak+1, bk ≥ bk+1. (3.4)

Consequently, if k ≤ l,
al ≤ bl ≤ bk. (3.5)

Now define c ≡ sup
{

al : l = 1,2, · · ·
}

. By the first inequality in 3.4, and 3.5

ak ≤ c = sup
{

al : l = k,k+1, · · ·
}
≤ bk (3.6)

for each k = 1,2 · · · . Thus c ∈ Ik for every k and this proves the lemma. The reason for
the last inequality in 3.6 is that from 3.5, bk is an upper bound to

{
al : l = k,k+1, · · ·

}
.

Therefore, it is at least as large as the least upper bound.
For the last claim, suppose there are two points x,y in the intersection. Then |x− y| =

r > 0 but eventually the diameter of Ik is less than r. Thus it cannot contain both x,y. If so,
assuming y > x, you would have ak ≤ x < y ≤ bk and so 0 < r = y− x < bk −ak < r. ■

This is really quite a remarkable result and may not seem so obvious. Consider the
intervals Ik ≡ (0,1/k) . Then there is no point which lies in all these intervals because no
negative number can be in all the intervals and 1/k is smaller than a given positive number
whenever k is large enough. Thus the only candidate for being in all the intervals is 0 and
0 has been left out of them all. The problem here is that the endpoints of the intervals
were not included, contrary to the hypotheses of the above lemma in which all the intervals
included the endpoints.

3.5 Exercises
1. Find limn→∞

n
3n+4 .

2. Find limn→∞
3n4+7n+1000

n4+1 .

3. Find limn→∞
2n+7(5n)
4n+2(5n) .
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4. Find limn→∞

√
(n2 +6n)−n. Hint: Multiply and divide by

√
(n2 +6n)+n.

5. Find limn→∞ ∑
n
k=1

1
10k .

6. For |r|< 1, find limn→∞ ∑
n
k=0 rk. Hint: First show ∑

n
k=0 rk = rn+1

r−1 − 1
r−1 . Then recall

Theorem 3.3.10.

7. Prove limn→∞

(
1+ 1

n

)n
exists and equals a number less than 3.

8. Prove nn+1 ≥ (n+1)n for all integers, n ≥ 3.

9. Find limn→∞ nsinn if it exists. If it does not exist, explain why it does not.

10. Recall the axiom of completeness states that a set which is bounded above has a least
upper bound and a set which is bounded below has a greatest lower bound. Show that
a monotone decreasing sequence which is bounded below converges to its greatest
lower bound. Hint: Let a denote the greatest lower bound and recall that because of
this, it follows that for all ε > 0 there exist points of {an} in [a,a+ ε] .

11. Let An = ∑
n
k=2

1
k(k−1) for n ≥ 2. Show limn→∞ An exists and find the limit. Hint:

Show there exists an upper bound to the An as follows.

n

∑
k=2

1
k (k−1)

=
n

∑
k=2

(
1

k−1
− 1

k

)
= 1− 1

n
≤ 1.

12. Let Hn = ∑
n
k=1

1
k2 for n ≥ 2. Show limn→∞ Hn exists. Hint: Use the above problem

to obtain the existence of an upper bound.

13. Let In = (−1/n,1/n) and let Jn = (0,2/n) . The intervals, In and Jn are open in-
tervals of length 2/n. Find ∩∞

n=1In and ∩∞
n=1Jn. Repeat the same problem for In =

(−1/n,1/n] and Jn = [0,2/n).

14. Let {an} be a sequence in (−∞,∞). Let Ak ≡ sup{an : n ≥ k} so that, defining λ ≡
limsupn→∞ an = limn→∞ An, the An being a decreasing sequence.

(a) Show that in all cases, there exists Bn < An such that Bn is increasing and
limn→∞ Bn = λ .

(b) Explain why, in all cases there are infinitely many k such that ak ∈ [Bn,An].
Hint: If for all k ≥m> n, ak ≤Bn, then ak <Bm also and so sup{ak : k ≥ m}≤
Bm < Am contrary to the definition of Am.

(c) Explain why there exists a subsequence
{

ank

}
such that limk→∞ ank = λ .

(d) Show that if γ ∈ [−∞,∞] and there is a subsequence
{

ank

}
with limk→∞ ank = γ,

then γ ≤ λ .

This shows that limsupn→∞ an is the largest in [−∞,∞] such that some subsequence
converges to it.

15. Formulate a similar problem which shows that for {an} a sequence of real numbers,
liminfn→∞ an is the smallest number which is obtainable as a limit of a subsequence
of the original sequence.

16. Let In = [n,∞). Find ∩∞
n=1In. These intervals are not bounded.
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3.6 Compactness
Do you want to understand Calculus? If you do, then the topics in this section are essential
to understand. I realize these things are difficult, but they provide reasons why something
exists instead of forcing us to pretend that calculus is like religion where you must accept
on faith the decrees of authority figures. The presentation leads to a modern version of
what was first shown early in the nineteenth century by Cauchy and Bolzano and continued
later by Weierstrass as part of the effort to remove the fuzziness from calculus.

The main ideas and terminology in this section which will be used extensively are as
follows.

1. A set S is closed if whenever limn→∞ an = a, each an ∈ S, then a ∈ S also.

2. A set S is open if every point of S is an interior point of some interval contained in S.

3. A set is bounded if it is contained in some interval.

4. A set S is sequentially compact means: If {an} is a sequence contained in S, there
exists a subsequence which converges to a point of S. The closed and bounded sets
are the same as the sequentially compact sets.

Notice how the last assertion gives the existence of a convergent subsequence. The
existence of this subsequence is what will be needed.

3.6.1 Sequential Compactness
First I will discuss the very important concept of sequential compactness. This is a property
that some sets have. A set of numbers is sequentially compact if every sequence contained
in the set has a subsequence which converges to a point in the set. It is unbelievably useful
whenever you try to understand existence theorems.

Definition 3.6.1 A set, K ⊆ R is sequentially compact if whenever {an} ⊆ K is a
sequence, there exists a subsequence,

{
ank

}
such that this subsequence converges to a point

of K.

The following theorem is part of the Heine Borel theorem.

Theorem 3.6.2 Every closed interval [a,b] is sequentially compact.

Proof: Let {xn} ⊆ [a,b] ≡ I0. Consider the two intervals
[
a, a+b

2

]
and

[ a+b
2 ,b

]
each

of which has length (b−a)/2. At least one of these intervals contains xn for infinitely
many values of n. Call this interval I1. Now do for I1 what was done for I0. Split it in half
and let I2 be the interval which contains xn for infinitely many values of n. Continue this
way obtaining a sequence of nested intervals I0 ⊇ I1 ⊇ I2 ⊇ I3 · · · where the length of In is
(b−a)/2n. Now pick n1 such that xn1 ∈ I1, n2 such that n2 > n1 and xn2 ∈ I2,n3 such that
n3 > n2 and xn3 ∈ I3, etc. (This can be done because in each case the intervals contain xn for
infinitely many values of n.) By the nested interval lemma there exists a point c contained
in all these intervals. Furthermore,

∣∣xnk − c
∣∣ < (b−a)2−k and so limk→∞ xnk = c ∈ [a,b] .

■
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3.6.2 Closed and Open Sets
I have been using the terminology [a,b] is a closed interval to mean it is an interval which
contains the two endpoints. However, there is a more general notion of what it means to be
closed. Similarly there is a general notion of what it means to be open. An example of an
open set is (a,b) , an interval which is missing its end points.

Definition 3.6.3 Let U be a set of points. A point p ∈ U is said to be an interior
point if whenever |x− p| is sufficiently small, it follows x ∈ U also. The set of points, x
which are closer to p than δ is denoted by

B(p,δ )≡ {x ∈ R : |x− p|< δ}= (p−δ , p+δ ) .

This symbol, B(p,δ ) is called an open ball of radius δ or an open interval. Thus a point,
p is an interior point of U if there exists δ > 0 such that p ∈ B(p,δ ) ⊆U. An open set is
one for which every point of the set is an interior point. Closed sets are those which are
complements of open sets. Thus H is closed means HC is open. Here HC is more correctly
denoted as R\H, and refers to the set of all points in R not in H. In general, this is what
is meant by the complement of a set. SC denotes all points not in S which are in some given
universal set containing S.

Proposition 3.6.4 Every closed interval [a,b] is a closed set.

Proof: The complement is (−∞,a)∪(b,∞) and this is clearly an open set. For example,
if x > b, then x ∈ B(x,(x−b))⊆ (b,∞). ■

Proposition 3.6.5 If U is a set whose elements are open sets, then ∪U is also an open
set.

Proof: Suppose x ∈ ∪U . Then x ∈ U ∈ U for some U . Then for some δ > 0, the
interval (x−δ ,x+δ )⊆U and so (x−δ ,x+δ )⊆ ∪U so ∪U is open. ■

Example 3.6.6 What is [0,1]C?

It consists of all points not in [0,1]. Thus it is (1,∞)∪ (−∞,0), all points which are
either to the right of 1 on the number line or to the left of 0 on the number line. Note that
[0,1]C is an open set. Thus [0,1] is a closed set.

What is an example of an open set? The simplest example is an open ball.

Proposition 3.6.7 B(p,δ ) is an open set and every open interval (a,b) is an open set.

Proof: It is necessary to show that every point is an interior point. Let x ∈ B(p,δ ) .
Then let r = δ −|x− p|. It follows r > 0 because it is given that |x− p|< δ . Now consider
z ∈ B(x,r) .

|z− p| ≤ |z− x|+ |x− p|< r+ |x− p|= δ −|x− p|+ |x− p|= δ

and so z ∈ B(p,δ ) . That is B(x,r) ⊆ B(p,δ ) . Since x was arbitrary, this has shown that
every point of the ball is an interior point. Thus the ball is an open set. Now (a,b) =
B
( a+b

2 , b−a
2

)
. ■
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Definition 3.6.8 Let A be any nonempty set and let x be a point. Then x is said to
be a limit point of A if for every r > 0,B(x,r) contains a point of A which is not equal to x.

The following proposition is fairly obvious from the above definition and will be used
whenever convenient. It is equivalent to the above definition and so it can take the place of
the above definition if desired. I think the version in the proposition is a little easier to use.

Proposition 3.6.9 A point x is a limit point of the nonempty set A if and only if every
B(x,r) contains infinitely many points of A.

Proof: ⇐ is obvious. Consider ⇒ . Let x be a limit point. Let r1 = 1. Then B(x,r1)
contains a1 ̸= x. If {a1, · · · ,an} have been chosen none equal to x and with no repeats in
the list, let 0 < rn < min

( 1
n ,min{|ai − x| , i = 1,2, · · ·n}

)
. Then let an+1 ∈ B(x,rn) . Thus

every B(x,r) contains B(x,rn) for all n large enough and hence it contains ak for k ≥ n
where the ak are distinct, none equal to x. ■

Example 3.6.10 Consider A = N, the positive integers. Then none of the points of A is a
limit point of A because if n ∈ A,B(n,1/10) contains no points of N which are not equal to
n.

Example 3.6.11 Consider A = (a,b) , an open interval. This is an open set. Indeed, it
equals the open ball B

( a+b
2 , b−a

2

)
centered at the midpoint of the interval a+b

2 , having
radius half the length of the interval.

Theorem 3.6.12 The following are equivalent.

1. A is closed

2. If {an}∞

n=1 is a sequence of points of A and limn→∞ an = a, then a ∈ A.

3. A contains all of its limit points.

If a is a limit point, then there is a sequence of distinct points of A none of which equal
a which converges to a.

Proof: 1.⇐⇒2. Say A is closed and an → a where each an ∈ A. If a /∈ A, then there ex-
ists ε > 0 such that B(a,ε)∩A = /0. But then an fails to converge to a so a ∈ A. Conversely,
if 2. holds and x /∈ A, B

(
x, 1

n

)
must fail to contain any points of A for some n ∈ N because

if not, you could pick an ∈ B
(
x, 1

n

)
∩A and obtain limn→∞ an = x which would give x ∈ A

by 2. Thus AC is open and A is closed.
2.⇒ 3. Say a is a limit point of A. Then for each n∈N, B

(
a, 1

n

)
contains infinitely many

points of A. Pick a1 ∈ A∩B(a,1) ,a1 ̸= a. If a1, · · · ,an−1 have been chosen, ak ∈ B
(
a, 1

k

)
no ak = a, let an ∈ B

(
a, 1

n

)
∩A and an is none of a1, · · · ,an−1,a. Then limn→∞ an = a and

so a ∈ A by 2. Also, this sequence consists of distinct points, none of which equal a. This
shows the last claim.

3.⇒ 1. We need to show that AC is open. Let x ∈ AC. By 3. x cannot be a limit point.
Hence there exists B(x,r) which contains at most finitely many points of A. Since x ∈ AC,
none of these are equal to x. Hence, making r still smaller, one can avoid all of these points.
Thus the modified r has the property that B(x,r) contains no points of A and so A is closed.
■
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Note that part of this theorem says that a set A having all its limit points is the same as
saying that whenever a sequence of points of A converges to a point a, then it follows a ∈ A.
In other words, closed is the same as being closed with respect to containing all limits of
sequences of points of A.

Corollary 3.6.13 Let A be a nonempty set and denote by A′ the set of limit points of A.
Then A∪A′ is a closed set and it is the smallest closed set containing A.

Proof: Is it the case that (A∪A′)C is open? This is what needs to be shown if the given
set is closed. Let p /∈ A∪A′. Then since p is neither in A nor a limit point of A, there
exists B(p,r) such that B(p,r)∩A = /0. Therefore, B(p,r)∩A′ = /0 also. This is because
if z ∈ B(p,r)∩A′, then B(z,r−|p− z|) ⊆ B(p,r) and this smaller ball contains points of
A since z is a limit point. This contradiction shows that B(p,r)∩A′ = /0 as claimed. Hence
(A∪A′)C is open because p was an arbitrary point of (A∪A′)C and A∪A′ is closed as
claimed.

Now suppose C ⊇ A and C is closed. Then if p is a limit point of A, it follows from
Theorem 3.6.12 that there exists a sequence of distinct points of A converging to p. Since
C is closed, and these points of A are all in C, it follows that p ∈C. Hence C ⊇ A∪A′. ■

Theorem 3.6.14 If K is sequentially compact and if H is a closed subset of K then
H is sequentially compact.

Proof: Let {xn} ⊆ H. Then since K is sequentially compact, there is a subsequence,{
xnk

}
which converges to a point, x ∈ K. But these xnk are in the cosed set H and so x ∈ H

also thanks to Theorem 3.6.12. ■
Thus every closed subset of a closed interval is sequentially compact. This is equivalent

to the following corollary in which a set is said to be bounded if it is contained in some
closed interval of finite length.

Corollary 3.6.15 Every closed and bounded set in R is sequentially compact.

Proof: Let H be a closed and bounded set in R. Then H ⊆ [a,b] for some interval of
the form [a,b] . Therefore, H is sequentially compact. ■

In fact, one can go the other way. First is a simple lemma.

Lemma 3.6.16 If limn→∞ xn = x, then the sequence {xn} is contained in some interval
so it is bounded.

Proof: By definition, there exists N such that if n ≥ N, then |x− xn| < 1. By triangle
inequality, |xn| ≤ (|x|−1, |x|+1) ,n≥N. Let M ≡max{|xk| : k ≤ N} . Then for all n, |xn| ∈
((|x|− (1+M) , |x|+(1+M))) . ■

Proposition 3.6.17 A nonempty set K ⊆ R is sequentially compact if and only if it is
closed and bounded.

Proof: From the above corollary, if the set is closed and bounded, then it is sequentially
compact. Suppose now that K is sequentially compact. Why is it closed and bounded? If
it is not bounded, then you could pick {kn}∞

n=1 such that |kn| ≥ n. Since K is sequentially
compact, it follows that there is a subsequence,

{
kn j

}
which satisfies lim j→∞ kn j = k ∈ K.

But then this sub sequence would be contained in some interval which is impossible from
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the construction. Thus K is bounded. Why must K be closed? Suppose K fails to contain
p where p = limn→∞ pn, pn ∈ K. A subsequence

{
pnk

}
must converge to a point of K.

But this subsequence must converge to p by Theorem 3.3.14 which is a contradiction. By
Theorem 3.6.12 K is closed. ■

3.7 Cauchy Sequences

Definition 3.7.1 A sequence {xk}∞

k=1 is called a Cauchy sequence if for any ε > 0
there exists nε such that whenever m,n ≥ nε , it follows that |xn − xm|< ε . In other words,
the terms of the sequence “bunch up”.

I will be vague about the context of the following fundamental proposition because it
applies in far greater generality than R. You can think of the sequence being in R because
this is the main example of interest here. Part 1. is especially useful in more general
contexts.

Proposition 3.7.2 If {xn} is a Cauchy sequence, then

1. If a subsequence
{

xnk

}∞

k=1 converges to x, it follows that limn→∞ xn = x.

2. If limn→∞ xn = x, then {xn} must be a Cauchy sequence.

3. Every Cauchy sequence is bounded.

Proof: Consider 1.There exists nε such that if n,m > nε , then |xn − xm| < ε/3. There
also exists kε such that if k > kε , then

∣∣x− xnk

∣∣ < ε/3. Now let k > max(kε ,nε) . Then
nk ≥ k > max(kε ,nε) and so |x− xk| ≤

∣∣x− xnk

∣∣+ ∣∣xnk − xk
∣∣< ε

3 +
ε

3 < ε so limn→∞ xn = x.
2. As to the next claim, there is N such that if m ≥ N, then |x− xm|< ε/2. If m,n > N,

then |xm − xn| ≤ |xm − x|+ |x− xn|< ε

2 +
ε

2 = ε and so any convergent sequence is a Cauchy
sequence.

3. Finally, if {xn} is a Cauchy sequence, then there exists N such that if m,n ≥ N,
then |xm − xn| ≤ 1. In particular, |xn − xN | ≤ 1 and so |xn| ≤ |xN |+ 1. Now for any k,
|xk| ≤ max(|xN |+1, |xi| , i = 1,2, · · · ,N) . ■

Theorem 3.7.3 Let {xn} be a Cauchy sequence in R. Then it converges. Conversely,
if a sequence {xn} converges, then the sequence is a Cauchy sequence.

Proof: Since {xn} is a Cauchy sequence, it is bounded by Proposition 3.7.2 so is con-
tained in some closed interval [−a,a] , a sequentially compact set from the above Theorem
3.6.2. Therefore, there is a subsequence

{
xnk

}
such that limk→∞ xnk = x ∈ [−a,a]. By

Proposition 3.7.2, the original Cauchy sequence converges to x. The second claim is from
Proposition 3.7.2. ■

3.8 Exercises
1. Show the intersection of any collection of closed sets is closed and the union of any

collection of open sets is open.

2. Show that if H is closed and U is open, then H \U is closed.
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3. Show the finite intersection of any collection of open sets is open. Next show that
U \H is open if U is open and H is closed.

4. Show the finite union of any collection of closed sets is closed.

5. Suppose {Hn}N
n=1 is a finite collection of sets and suppose x is a limit point of

∪N
n=1Hn. Show x must be a limit point of at least one Hn.

6. Give an example of a set of closed sets whose union is not closed.

7. Give an example of a set of open sets whose intersection is not open.

8. Give an example of a set of open sets whose intersection is a closed interval.

9. Give an example of a set of closed sets whose union is open.

10. Give an example of a set of closed sets whose union is an open interval.

11. Give an example of a set of open sets whose intersection is closed.

12. Give an example of a set of open sets whose intersection is the natural numbers.

13. Explain why R and /0 are sets which are both open and closed when considered as
subsets of R.

14. Let U be any open set in R. Show that every point of U is a limit point of U.

15. Suppose {Kn} is a sequence of sequentially compact nonempty sets which have the
property that Kn ⊇ Kn+1 for all n. Show there exists a point in the intersection of all
these sets, denoted by ∩∞

n=1Kn. This is like the nested interval lemma.

16. Now suppose {Kn} is a sequence of sequentially compact nonempty sets which have
the finite intersection property, every finite subset of {Kn} has nonempty intersection.
Show there exists a point in ∩∞

n=1Kn.

17. Show that any finite union of sequentially compact sets is sequentially compact.

18. Completeness of R was expressed earlier in terms of the existence of a least upper
bound and greatest lower bound for any bounded set. This was the version of com-
pleteness used by Bolzano. From this, it was shown that a closed and bounded set
is sequentially compact, Proposition 3.6.17. Show first that every bounded sequence
in R has a convergent subsequence. This is called the Weierstrass Bolzano theorem.
Prove from this that every Cauchy sequence in R must converge. Hint: For the first
part, the bounded sequence is contained in some closed interval [a,b] which is se-
quentially compact. For the second part, show that any Cauchy sequence is bounded
so it has a convergent subsequence. Then use Proposition 3.7.2.

19. ↑From the above problem, the Bolzano version of completeness implies every Cauchy
sequence converges. Now suppose you know that every Cauchy sequence converges.
First use this to prove the nested interval lemma in the case that the diameters of the
intervals converge to 0. Next show the existence of a least upper bound to a nonempty
set which is bounded above. Thus convergence of any Cauchy sequence implies the
version of completeness involving existence of least upper bounds. Thus conver-
gence of Cauchy sequences is equivalent to the standard definition. Hint: For the
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first part, pick a point pk ∈ Ik where the Ik are the nested closed intervals having
diameter converging to 0. This is a Cauchy sequence and each interval is a closed
set. Thus the limit of {pk} must be in Ik for each k. For the second part, if A is a
nonempty set bounded above, show there exists a sequence of intervals whose diam-
eter converges to 0 which have the left end in A and the right end an upper bound for
A. Then apply the nested interval lemma.

20. Suppose you have a sequentially compact set K and suppose that C is a set whose
elements are open sets such that every point of K is contained in some set of C .
Show the existence of a number δ > 0 which is a positive number such that for every
x ∈ K,B(x,δ ) is contained in some set of C . This is called a Lebesgue number.
Hint: If there is no Lebesgue number, then for each n ∈ N, 1/n is not a Lebesgue
number. Hence there exists xn ∈ H such that B(xn,1/n) is not contained in any single
set of C . Extract a convergent subsequence, still denoted as xn → x. Then B(x,δ ) is
contained in a single set of C . Isn’t it the case that B(xn,1/n) is contained in B(x,δ )
for all n large enough? Isn’t this a contradiction?

21. ↑A set C whose entries are open sets is called an open cover of K if every point of
K is contained in some set of C . This is written as K ⊆ ∪C . Recall the meaning of
∪C . It is the set of all elements of some set of C The real definition of compactness
is as follows: A nonempty set K is compact if and only if whenever C is an open
cover of K, there are finitely many sets in C whose union contains K. Show that any
sequentially compact set is compact. Hint: Get δ a Lebesgue number and show that
there are finitely many points xi ∈ K such that K ⊆∪n

i=1B(xi,δ ) since otherwise, you
could obtain a sequence which has no converging subsequence.

22. Next show that if K is a nonempty compact set, then it must also be sequentially
compact. Hint: If not, there would be a sequence of points of K with no subsequence
converging to a point of K. Explain why this sequence can’t have a limit point in K
and cannot repeat infinitely often. Then show H ∪∪∞

k=n {xk} is a closed set where
here H is the set of all limit points of the sequence. Then let Un ≡

(
H ∪∪∞

k=n {xk}
)C.

No finite collection of the Un can cover K.

23. Suppose K is a set whose entries are nonempty compact sets. Also suppose there is
a nonempty intersection of any finite collection of sets of K . This is called the finite
intersection property. Verify that there is a point which is contained in every set of
K . That is ∩K ̸= /0. This is an amazing result. It actually follows right away from
the definition of compactness. Recall the meaning of ∩K as the set of all elements
which are in every set of K .

24. Show that the set of limit points of a nonempty set is a closed set.

25. Let [a,b] be an interval and suppose a = x0 < x1 < · · · < xn = b. Then this ordered
list of intermediate points (x0,x1, · · · ,xn) is called a partition of the interval [a,b].
Letting f : [a,b]→ R be a bounded function, let Mi ≡ sup{ f (x) : x ∈ [xi−1,xi]} and
mi ≡ inf{ f (x) : x ∈ [xi−1,xi]} . Then U ( f ,P) defined as ∑

n
i=1 Mi (xi − xi−1) is called

an upper sum and L( f ,P) defined as ∑
n
i=1 mi (xi − xi−1) is called a lower sum. Show

that if P,Q are two partitions and if P ⊆ Q, then U ( f ,P) ≥ U ( f ,Q) and L( f ,P) ≤
L( f ,Q). Hint: To do this, show that the inequalities result from adding in one point
to P to get Q.
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26. ↑Now show that for P,Q any two partitions,

U ( f ,P)≥U ( f ,P∪Q)≥ L( f ,P∪Q)≥ L( f ,Q) .

Next use the above problem to verify that for

Ī ≡ inf{U ( f ,P) : P is a partition}

and I≡ sup{L( f ,P) : P is a partition} , it follows that I ≤ Ī. When these two are
equal, we say that the function is integrable and we write

∫ b
a f (x)dx for the common

value or more simply
∫ b

a f dx.

27. ↑Show that any decreasing function defined on [a,b] is integrable. Decreasing means
that if x > x̂, then f (x̂)≥ f (x). The function is increasing if f (x)≥ f (x̂). Next show
that any increasing function defined on [a,b] is integrable.

28. ↑Suppose [a,b] is an interval and f is a bounded real valued function defined on this
interval and that there is a partition a = z0 < z1 < · · · < zn = b such that f is either
increasing or decreasing on each sub interval [zi−1,zi] . Show that then

∫ b
a f dx exists.

Thus all reasonable bounded functions are integrable.

29. Suppose a bounded real valued function f is integrable on [a,c] and that a < b < c.
Show that the restrictions of this function to [a,b] and [b,c] are integrable on these
intervals and in fact, ∫ b

a
f dx+

∫ c

b
f dx =

∫ c

a
f dx

Also explain why the function is integrable on any interval which is a subset of [a,c].

30. Define
∫ a

b f dx ≡−
∫ b

a f dx. Suppose f is integrable on

[min(p,q,r) ,max(p,q,r)] .

Then show
∫ q

p f dx+
∫ r

q f dx =
∫ r

p f dx.

3.9 Videos
1 sequences and functions 2 limits of sequences

3 open, closed and compact Darboux integral

https://www.youtube.com/watch?v=Oc3MG7U301Y
https://www.youtube.com/watch?v=ajLGaPITBSA
https://www.youtube.com/watch?v=yDBavd9auv8
https://www.youtube.com/watch?v=GGZcFryoRHE
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Chapter 4

Continuous Functions and Limits
of Functions

Earlier the idea of a function was described and the principal ideas related to functions of
natural numbers (sequences) were presented. However, the concept of function is far too
general to be useful in calculus. There are various ways to restrict the concept in order to
study something interesting and the types of restrictions considered depend very much on
what you find interesting. In calculus, the most fundamental restriction made is to assume
the functions are continuous. Continuous functions are those in which a sufficiently small
change in x results in a small change in f (x) . They rule out things which could never
happen physically. For example, it is not possible for a car to jump from one point to
another instantly. Making this restriction precise turns out to be surprisingly difficult and if
you want to understand calculus, you must seek to master these difficult ideas. There are
no short cuts which will suffice.

Before giving the careful mathematical definitions, here are examples of graphs of func-
tions which are not continuous at the point x0.

x

y
•

x0 1 2−2 −1

1

2

You see, there is a hole in the picture of the graph of this function and instead of
filling in the hole with the appropriate value, f (x0) is too large. This is called a removable
discontinuity because the problem can be fixed by redefining the function at the point x0.
Here is another example.

103
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x

y

x0 1 2−2 −1

1

2

You see from this picture that there is no way to get rid of the jump in the graph of
this function by simply redefining the value of the function at x0. That is why it is called
a nonremovable discontinuity or jump discontinuity. Now that pictures have been given of
what it is desired to eliminate, it is time to give the precise definition.

The definition which follows, due to Cauchy,1 Bolzano, and Weierstrass2 is the precise
way to exclude the sort of behavior described above and all statements about continuous
functions must ultimately rest on this definition from now on.

Definition 4.0.1 A function f : D( f )⊆R→R is continuous at x ∈ D( f ) if for each
ε > 0 there exists δ > 0 such that whenever y ∈ D( f ) and |y− x|< δ it follows that

| f (x)− f (y)|< ε.

A function f is continuous if it is continuous at every point of D( f ) .

In sloppy English this definition says roughly the following: A function f is continuous
at x when it is possible to make f (y) as close as desired to f (x) provided y is taken close
enough to x. In fact this statement in words is pretty much the way Bolzano described it.
Cauchy described it similarly, if his description is interpreted appropriately. The completely
rigorous definition above is associated more with Weierstrass. This definition does indeed

1Augustin Louis Cauchy 1789-1857 was the son of a lawyer who was married to an aristocrat. He was born
in France just after the fall of the Bastille and his family fled the reign of terror and hid in the countryside till it
was over. Cauchy was educated at first by his father who taught him Greek and Latin. Eventually Cauchy learned
many languages.

After the reign of terror, the family returned to Paris and Cauchy studied at the university to be an engineer but
became a mathematician although he made fundamental contributions to physics and engineering. Cauchy was
one of the most prolific mathematicians who ever lived. He wrote several hundred papers which fill 24 volumes.
He also did research on many topics in mechanics and physics including elasticity, optics and astronomy. More
than anyone else, Cauchy invented the subject of complex analysis. He is also credited with giving the first
rigorous use of continuity in terms of ε,δ arguments in some of his work, although he clung to the notion of
infinitesimals. He might have his name associated with more important topics in mathematics and engineering
than any other person. He was a devout Catholic, a royalist, adhering to the Bourbons, and a man of integrity and
principle, according to his understanding.

He married in 1818 and lived for 12 years with his wife and two daughters in Paris till the revolution of 1830.
Cauchy was a “Legitimist” and refused to take the oath of allegiance to the new ruler, Louis Philippe because
Louis was not sufficiently Bourbon, and ended up leaving his family and going into exile for 8 years. It wasn’t
the last time that he refused to take such an oath.

Notwithstanding his great achievements he was not a popular teacher.
2Wilhelm Theodor Weierstrass 1815-1897 brought calculus to essentially the state it is in now. When he was

a secondary school teacher, he wrote a paper which was so profound that he was granted a doctor’s degree. He
made fundamental contributions to partial differential equations, complex analysis, calculus of variations, number
theory, and many other topics. He also discovered some pathological examples such as nowhere differentiable
continuous functions. Cauchy and Bolzano both had used the main ideas of the ε − δ definition, but it became
well established by Weierstrass who is usually given credit for this definition. Rigorous calculus as we have it
now developed over a long period of time.
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rule out the sorts of graphs drawn above. Consider the second non-removable discontinuity.
The removable discontinuity case is similar.

2+ ε

2− ε

x0

x0 +δ

x0 −δ

1 2−2 −1

1

2

f (x)

x

For the ε shown, you can see from the picture that no matter how small you take δ , there
will be points x, between x0 −δ and x0 where f (x)< 2− ε. In particular, for these values
of x, | f (x)− f (x0)|> ε . Therefore, the definition of continuity given above excludes the
situation in which there is a jump in the function. Similar reasoning shows it excludes
the removable discontinuity case as well. There are many ways a function can fail to
be continuous and it is impossible to list them all by drawing pictures. This is why it is so
important to use the definition or something equivalent to it. Here is a useful re-formulation
in terms of sequences. This re-formulation seems to be easier for most of us to use. I think
it is because it makes fewer explicit references to quantifiers and is symbolically easier to
write although the quantifiers are already hidden in the statements about sequences.

Theorem 4.0.2 A function f : D( f )⊆R→R is continuous at x ∈ D( f ) if and only
if whenever xn → x with xn ∈ D( f ) , it follows that f (xn)→ f (x).

Proof: ⇒ Suppose f is continuous at x ∈ D( f ) and xn → x. If ε > 0 is given, then by
assumption of continuity, there exists δ > 0 such that if |y− x| < δ , then | f (y)− f (x)| <
ε. However, since xn → x, it follows that for all n large enough, |xn − x| < δ and so
| f (xn)− f (x)|< ε . Thus f (xn)→ f (x).

⇐ Suppose the sequence condition holds at x. Why is f continuous at x? If this were
not the case, then there would exist ε > 0 and xn with |xn − x|< 1/n but | f (xn)− f (x)| ≥
ε . However, xn → x and so f (xn) → f (x) so for large enough n, | f (x)− f (xn)| < ε , a
contradiction. ■

Because of this theorem, I will use either of the equivalent definitions without comment
in what follows.

The other thing to notice is that the concept of continuity as described in the definition
is a point property. That is to say it is a property which a function may or may not have at
a single point. Here is an example.

Example 4.0.3 Let f (x) =

{
x if x is rational

0 if x is irrational
. This function is continuous at x = 0

and nowhere else.
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Let xn → 0. Then | f (xn)| ≤ |xn| and so f (xn) → 0. Thus it is continuous at 0. If
x ̸= 0, then if x is irrational, you could pick a sequence of rational numbers xn → x. Then
f (xn)→ x ̸= 0 but f (0) = 0. If x is rational, then let xn → x where xn is irrational. Then
f (xn) = 0 → 0 but f (x) = x ̸= 0 so this is not continuous at any other point than 0.

Here is another example.

Example 4.0.4 Show the function f (x) = 3x+10 is continuous at x = −3.

Let xn → −3. Then by the limit theorems for sequences, 3xn + 10 → 3(−3)+ 10 =
f (−3) so this is continuous.

Here is another example.

Example 4.0.5 Show the function f (x) =
√

x is continuous at x = 5.

Note f (5) =
√

5 and so | f (x)− f (5)| =
∣∣∣√x−

√
5
∣∣∣ . For x positive,

∣∣∣√x−
√

5
∣∣∣ ≤

|x−5|√
x+

√
5
≤ |x−5|√

5
. Now let xn → 5. Eventually xn is positive and so

∣∣∣√xn −
√

5
∣∣∣ ≤ |xn−5|√

5
and the expression on the right converges to 0 as n → ∞.

The following is a useful theorem which can remove the need to constantly use the ε,δ
definition given above.

Theorem 4.0.6 The following assertions are valid

1. The function a f +bg is continuous at x when f , g are continuous at x ∈ D( f )∩D(g)
and a,b ∈ R.

2. If and f and g are each continuous at x in the domains of both f and g, then f g is
continuous at x. If, in addition to this, g(x) ̸= 0, then f/g is continuous at x.

3. If f is continuous at x, f (x) ∈ D(g) ⊆ R, and g is continuous at f (x) ,then g ◦ f is
continuous at x.

4. The function f : R→ R, given by f (x) = |x| is continuous.

Proof: 1. Let xn → x,xn ∈ D( f )∩D(g) so the combination of functions makes sense.
Then f (xn)→ f (x) ,g(xn)→ g(x) and so from the limit theorems for sequences, Theorem
3.3.7, a f (xn)+bg(xn)≡ (a f +bg)(x)→ a f (x)+bg(x)≡ (a f +bg)(x).

2. Letting xn → x, continuity of f ,g at x implies f (xn)→ f (x) ,g(xn)→ g(x) and so
from the limit theorems for sequences, f g(xn)≡ f (xn)g(xn)→ f (x)g(x)≡ f g(x) .

3. If xn → x, then f (xn)→ f (x) and so g◦ f (xn)≡ g( f (xn))→ g( f (x))≡ g◦ f (x) .
4. From the triangle inequality, ||x|− |xn|| ≤ |xn − x| so if xn → x, then |xn| → |x| and

so |·| is continuous. ■

Theorem 4.0.7 Suppose f : D( f ) → R is continuous at x ∈ D( f ) and suppose
f (xn) ≤ l (≥ l) where {xn} is a sequence of points of D( f ) which converges to x. Then
f (x)≤ l (≥ l) .

Proof: Since f (xn) ≤ l and f is continuous at x, it follows from Theorem 3.3.15 and
Theorem 4.0.2, f (x) = limn→∞ f (xn)≤ l. The other case is entirely similar. ■

The following theorem is a summary of what was shown above. I am being purposely
vague about the domain of the function and its range because this theorem is a general
result which holds whenever it makes sense.
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Theorem 4.0.8 Let f be a function defined on D( f ). The following are equivalent.

1. f is continuous on D( f )

2. For every ε > 0 and x∈D( f ) there exists δ > 0 such that if |y− x|< δ and y∈D( f ) ,
then | f (x)− f (y)|< ε .

3. For every x ∈ D( f ) , if xn → x where each xn ∈ D( f ) , then f (x) = limn→∞ f (xn).

Proof: The first two conditions are equivalent by definition. The last two are equivalent
by Theorem 4.0.2. ■

The next theorem gives an equivalence between f being continuous on D( f ) and some-
thing involving open intervals. It is a special case of something more general but I am only
giving what will be needed later.

4.1 An Equivalent Formulation of Continuity
This is about a formulation of continuity in terms of inverse images of open intervals.

Theorem 4.1.1 Let f : (a,b)→ R. Then f is continuous at every point of (a,b) if
and only if f−1 (c,d) is an open subset of (a,b) for any c < d.

Proof: ⇒ Let x ∈ f−1 (c,d)∩ (a,b). If there is no open interval containing x which
is contained in f−1 (c,d)∩ (a,b) , then letting n be large enough that In ≡

(
x− 1

n ,x+
1
n

)
⊆

(a,b) , it must be the case that In has a point xn which is not in f−1 (c,d) meaning that
either f (xn) ≥ d or f (xn) ≤ c. Thus there is a subsequence

{
xnk

}
for which f

(
xnk

)
≤

c or for which f
(
xnk

)
≥ d. Suppose the latter case. The other is similar. Then from

Theorem 4.0.7, f (x) = limk→∞ f
(
xnk

)
≥ d contrary to c < f (x)< d which holds because

x ∈ f−1 (c,d). Thus f−1 (c,d)∩ (a,b) must be open after all. Of course, if there is no
x ∈ f−1 (c,d)∩ (a,b) , then f−1 (c,d)∩ (a,b) = /0 which is open.

⇐ Let x ∈ (a,b) and suppose f−1 (c,d)∩ (a,b) is always open. Why is f continuous
at x? If not, there exists xn → x but f (xn) ↛ f (x) , the symbol ↛ meaning it doesn’t
converge. It follows there exists ε > 0 and a subsequence

{
xnk

}
such that f

(
xnk

)
/∈

( f (x)− ε, f (x)+ ε) ≡ Iε . But x ∈ f−1 (Iε)∩ (a,b) and this is open so eventually xnk ∈
f−1 (Iε)∩ (a,b) and so f

(
xnk

)
∈ Iε after all. Thus xn → x ⇒ f (xn) → f (x) and so f is

continuous at x after all. ■

4.2 Exercises
1. Let f (x) = 2x+ 7. Show f is continuous at every point x. Hint: You need to let

ε > 0 be given. In this case, you should try δ ≤ ε/2. Note that if one δ works in the
definition, then so does any smaller δ .

2. Suppose D( f ) = [0,1]∪{9} and f (x) = x on [0,1] while f (9) = 5. Is f continuous
at the point, 9? Use whichever definition of continuity you like.

3. Let f (x) = x2 +1. Show f is continuous at x = 3. Hint:

| f (x)− f (3)|=
∣∣x2 +1− (9+1)

∣∣= |x+3| |x−3| .
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Thus if |x−3| < 1, it follows from the triangle inequality, |x| < 1+ 3 = 4 and so
| f (x)− f (3)| < 4 |x−3| . Now complete the argument by letting δ ≤ min(1,ε/4) .
The symbol, min means to take the minimum of the two numbers in the parenthesis.

4. Let f (x) = 2x2 +1. Show f is continuous at x = 1.

5. Let f (x) = x2 + 2x. Show f is continuous at x = 2. Then show it is continuous at
every point.

6. Let f (x) = |2x+3|. Show f is continuous at every point. Hint: Review the two
versions of the triangle inequality for absolute values.

7. Let f (x) = 1
x2+1 . Show f is continuous at every value of x.

8. If x ∈R, show there exists a sequence of rational numbers, {xn} such that xn → x and
a sequence of irrational numbers, {x′n} such that x′n → x. Now consider the following
function.

f (x) =

{
1 if x is rational

0 if x is irrational
.

Show using the sequential version of continuity in Theorem 4.0.2 that f is discontin-
uous at every point.

9. If x ∈R, show there exists a sequence of rational numbers, {xn} such that xn → x and
a sequence of irrational numbers, {x′n} such that x′n → x. Now consider the following
function.

f (x) =

{
x if x is rational

0 if x is irrational
.

Show using the sequential version of continuity in Theorem 4.0.2 that f is continuous
at 0 and nowhere else.

10. Suppose y is irrational and yn → y where yn is rational. Say yn = pn/qn. Show that
limn→∞ qn = ∞. Now consider the function

f (x)≡

{
0 if x is irrational
1
q if x = p

q where the fraction is in lowest terms

Show that f is continuous at each irrational number and discontinuous at every
nonzero rational number. Hint: You ought to show that if pn

qn
is a sequence of

rational numbers, pn,qn both integers converging to r an irrational number, then
limn→∞ qn = ∞. If it is not so, then {qn} would lie in some interval [−m,m] and so
there must be some integer k in this interval such that qn = k for infinitely many n.
Now consider a subsequence n j such that qn j = k for all j. Argue that for j large
enough, pn j must be constant and conclude that r must be rational after all.

11. Use the sequential definition of continuity described above to give an easy proof of
Theorem 4.0.6.
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12. Let f (x) =
√

x show f is continuous at every value of x in its domain. For now,
assume

√
x exists for all positive x. Hint: You might want to make use of the identity,

√
x−√

y =
x− y√
x+

√
y

at some point in your argument.

13. Using Theorem 4.0.6, show all polynomials are continuous and that a rational func-
tion is continuous at every point of its domain. Hint: First show the function given as
f (x) = x is continuous and then use the Theorem 4.0.6. What about the case where
x can be in R? Does the same conclusion hold?

14. Let f (x) =

{
1 if x ∈Q
0 if x /∈Q

and consider g(x) = f (x)
(
x− x3

)
. Determine where g is

continuous and explain your answer.

15. Suppose f is any function whose domain is the integers. Thus D( f ) = Z, the set of
whole numbers, · · · ,−3,−2,−1,0,1,2,3, · · · . Then f is continuous. Why? Hint: In
the definition of continuity, what if you let δ = 1

4 ? Would this δ work for a given
ε > 0? This shows that the idea that a continuous function is one for which you can
draw the graph without taking the pencil off the paper is a lot of nonsense.

16. Give an example of a function f which is not continuous at some point but | f | is
continuous at that point.

17. Find two functions which fail to be continuous but whose product is continuous.

18. Find two functions which fail to be continuous but whose sum is continuous.

19. Find two functions which fail to be continuous but whose quotient is continuous.

20. Suppose f is a function defined on R and f is continuous at 0. Suppose also that
f (x+ y) = f (x)+ f (y) . Show that if this is so, then f must be continuous at every
value of x ∈ R. Next show that for every rational number, r, f (r) = r f (1) . Finally
explain why f (r) = r f (1) for every r a real number. Hint: To do this last part, you
need to use the density of the rational numbers and continuity of f .

4.3 The Extreme Values Theorem
The extreme values theorem says continuous functions achieve their maximum and min-
imum provided they are defined on a sequentially compact set. It was done by Bolzano
in the 1830’s and later by Weierstrass. This is a very significant theorem. It depends on
continuity and on the function being defined on a compact set.

Example 4.3.1 Let f (x) = 1/x for x ∈ (0,1) .

Clearly, f is not bounded so it has no maximum although f is indeed continuous on
this interval. The problem is that (0,1) is not compact. The same function defined on
[.000001,1) would achieve its maximum but not its minimum. The following is the extreme
value theorem or max,min theorem. I am being vague about where or what K is because it
tends not to matter as long as it is compact.
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Theorem 4.3.2 Let K be sequentially compact and let f : K → R be continuous.
Then f achieves its maximum and its minimum on K. This means there exist, x1,x2 ∈ K
such that for all x ∈ K, f (x1)≤ f (x)≤ f (x2) .

Proof: Let M ≡ sup{ f (x) : x ∈ K} . From the definition of the supremum, there ex-
ists f (xn) such that limn→∞ f (xn) = M. This is because if l < M, there must be some
x such that f (x) ∈ (l,M] since otherwise M is not as defined. By sequential compact-
ness, there is a subsequence

{
xnk

}
such that limk→∞ xnk = x ∈ K. Then by continuity,

f (x) = limk→∞ f
(
xnk

)
= M. That f achieves its minimum is proved exactly the same way.

In particular, this shows that every function continuous on a sequentially compact set is
bounded. ■

In fact a continuous function takes compact sets to compact sets. This is another of
those big theorems which tends to hold whenever it makes sense. Therefore, I will be
vague about the domain and range of the function f .

Theorem 4.3.3 Let D( f )⊇ K where K is a sequentially compact set. Then f (K) is
also sequentially compact.

Proof: Let { f (kn)} be a sequence in f (K) so {kn} is a sequence in K. Since K is
sequentially compact, there is a subsequence

{
kn j

}
such that lim j→∞ kn j = k ∈ K. By con-

tinuity, lim j→∞ f
(
kn j

)
= f (k) ∈ f (K) . Thus f (K) is sequentially compact as claimed.

■

4.4 The Intermediate Value Theorem
The next big theorem is called the intermediate value theorem and the following picture
illustrates its conclusion.

x

y

c

za b

(b, f (b))

(a, f (a))

It gives the existence of a certain point. You see in the picture there is a horizontal
line, y = c and a continuous function which starts off less than c at the point a and ends up
greater than c at point b. The intermediate value theorem says there is some point between
a and b shown in the picture as z such that the value of the function at this point equals c.

The theorem is due to Bolzano in 1817. You might think that this is an obvious theo-
rem but this is not the case. It is not even true if you only had the rational numbers and this
includes all numbers we work with. Nor is it true if you consider solutions to polynomial
equations as was the case with issues related to the fundamental theorem of algebra. Con-
sider rational numbers. Then f (x) = x2 −2 is continuous. f (0)< 0 and f (2)> 0 but the
only point between 0 and 2 where this function is 0 is the point

√
2 which has been known

for thousands of years to be irrational. You have to use something which rules out holes in
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the real line. Bolzano’s major contribution was to identify the concept of completeness as
the reason for this theorem rather than some sort of vague notion based on pictures like the
one just drawn. He did this long before Dedekind gave a way to construct the real numbers.

Proposition 4.4.1 Let f : [a,b]→ R be continuous and suppose f (a) f (b) ≤ 0. Then
there exists x ∈ [a,b] such that f (x) = 0.

Proof: When we have an interval [an,bn] in this argument, cn will be the midpoint
(an +bn)/2. Let a0 = a,b0 = b. If [an,bn] has been chosen such that f (an) f (bn) ≤ 0,
consider [an,cn] and [cn,bn]. Either f (an) f (cn)≤ 0 or f (cn) f (bn)≤ 0 since if both prod-
ucts are positive, then

f (an) f (cn) f (cn) f (bn) = f (cn)
2 f (an) f (bn)> 0

so f (an) f (bn) > 0. Pick one of the intervals for which the product is non-positive. Let
the left endpoint be an+1 and the right endpoint be bn+1 so f (an+1) f (bn+1) ≤ 0. Con-
tinue picking the correct subinterval. These nested intervals have exactly one point in their
intersection because they have diameters converging to 0. Call it x. Then

( f (x))2 = lim
n→∞

f (an) f (bn)≤ 0

This is by Theorem 4.0.7. Thus f (x) = 0. ■
It is easy to generalize this Proposition.

Theorem 4.4.2 Suppose f : [a,b]→R is continuous and suppose either f (a)< c <
f (b) or f (a)> c > f (b) . Then there exists x ∈ (a,b) such that f (x) = 0.

Proof: Apply the above proposition to g(x)≡ f (x)−c obtaining a point x ∈ (a,b) with
g(x) = f (x)− c = 0. ■

Here is another lemma which may seem obvious but when you ask why, you begin to
see that it is not as obvious as you thought. In fact, this is a special case of a general theory
which says that one to one continuous functions from U , an open set in Rp to Rp take open
sets to open sets. This is a very difficult result. The notation 1−1 means one to one. That
is, if x ̸= y, then f (x) ̸= f (y).

Lemma 4.4.3 Let φ : [a,b] → R be a continuous function and suppose φ is 1− 1 on
(a,b). Then φ is either strictly increasing or strictly decreasing on [a,b] .

Proof: First it is shown that φ is either strictly increasing or strictly decreasing on
(a,b) .

If φ is not strictly decreasing on (a,b), then there exists x1 < y1, x1,y1 ∈ (a,b) such that
(φ (y1)−φ (x1))(y1 − x1)> 0. If for some other pair of points, x2 < y2 with x2,y2 ∈ (a,b) ,
the above inequality does not hold, then since φ is 1− 1, (φ (y2)−φ (x2))(y2 − x2) < 0.
Let xt ≡ tx1 +(1− t)x2 and yt ≡ ty1 +(1− t)y2. Then xt < yt for all t ∈ [0,1] because

tx1 ≤ ty1 and (1− t)x2 ≤ (1− t)y2

with strict inequality holding for at least one of these inequalities since not both t and
(1− t) can equal zero. Now define

h(t)≡ (φ (yt)−φ (xt))(yt − xt) .
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Since h is continuous and h(0) < 0, while h(1) > 0, there exists t ∈ (0,1) such that
h(t) = 0. Therefore, both xt and yt are points of (a,b) and φ (yt)−φ (xt) = 0 contradicting
the assumption that φ is one to one. It follows φ is either strictly increasing or strictly
decreasing on (a,b) .

This property of being either strictly increasing or strictly decreasing on (a,b) carries
over to [a,b] by the continuity of φ . Suppose φ is strictly increasing on (a,b) . (A similar
argument holds for φ strictly decreasing on (a,b) .) If x > a, then let zn be a decreasing
sequence of points of (a,x) converging to a. Then by continuity of φ at a,

φ (a) = lim
n→∞

φ (zn)≤ φ (z1)< φ (x) .

Therefore, φ (a)< φ (x) whenever x ∈ (a,b) . Similarly φ (b)> φ (x) for all x ∈ (a,b). ■

4.5 Continuity of the Inverse
The inverse of a continuous function defined on an open interval is also continuous. This
is an amazing result.

Corollary 4.5.1 Let f : (a,b) → R be one to one and continuous. Then f (a,b) is an
open interval, (c,d) and f−1 : (c,d)→ (a,b) is continuous. If f : [a,b]→ R is one to one
and continuous, then f−1 is also continuous.

Proof: Consider the first part. By Lemma 4.4.3, f is strictly increasing or strictly
decreasing. Hence

(
f−1
)−1

((x,y))≡ f ((x,y)) is an open interval. By Theorem 4.1.1, f−1

is continuous because inverse images of open intervals are open intervals.
As to the second claim, here is a direct proof based on notions of compactness. Say

f (xn)→ f (x) where each xn,x are in [a,b]. Does xn → x? If not, there exists a subsequence{
xnk

}
and ε > 0 such that

∣∣xnk − x
∣∣ ≥ ε > 0. However, by compactness, there is a further

subsequence,
{

xnkl

}
such that liml→∞ xnkl

= x̂ and so, by continuity,

f (x̂) = lim
l→∞

f
(

xnkl

)
= lim

n→∞
f (xn) = f (x) .

But |x̂− x| = liml→∞

∣∣∣xnkl
− x
∣∣∣ ≥ ε and so this violates the assumption that f is one to

one. Hence, xn → x and so f−1 ( f (xn)) → f−1 ( f (x)) and so f−1 is continuous at every
f (x) ∈ f ([a,b]). ■

4.6 Exercises
1. Give an example of a continuous function defined on (0,1) which does not achieve

its maximum on (0,1) .

2. Give an example of a continuous function defined on (0,1) which is bounded but
which does not achieve either its maximum or its minimum.

3. Give an example of a discontinuous function defined on [0,1] which is bounded but
does not achieve either its maximum or its minimum.
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4. Give an example of a continuous function defined on [0,1)∪ (1,2] which is positive
at 2, negative at 0 but is not equal to zero for any value of x.

5. Let f (x) = x5 + ax4 + bx3 + cx2 + dx+ e where a,b,c,d, and e are numbers. Show
there exists real x such that f (x) = 0.

6. Give an example of a function which is one to one but neither strictly increasing nor
strictly decreasing.

7. Show that the function f (x) = xn−a, where n is a positive integer and a is a number,
is continuous.

8. Use the intermediate value theorem on the function f (x) = x7 −8 to show 7
√

8 must
exist. State and prove a general theorem about nth roots of positive numbers.

9. Prove
√

2 is irrational. Hint: Suppose
√

2 = p/q where p,q are positive integers and
the fraction is in lowest terms. Then 2q2 = p2 and so p2 is even. Explain why p = 2r
so p must be even. Next argue q must be even.

10. Let f (x) = x−
√

2 for x ∈ Q, the rational numbers. Show that even though f (0) <
0 and f (2) > 0, there is no point in Q where f (x) = 0. Does this contradict the
intermediate value theorem? Explain.

11. A circular hula hoop lies partly in the shade and partly in the hot sun. Show there
exist two points on the hula hoop which are at opposite sides of the hoop which
have the same temperature. Hint: Imagine this is a circle and points are located by
specifying their angle, θ from a fixed diameter. Then letting T (θ) be the temperature
in the hoop, T (θ +2π) = T (θ) . You need to have T (θ) = T (θ +π) for some θ .
Assume T is a continuous function of θ .

12. A car starts off on a long trip with a full tank of gas which is driven till it runs out of
gas. Show that at some time the number of miles the car has gone exactly equals the
number of gallons of gas in the tank.

13. Suppose f is a continuous function defined on [0,1] which maps [0,1] into [0,1] .
Show there exists x ∈ [0,1] such that x = f (x) . Hint: Consider h(x)≡ x− f (x) and
the intermediate value theorem. This is a one dimensional version of the Brouwer
fixed point theorem.

14. Let f be a continuous function on [0,1] such that f (0) = f (1) . Let n be a positive
integer larger than 2. Show there must exist c ∈

[
0,1− 1

n

]
such that f

(
c+ 1

n

)
=

f (c). Hint: Consider h(x) ≡ f
(
x+ 1

n

)
− f (x). Consider the subintervals

[ k−1
n , k

n

]
for k = 1, · · · ,n−1. You want to show that h equals zero on one of these intervals. If
h changes sign between two successive intervals, then you are done. Assume then,
that this does not happen. Say h remains positive. Argue that f (0)< f

( n−1
n

)
. Thus

f
( n−1

n

)
> f (1) = f

( n−1
n + 1

n

)
. It follows that h

(
1− 1

n

)
< 0 but h

(
1− 2

n

)
> 0.

4.7 Uniform Continuity
There is a theorem about the integral of a continuous function which requires the notion
of uniform continuity. This is discussed in this section. Consider the function f (x) = 1

x
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for x ∈ (0,1) . This is a continuous function because, by Theorem 4.0.6, it is continuous
at every point of (0,1) . However, for a given ε > 0, the δ needed in the ε,δ definition
of continuity becomes very small as x gets close to 0. The notion of uniform continuity
involves being able to choose a single δ which works on the whole domain of f . It is
usually assumed that this concept belongs to the latter half of the nineteenth century and is
due to Weierstrass because he used it most systematically, but it may have been understood
by Cauchy and Bolzano.

Definition 4.7.1 Let f be a function. Then f is uniformly continuous if for every
ε > 0, there exists a δ depending only on ε such that for x,y ∈ D( f ) , if |x− y| < δ then
| f (x)− f (y)|< ε.

It is an amazing fact that under certain conditions continuity implies uniform continuity.
Recall that it was shown above that closed intervals are sequentially compact.

Theorem 4.7.2 Let f : K →R be continuous where K is a sequentially compact set
in R. Then f is uniformly continuous on K.

Proof: If f is not uniformly continuous, there exists ε > 0 such that for every δ > 0
there exists a pair of points, xδ and yδ such that even though |xδ − yδ | < δ , it is the case
that | f (xδ )− f (yδ )| ≥ ε. Taking a succession of values for δ equal to 1,1/2,1/3, · · · , and
letting the exceptional pair of points for δ = 1/n be denoted by xn and yn,

|xn − yn|<
1
n
, | f (xn)− f (yn)| ≥ ε.

Now since K is sequentially compact, there exists a subsequence,
{

xnk

}
such that xnk →

z ∈ K. Now nk ≥ k and so
∣∣xnk − ynk

∣∣ < 1
k . Consequently, ynk → z also. ( xnk is like a

person walking toward a certain point and ynk is like a dog on a leash which is constantly
getting shorter. Obviously ynk must move toward the point also. You should give a precise
proof of what is needed here.) By continuity of f and Theorem 4.0.7, 0 = | f (z)− f (z)|=
limk→∞

∣∣ f (xnk

)
− f

(
ynk

)∣∣≥ ε, an obvious contradiction. Therefore, the conclusion of this
theorem must be true since it cannot be false. ■

4.8 Examples of Continuous Functions
Polynomials are continuous. Suppose p(x) = anxn + · · ·+ a1x is a polynomial. Then if
limk→∞ xk = x, it follows from properties of limits of sequences that limk→∞ p(xk) = p(x).
See Theorem 3.3.7. Rational functions are continuous wherever the denominator is not
zero by Theorem 4.0.6.

The sine function is continuous. To see this, suppose limk→∞ xk = x

|sin(xk)− sin(x)|= |sin(x+ xk − x)− sin(x)|

= |sin(x)cos(xk − x)+ sin(xk − x)cos(x)− sin(x)|
≤ |sin(x)| |cos(xk − x)−1|+ |cosx| |sin(xk − x)|
≤ |cos(xk − x)−1|+ |sin(xk − x)|
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Now, from the geometric definition of the sine and cosine, both terms on the right converge
to 0 as k → ∞. Thus the sine is continuous. Similar reasoning shows that the cosine is
continuous.

Of course one can also consider the arcsin function defined as arcsin(y) is the angle
whose sine is y which is in

[
−π

2 ,
π

2

]
. This is a well defined function because the sine

function is one to one on
[
−π

2 ,
π

2

]
. By Corollary 4.5.1 this inverse function is continuous.

The arccos function is defined on [−1,1] and arccos(y) is defined as the angle in [0,π]
whose cosine is y. By the same corollary, this function is also continuous.

It was observed that a small change in x led to a small change in ln(x). Thus ln is
continuous. It follows from Corollary 4.5.1 that its inverse exp is continuous. Then from
the theorem about various combinations of continuous functions, Theorem 4.0.6, all of the
functions logb for b ̸= 1, and all functions x → bx for b > 0 are continuous.

As noted above, all polynomials are continuous as are all rational functions at all points
of their domain. Indeed, if p(x)/q(x) is a rational function and q(x0) ̸= 0, then if xn → x0,
it follows that q(xn)→ q(x0) ̸= 0 and p(xn)→ p(x0). Then from the theorem on limits of
sequences, Theorem 3.3.7, it follows p(xn)/q(xn)→ p(x0)/q(x0).

It is now clear that we have a very large collection of functions which are known to be
continuous. The next chapter will consider something even better.

4.9 Sequences of Functions

Suppose for each n ∈ N, fn is a continuous function defined on some interval [a,b] . Also
suppose that for each fixed x ∈ [a,b] , limn→∞ fn (x) = f (x). This is called pointwise con-
vergence. Does it follow that f is continuous on [a,b]? The answer is NO. Consider the
following

fn (x)≡ xn for x ∈ [0,1]

Then limn→∞ fn (x) exists for each x ∈ [0,1] and equals

f (x)≡

{
1 if x = 1

0 if x ̸= 1

You should verify this is the case. This limit function is not continuous. Indeed, it has a
jump at x = 1. Here are graphs of the first few of these functions.

0 0.5 1

x

0

0.5

1

y

If you want the convergence to carry continuity with it you need something more than
point-wise convergence. You need uniform convergence. The concept may have been
understood by Cauchy but was not at all clear. Weierstrass is the first to formalize this
concept and prove theorems like what follow.
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Definition 4.9.1 Let { fn} be a sequence of functions defined on D. Then fn is said
to converge uniformly to f on D if

lim
n→∞

∥ fn − f∥
∞
≡ lim

n→∞

(
sup
x∈D

| fn (x)− f (x)|
)
= 0

∥·∥
∞

is called a norm. It is defined on the functions f which are uniformly bounded,
meaning ∥ f∥

∞
≡ sup{| f (x)| : x ∈ D}< ∞.

The following picture illustrates the above definition.

The dashed lines define a small tube centered about the graph of f and the graph of the
function fn fits in this tube for all n sufficiently large. In the picture, the function f is being
approximated by fn which is very wriggly.

It is convenient to observe the following properties of ∥·∥
∞
, written ∥·∥ for short.

Lemma 4.9.2 The norm ∥·∥
∞

satisfies the following properties.

∥ f∥ ≥ 0 and equals 0 if and only if f = 0 (4.1)

For α a number,
∥α f∥= |α|∥ f∥ (4.2)

∥ f +g∥ ≤ ∥ f∥+∥g∥ (4.3)

Proof: The first claim 4.1 is obvious. As to 4.2, it follows fairly easily.

∥α f∥ ≡ sup
x∈D

|α f (x)|= sup
x∈D

|α| | f (x)|= |α|sup
x∈D

| f (x)|= |α|∥ f∥

The last follows from | f (x)+g(x)| ≤ | f (x)|+ |g(x)| ≤ ∥ f∥+∥g∥ . Therefore,

sup
x∈D

| f (x)+g(x)| ≡ ∥ f +g∥ ≤ ∥ f∥+∥g∥ ■

Now with this preparation, here is the main result. Again, I am being vague about the
domain of the functions. This is because it does not matter much and it is a bad idea to get
hung up on trivialities which don’t matter.

Theorem 4.9.3 Let fn be continuous and each fn bounded on D and suppose that
limn→∞ ∥ fn − f∥= 0. Then f is also continuous. If each fn is uniformly continuous, then f
is uniformly continuous.
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Proof: Let ε > 0 be given and let x ∈ D. Let n be such that ∥ fn − f∥< ε

3 . By continuity
of fn there exists δ > 0 such that if |y− x|< δ , then | fn (y)− fn (x)|< ε

3 . Then for such y,

| f (y)− f (x)| ≤ | f (y)− fn (y)|+ | fn (y)− fn (x)|+ | fn (x)− f (x)|

<
ε

3
+∥ f − fn∥+∥ fn − f∥< ε

3
+

ε

3
+

ε

3
= ε

and so this shows that f is continuous. To show the claim about uniform continuity, use the
same string of inequalities above where δ is chosen so that for any pair x,y with |x− y| <
δ , | fn (y)− fn (x)| < ε

3 . Then the above shows that if |x− y| < δ , then | f (x)− f (y)| < ε

which satisfies the definition of uniformly continuous. ■
This implies the following interesting corollary about a uniformly Cauchy sequence of

continuous functions.

Definition 4.9.4 Let { fn} be a sequence of continuous functions defined on [a,b]. It
is said to be uniformly Cauchy if for every ε > 0 there exists nε such that if m,k > nε , then
∥ fm − fk∥< ε .

Corollary 4.9.5 Suppose { fn} is a uniformly Cauchy sequence of continuous uniformly
bounded functions defined on D. Then there exists a unique continuous function f such that

lim
n→∞

∥ fn − f∥= 0

If each fn is uniformly continuous, then so is f .

Proof: The hypothesis implies that { fn (x)} is a Cauchy sequence in R for each x.
Therefore, by completeness of R, Theorem 3.7.3, this sequence converges for each x. Let
f (x)≡ limn→∞ fn (x). Then for m > n,

| f (x)− fn (x)| ≤ sup
m

| fm (x)− fn (x)| ≤ sup
m

∥ fm − fn∥< ε

provided n is sufficiently large. Since x is arbitrary, it follows that ∥ f − fn∥ ≤ ε for all n
large enough which shows by definition that limn→∞ ∥ fn − f∥= 0.

Now the continuity of f follows from Theorem 4.9.3 and if each fn is uniformly con-
tinuous, then so is f . How many such functions f are there? There can be only one because
f (x) must equal the limit of fn (x). ■

4.10 Polynomials and Continuous Functions
It turns out that if f is a continuous real valued function defined on an interval, [a,b] then
there exists a sequence of polynomials, {pn} such that the sequence converges uniformly to
f on [a,b]. I will first show this is true for the interval [0,1] and then verify it is true on any
closed and bounded interval. First here is a little lemma which is interesting in probability.
It is actually an estimate for the variance of a binomial distribution.

Lemma 4.10.1 The following estimate holds for x ∈ [0,1] and n ≥ 2.

n

∑
k=0

(
n
k

)
(k−nx)2 xk (1− x)n−k ≤ 1

4
n
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Proof: Here are some observations. ∑
n
k=0
(n

k

)
kxk (1− x)n−k =

nx
n

∑
k=1

(n−1)!
(k−1)!((n−1)− (k−1))!

xk−1 (1− x)(n−1)−(k−1)

= nx
n−1

∑
k=0

(
n−1

k

)
xk (1− x)n−1−k = nx

n

∑
k=0

(
n
k

)
k (k−1)xk (1− x)n−k

= n(n−1)x2
n

∑
k=2

(n−2)!
(k−2)!(n−2− (k−2))!

xk−2 (1− x)(n−2)−(k−2)

= n(n−1)x2
n−2

∑
k=0

(
n−2

k

)
xk (1− x)(n−2)−k = n(n−1)x2

Now (k−nx)2 = k2−2knx+n2x2 = k (k−1)+k (1−2nx)+n2x2. From the above and the
binomial theorem, ∑

n
k=0
(n

k

)
(k−nx)2 xk (1− x)n−k =

n

∑
k=0

(
n
k

)
k (k−1)xk (1− x)n−k +(1−2nx)

n

∑
k=0

(
n
k

)
kxk (1− x)n−k

+n2x2
n

∑
k=0

(
n
k

)
xk (1− x)n−k = n(n−1)x2 +(1−2nx)nx+n2x2

= nx(1− x)≤ n
1
4

■

Now let f be a continuous function defined on [0,1] . Let pn be the polynomial defined
by

pn (x)≡
n

∑
k=0

(
n
k

)
f
(

k
n

)
xk (1− x)n−k . (4.4)

Theorem 4.10.2 The sequence of polynomials in 4.4 converges uniformly to f on
[0,1]. These polynomials are called the Bernstein polynomials.

Proof: By the binomial theorem,

f (x) = f (x)
n

∑
k=0

(
n
k

)
xk (1− x)n−k =

n

∑
k=0

(
n
k

)
f (x)xk (1− x)n−k

and so by the triangle inequality

| f (x)− pn (x)| ≤
n

∑
k=0

(
n
k

)∣∣∣∣ f ( k
n

)
− f (x)

∣∣∣∣xk (1− x)n−k

. By Theorems 3.6.2 and 4.7.2, f is uniformly continuous. Let δ go with ε/2 in the defi-
nition of uniform continuity. At this point you break the sum into two pieces, those values
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of k such that |k/n− x| < δ and those values of k where |x− (k/n)| ≥ δ . Then from the
Lemma ??,

| f (x)− pn (x)| ≤ ∑
|x−(k/n)|<δ

(
n
k

)∣∣∣∣ f ( k
n

)
− f (x)

∣∣∣∣xk (1− x)n−k

+ ∑
|x−(k/n)|≥δ

(
n
k

)∣∣∣∣ f ( k
n

)
− f (x)

∣∣∣∣xk (1− x)n−k (4.5)

≤ ∑
|x−(k/n)|<δ

(
n
k

)
ε

2
xk (1− x)n−k +2M ∑

|nx−k|≥nδ

(
n
k

)
xk (1− x)n−k

≤ ε

2

n

∑
k=0

(
n
k

)
xk (1− x)n−k +2M ∑

|nx−k|≥nδ

(
n
k

) ≥1

(k−nx)2

n2δ
2 xk (1− x)n−k

≤ ε

2
+2M

1
4

n
1

n2δ
2 =

ε

2
+

1
2

M

nδ
2

Therefore, whenever n is sufficiently large that 4M
nδ

2 < ε

2 , it follows that for all n this large
and x ∈ [0,1] ,

| f (x)− pn (x)|<
ε

2
+

ε

2
= ε. ■

Now this theorem has been done, it is easy to extend to continuous functions defined
on [a,b]. This yields the celebrated Weierstrass approximation theorem.

Theorem 4.10.3 Suppose f is a continuous function defined on [a,b]. Then there
exists a sequence of polynomials, {pn} which converges uniformly to f on [a,b].

Proof: For t ∈ [0,1] , let h(t) = a+(b−a) t. Thus h maps [0,1] one to one and onto
[a,b] . Thus f ◦h is a continuous function defined on [0,1] . It follows there exists a sequence
of polynomials {pn} defined on [0,1] which converges uniformly to f ◦ h on [0,1]. Thus
for every ε > 0 there exists Nε such that if n ≥ Nε , then for all t ∈ [0,1] ,

| f ◦h(t)− pn (t)|< ε.

However, h is onto and one to one and so for all x ∈ [a,b] ,
∣∣ f (x)− pn

(
h−1 (x)

)∣∣ < ε.Now
note that the function x→ pn

(
h−1 (x)

)
is a polynomial because h−1 (x)= x−a

b−a . More specif-
ically, if pn (t) = ∑

m
k=0 aktk it follows

pn
(
h−1 (x)

)
=

m

∑
k=0

ak

(
x−a
b−a

)k

which is clearly another polynomial. ■
Weierstrass did not prove this theorem in this way. He used integrals instead of sums

to do it, but integrals have not been discussed yet. I think the Bernstein polynomials used
here give the easiest proof. This amazing theorem shows that every continuous function
defined on a finite closed interval is the uniform limit of polynomials. The analog does not
hold for continuous functions of complex variables but this is another topic entirely.
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4.11 Exercises
1. A function f is Lipschitz continuous or just Lipschitz for short if there exists a con-

stant, K such that
| f (x)− f (y)| ≤ K |x− y|

for all x,y ∈ D. Show every Lipschitz function is uniformly continuous.

2. If |xn − yn| → 0 and xn → z, show that yn → z also. This was used in the proof of
Theorem 4.7.2.

3. Consider f : (1,∞) → R given by f (x) = 1
x . Show f is uniformly continuous even

though the set on which f is defined is not sequentially compact.

4. If f is uniformly continuous, does it follow that | f | is also uniformly continuous? If
| f | is uniformly continuous does it follow that f is uniformly continuous? Answer the
same questions with “uniformly continuous” replaced with “continuous”. Explain
why.

5. Suppose f is a continuous function defined on D and λ ≡ inf{ f (x) : x ∈ D} . A se-
quence {xn} of points of D is called a minimizing sequence if

lim
n→∞

f (xn) = λ .

A maximizing sequence is defined analogously. Show that minimizing sequences
and maximizing sequences always exist. Now let K be a sequentially compact set
and f : K → R. Show that f achieves both its maximum and its minimum on K
by considering directly minimizing and maximizing sequences. Hint: Let M ≡
sup{ f (x) : x ∈ K} . Argue there exists a sequence, {xn} ⊆ K such that f (xn)→ M.
Now use sequential compactness to get a subsequence,

{
xnk

}
such that limk→∞ xnk =

x ∈ K and use the continuity of f to verify that f (x) = M. Incidentally, this shows f
is bounded on K as well. A similar argument works to give the part about achieving
the minimum.

6. Let f : D → R be a function. This function is said to be lower semicontinuous3

•

x

Lower semicontinuous at x

at x ∈ D if for any sequence {xn} ⊆ D which converges to x it follows f (x) ≤
liminfn→∞ f (xn) . Suppose D is sequentially compact and f is lower semicontinu-
ous at every point of D. Show that then f achieves its minimum on D.

7. Let f : D → R be a function. This function is said to be upper semicontinuous
at x ∈ D if for any sequence {xn} ⊆ D which converges to x it follows f (x) ≥
limsupn→∞ f (xn) . Suppose D is sequentially compact and f is upper semicontin-
uous at every point of D. Show that then f achieves its maximum on D.

3The notion of lower semicontinuity is very important for functions which are defined on infinite dimensional
sets. In more general settings, one formulates the concept differently.
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8. Show that a real valued function is continuous if and only if it is both upper and
lower semicontinuous.

9. Give an example of a lower semicontinuous function which is not continuous and an
example of an upper semicontinuous function which is not continuous.

10. Suppose { fα : α ∈ Λ} is a collection of continuous functions. Define the function
F (x)≡ inf{ fα (x) : α ∈ Λ} . Show F is an upper semicontinuous function. Next let
G(x)≡ sup{ fα (x) : α ∈ Λ} . Show G is a lower semicontinuous function.

11. Let f be a function. epi( f ) is defined as {(x,y) : y ≥ f (x)} . It is called the epigraph
of f . We say epi( f ) is closed if whenever (xn,yn) ∈ epi( f ) and xn → x and yn → y,
it follows (x,y) ∈ epi( f ) . Show f is lower semicontinuous if and only if epi( f ) is
closed. What would be the corresponding result equivalent to upper semicontinuous?

12. Explain why x → exp
(
sin
(
ln
(
x2 +1

)))
is continuous on R.

13. Suppose f : N→R is a function. Here N is the set of positive integers. Explain why
f is continuous. Is it necessarily uniformly continuous? Note that you cannot graph
this function without taking pencil off the paper.

4.12 Limit of a Function

One of the main reasons for discussing limits of functions is to allow a definition of the
derivative. Continuity, derivatives, and integrals are the three main topics in calculus. So
far, all that has been discussed is continuity. The derivative will be in the next chapter.

In this section, functions will be defined on some nonempty subset of R.

Definition 4.12.1 A point x is a limit point of a nonempty set D means that B(x,δ )
always contains a point of D different than x for any δ > 0. Then if D is the domain of a
function f , and L ∈ R, we say that limy→x f (y) = L means: For every ε > 0, there exists a
δ > 0 such that whenever y ∈ D and 0 < |y− x|< δ , it follows that | f (y)−L|< ε.

If x is a limit point of D+ ≡ D∩ (x,∞) , then limy→x+ f (y) = L means the same thing
except y is restricted to D+. If x is a limit point of D− ≡D∩(−∞,x) , then limy→x− f (y)= L
means the same thing except you restrict y to D−.

Limits are also taken as a variable “approaches” infinity. Of course nothing is “close”
to infinity and so this requires a slightly different definition. Suppose D contains all x
sufficiently large. Then limx→∞ f (x) = L if for every ε > 0 there exists l such that whenever
x > l, | f (x)−L| < ε and limx→−∞ f (x) = L if for every ε > 0 there exists l such that
whenever x < l, | f (x)−L|< ε holds.

The main example of interest in this book is when the limit point is either the interior
of an interval, the end point of an interval or an end point of two adjacent intervals.

The following pictures illustrate some of these definitions.



122 CHAPTER 4. CONTINUOUS FUNCTIONS AND LIMITS OF FUNCTIONS

x

a

b

•c

x

b

•c

In the left picture is shown the graph of a function. Note the value of the func-
tion at x equals c while limy→x+ f (y) = b and limy→x− f (y) = a. In the second picture,
limy→x f (y) = b. Note that the value of the function at the point x has nothing to do with
the limit of the function in any of these cases. The value of a function at x has nothing to
do with the value of the limit at x! This must always be kept in mind. You do not evaluate
interesting limits by computing f (x)! In the above picture, f (x) is always wrong! It may
be the case that f (x) is right but this is merely a happy coincidence when it occurs and as
explained below in Theorem 4.12.7, this is sometimes equivalent to f being continuous at
x. Indeed, the concept of limit really only gives you something new and interesting when
the function you are taking the limit of is not defined at the point. To repeat: You do not
evaluate interesting limits by plugging in a value!

Theorem 4.12.2 If limy→x f (y) = L and limy→x f (y) = L1, then L = L1. The same
conclusion follows in the case of limy→x+, limy→x−, limy→∞, limy→−∞.

Proof:Let ε > 0 be given. There exists δ > 0 such that if 0 < |y− x|< δ , then

| f (y)−L|< ε, | f (y)−L1|< ε.

Therefore, for such y which exists because x is a limit point,

|L−L1| ≤ |L− f (y)|+ | f (y)−L1|< ε + ε = 2ε.

Since ε > 0 was arbitrary, this shows L = L1. The last claims are similar. For example, if it
is limy→∞, then there exists l such that if y > l then

| f (y)−L|< ε, | f (y)−L1|< ε

and then the same argument just used shows that |L−L1|< 2ε.■
Another concept is that of a function having either ∞ or −∞ as a limit. In this case, the

values of the function do not ever get close to their “limit” because nothing can be close to
±∞. Roughly speaking, the limit of the function equals ∞ if the values of the function are
ultimately larger than any given number. More precisely:

Definition 4.12.3 If f (x) ∈ R, then limy→x f (x) = ∞ if for every number l, there
exists δ > 0 such that whenever |y− x| < δ , then f (x) > l. limx→∞ f (x) = ∞ if for all k,
there exists l such that f (x)> k whenever x > l. One sided limits and limits as the variable
approaches −∞, are defined similarly.
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It may seem there is a lot to memorize here. In fact, this is not so because all the
definitions are intuitive when you understand them. Everything becomes much easier when
you understand the definitions. This is usually the way it works in mathematics.

In the following theorem it is assumed the domains of the functions are such that the
various limits make sense. Thus, if limy→x is used, it is to be understood the function is
defined on (x−δ ,x)∪ (x,x+δ ) for some δ > 0. However, to avoid having to state things
repetitively this symbol will be written to symbolize limy→x+ or limy→x− and in either of
these cases, it is understood the function is defined on an appropriate set so that the limits
make sense. Thus in the case of limy→x+ the function is understood to be defined on an
interval of the form (x,x+δ ) with a similar convention holding for limy→x−.

To reduce to the consideration of sequences, here is a nice result.

Proposition 4.12.4 Let x be a limit point of D( f ) . Then limy→x f (y) = L if and only if
whenever xn → x for each xn ̸= x, the xn distinct points, it follows that f (xn)→ L.

Proof: ⇒ Let xn → x where no xn equals x. Let ε > 0 be given. By assumption,
| f (y)−L| < ε whenever 0 < |y− x| < δ for some δ . However, for all n large enough,
0 < |xn − x|< δ and so | f (xn)−L|< ε. Hence f (xn)→ L.

⇐ Suppose the condition on the sequences holds. If the condition for the limit does
not hold, then there exists ε > 0 such that no matter how small δ , there will be 0 <
|y− x| < δ ,y ∈ D( f ) , and yet | f (y)−L| ≥ ε . Now let δ 1 = 1. There exists x1 ̸= x with
x1 ∈ B(x,δ 1)∩D( f ) and | f (x1)−L| ≥ ε. Let δ 2 ≡ min

( 1
2 ,

1
2 |x− x1|

)
. Now pick x2 ∈

B(x,δ 2) ,x2 ̸= x such that | f (x2)−L| ≥ ε. Let δ 3 ≡ min
(

1
23 ,

1
2 |x− x1| , 1

2 |x− x2|
)

and
pick x3 ∈ B(x,δ 3) with | f (x3)−L| ≥ ε,x3 ̸= x. Continue this way to generate a sequence
of distinct points {xn} , none equal to x which converges to x. Then L = limn→∞ f (xn) be-
cause of the condition on limits of the sequence so eventually |L− f (xn)|< ε, contrary to
the construction of the xn. ■

Theorem 4.12.5 In this theorem, the symbol limy→x denotes any of the limits de-
scribed above. Suppose limy→x f (y) = L and limy→x g(y) = K where K and L are numbers,
not ±∞. Then if a, b are numbers,

lim
y→x

(a f (y)+bg(y)) = aL+bK, (4.6)

lim
y→x

f g(y) = LK (4.7)

and if K ̸= 0,

lim
y→x

f (y)
g(y)

=
L
K
. (4.8)

Also, if h is a continuous function defined in some interval containing L, then

lim
y→x

h◦ f (y) = h(L) . (4.9)

Suppose f is real valued and limy→x f (y) = L. If f (y) ≤ a all y near x either to the right
or to the left of x, then L ≤ a and if f (y)≥ a then L ≥ a.

Proof: All of these follow from the limit theorem for sequences and Proposition 4.12.4.
For example, consider 4.8. Let xn → x the xn distinct and none equal to x. Then |g(xn)|>
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|K|/2 for large enough n. Here is why: |g(xn)−K|< |K|
2 if n large enough and so, by the

triangle inequality, |g(xn)|> |K|/2 for large enough n. Thus for such n,∣∣∣∣ f (xn)

g(xn)
− L

K

∣∣∣∣≤ ∣∣∣∣K f (xn)−Lg(xn)

K (K/2)

∣∣∣∣≤ 2
K2 |K f (xn)−Lg(xn)|

and the right side inside the absolute value converges to KL−LK = 0.
Consider 4.9. Let xn → x where none of the xn = x. Then h ◦ f (xn) = h( f (xn)) and

since f (xn)→ L and h is continuous near L,h( f (xn))→ h(L). The other two claims are
somewhat easier and follow from the same methods. ■

A very useful theorem for finding limits is called the squeezing theorem.

Theorem 4.12.6 Suppose f ,g,h are real valued functions and that

lim
x→a

f (x) = L = lim
x→a

g(x)

and for all x near a,
f (x)≤ h(x)≤ g(x) . (∗)

Then
lim
x→a

h(x) = L.

Proof: Let {xn} be a sequence with limn→∞ xn = a and the xn are distinct. Then f (xn)≤
h(xn)≤ g(xn) for all n large enough, and by Theorem 3.3.15 about limits of sequences,

L = lim
n→∞

g(xn)≥ lim
n→∞

h(xn)≥ lim
n→∞

f (xn) = L. ■

Note that the end points of an interval are always limit points of the interval.
Next is the relation between limits and continuity. I am being vague about there f has

its values and D( f ) because this is one of those things which is nearly always the case. Go
ahead and make D( f )⊆ R if you like but it won’t end up mattering much.

Theorem 4.12.7 Let f be a function defined on D( f ) .Then f is continuous at a
limit point x ∈ D( f ) if and only if limy→x f (y) = f (x).

Proof: ⇒ Suppose xn is any sequence of distinct points of D( f ) which converges
to the limit point x none of which equal x. Then by continuity, f (xn) → f (x) and thus
limy→x f (y) = f (x).

⇐ Now suppose the limit condition at the limit point x. Letting ε > 0 be given, there
exists δ > 0 such that if 0 < |y− x|< δ , then | f (y)− f (x)|< ε. The other case is that y = x
in which case | f (y)− f (x)|= 0 < ε . Thus f is continous at x ∈ D( f ). ■

The problem with trying to take a limit at a point which is not a limit point of D( f ) is
that it does not make sense. Go over the proof of why the limit is well defined and you will
see this. If you are sufficiently close to a point which is not a limit point, then there will be
no other points of D( f ) this close. Hence you could reason that any number is the limit.
The concept is completely useless.

Example 4.12.8 Find limx→3
x2−9
x−3 .
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Let xn → 3, the xn distinct, none equal to 3. Then x2
n−9

xn−3 = (xn +3)→ 6.
The habit students acquire of plugging in the point to take the limit is only good on

useless and uninteresting limits which are not good for anything other than to give a busy
work exercise.

Example 4.12.9 Let f (x) = x2−9
x−3 if x ̸= 3. How should f be defined at x = 3 so that the

resulting function will be continuous there?

The limit of this function equals 6. For x ̸= 3, x2−9
x−3 = (x−3)(x+3)

x−3 = x+3. Therefore, by
Theorem 4.12.7 it is necessary to define f (3)≡ 6.

Example 4.12.10 Find limx→∞
x

1+x .

Write x
1+x = 1

1+(1/x) . Now it seems clear that limx→∞ 1+(1/x) = 1 ̸= 0.

Example 4.12.11 Show limx→a
√

x =
√

a whenever a ≥ 0. In the case that a = 0, take the
limit from the right.

There are two cases. First consider the case when a > 0. Let ε > 0 be given. Let xn → x
with none of the xn = a. Multiply and divide by

√
x+

√
a. This yields

∣∣√xn −
√

a
∣∣= ∣∣∣∣ xn −a

√
xn +

√
a

∣∣∣∣ .
For large n,xn > 0 and so

∣∣√xn −
√

a
∣∣< ∣∣∣ xn−a√

a

∣∣∣ which clearly converges to 0. In case a = 0,

let xn → 0. If ε > 0 is given, eventually 0 < xn < ε2 and so
√

xn < ε which is what it means
to have limn→∞

√
xn = 0.

Here is a useful proposition.

Proposition 4.12.12 Suppose f is increasing on (0,∞) and is bounded above. Then
limx→∞ f (x) = m where m ≡ sup{ f (x) : x > 0} . Similar conclusions hold if ∞ is replaced
with any other number. Also, if f is decreasing and bounded above, then limx→0+ f (x) =
m ≡ sup{ f (x) : x > 0} .

Proof: By definition, m < ∞ and there exists xε such that m− ε < f (xε) ≤ m. Since
f is increasing, it follows that for y ≥ xε , f (y) ∈ (m− ε,m] so | f (y)−m| < ε . The other
claim is similar. ■

4.13 Exercises
1. Find the following limits if possible

(a) limx→0+
|x|
x

(b) limx→0+
x
|x|

(c) limx→0−
|x|
x

(d) limx→4
x2−16
x−4

(e) limx→3
x2−9
x−3

(f) limx→−2
x2−4
x+2

(g) limx→∞
x

1+x2

(h) limx→∞−2 x
1+x2
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2. Find limh→0

1
(x+h)3

− 1
x3

h .

3. Find limx→4
4√x−

√
2√

x−2 .

4. Find limx→∞

5√3x+ 4√x+7
√

x√
3x+1

.

5. Find limx→∞
(x−3)20(2x+1)30

(2x2+7)
25 .

6. Find limx→2
x2−4

x3+3x2−9x−2 .

7. Find limx→∞

(√
1−7x+ x2 −

√
1+7x+ x2

)
.

8. Prove Theorem 4.12.2 for right, left and limits as y → ∞.

9. Prove from the definition that limx→a
3
√

x = 3
√

a for all a ∈ R. Hint: You might want
to use the formula for the difference of two cubes, a3 −b3 = (a−b)

(
a2 +ab+b2

)
.

10. Is it reasonable to define continuity at isolated points, those points which are not limit
points, in terms of a limit?

11. Prove Theorem 4.12.7 from the definitions of limit and continuity.

12. Find limh→0
(x+h)3−x3

h

13. Find limh→0
1

x+h−
1
x

h

14. Find limx→−3
x3+27
x+3

15. Find limh→0

√
(3+h)2−3

h if it exists.

16. Find the values of x for which limh→0

√
(x+h)2−x

h exists and find the limit.

17. Find limh→0
3
√

(x+h)− 3√x
h if it exists. Here x ̸= 0.

18. Suppose limy→x+ f (y) = L1 ̸= L2 = limy→x− f (y) . Show limy→x f (x) does not ex-
ist. Hint: Roughly, the argument goes as follows: For |y1 − x| small and y1 > x,
| f (y1)−L1| is small. Also, for |y2 − x| small and y2 < x, | f (y2)−L2| is small. How-
ever, if a limit existed, then f (y2) and f (y1) would both need to be close to some
number and so both L1 and L2 would need to be close to some number. However,
this is impossible because they are different.

19. Let f (x,y) = x2−y2

x2+y2 . Find limx→0 (limy→0 f (x,y)) , limy→0 (limx→0 f (x,y)) . If you
did it right you got −1 for one answer and 1 for the other. What does this tell you
about interchanging limits?

20. If f is an increasing function which is bounded above by a constant M, show that
limx→∞ f (x) exists. Give a similar theorem for decreasing functions.

21. Suppose { fn} is a sequence of increasing nonnegative functions defined on [0,1].
Suppose also for each x ∈ [0,1] , limn→∞ fn (x) = 0 so you have pointwise conver-
gence. Will it follow that fn also converges uniformly to 0? Note that in the example
where fn (x) = xn, fn (1) fails to converge to 0.
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22. Show that if limh→0+
f (x+h)− f (h)

h = m and limh→0+
f (x)− f (x−h)

h = m, then

lim
h→0

f (x+h)− f (x)
h

= m.

When this happens, we say f ′ (x) = m. It is called the derivative.

23. This problem depends on the earlier problems involving the Darboux integral pre-
sented earlier, Problems 25 - 30 beginning on Page 100. The derivative at a point x,
denoted as f ′ (x) gives the slope of a tangent line to the graph of y = f (x) at the point
(x, f (x)) . It is defined in terms of a limit suggested by the following picture.

(x+h, f (x+h)

x x+h

(x, f (x))

This illustrates the derivative from the right which is limh→0+
f (x+h)− f (x)

h . The deriva-
tive from the left is defined similarly as limh→0+

f (x)− f (x−h)
h . Geometrically these

limits give what should be defined as the slope of the tangent line to the graph of the
function y = f (x).

Suppose f is integrable on [a,b] and x is an interior point of [a,b] . Suppose also that
f is continuous. Suppose for all |h| small enough,

∫ x
a f dt and

∫ x+h
a f dt both make

sense. Show that

lim
h→0

∫ x+h
a f dt −

∫ x
a f dt

h
= f (x)

Hint: From Problems 25 - 30, the left side equals 1
h
∫ x+h

x f dt. First suppose that
h > 0. Let M be the maximum of f on [x,x+h] and let m be the minimum. Then
explain why m = 1

h
∫ x+h

x mdt ≤ 1
h
∫ x+h

x f dt ≤ 1
h
∫ x+h

x Mdt = M. By intermediate value
theorem due to Bolzano, there is yh ∈ [x,x+h] such that f (yh)=

1
h
∫ x+h

x f dt. Now use
continuity. For the derivative from the left, apply the same argument 1

h
∫ x

x−h f (t)dt.

4.14 Videos
continuous functions properties of continuous functions

uniform and semicontinuity limits and derivatives
approximation with polynomials

https://www.youtube.com/watch?v=dY-w-WwE6vw
https://www.youtube.com/watch?v=1IFIEnIT-BI
https://www.youtube.com/watch?v=Car-sZRkC6c
https://www.youtube.com/watch?v=iGtu36-ZS7M
https://www.youtube.com/watch?v=QPxYf3I1zIc
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Chapter 5

The Derivative

Some functions have derivatives and some don’t. Some have derivatives at some points and
not at others. This chapter is on the derivative. Functions which have derivatives are better
than those which don’t.

5.1 The Definition of the Derivative

Here is a picture of the graph of a function y = f (x) and a line tangent to the graph at the
point (x0,y0) .

(x0,y0)

Thus y0 = f (x0). Suppose m is the slope of this line. Then from algebra, the equation
of the line is

y = y0 +m(x− x0) = f (x0)+m(x− x0)

The problem is to determine what m should be so that the above picture is in some sense
correct. The following picture suggests how we should define m.

(x0,y0)

(x0 +h, f (x0 +h))

It seems that the slope of the line joining (x0 +h, f (x0 +h)) and (x0, f (x0)) would be
getting close to m if h is small enough. Just imagine what happens as you take h smaller
in this picture. This illustrates a derivative from the right because h > 0 in this picture. A
similar picture could be drawn for negative h. This motivates the following definition of
the derivative.

Definition 5.1.1 The derivative, denoted as f ′ (x0) , is the slope of the line tangent

129
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to the graph of the function y = f (x) at the point (x0, f (x0)) . This is defined precisely as

lim
h→0

f (x0 +h)− f (x0)

h
≡ f ′ (x0)

whenever this limit exists. If you only allow positive h in the definition, then it is a derivative
from the right or right derivative. If you only allow negative h in the definition, then it is a
derivative from the left or left derivative. Letting h = x− x0, one can also write this limit
in the form limx→x0

f (x)− f (x0)
x−x0

where the right derivatives involve x > x0 and left derivatives
involve x < x0. Note that

lim
h→0−

f (x0 +h)− f (x0)

h
= lim

k→0+

f (x0 − k)− f (x0)

−k
= lim

k→0+

f (x0)− f (x0 − k)
k

Actually, it is better to express this a little differently. From the above definition, f ′ (x0)
exists if and only if

lim
h→0

| f (x0 +h)− ( f (x0)+ f ′ (x0)h)|
|h|

= 0

if and only if f (x0 +h)−( f (x0)+ f ′ (x0)h) = o(h) or f (x0 +h) = f (x0)+ f ′ (x0)h+o(h)
where o(h) is descriptive of a function g(h) with the property that limh→0

g(h)
h = 0. Thus

we say a function g(h) is o(h) (little o of h) if limh→0
g(h)

h = 0. We use o(h) as an adjective
describing the behavior of a function, not as a precise description of a function. Note that,
understood this way,

o(h) = 32o(h) ,o(h)−o(h) = o(h) , |o(h)|= o(h) , etc.

This leads to the definition which I will use in what follows.

Definition 5.1.2 Let f be defined on an interval [a,b]. Then it is differentiable at
x ∈ (a,b) if and only if there is a constant L such that

f (x+h) = f (x)+Lh+o(h) (5.1)

If h is constrained to be positive, then L is a right derivative. If h is constrained to be
negative, then L is a left derivative. Then

L ≡ d f
dx

(x)≡ f ′ (x)≡ Dx f (x)≡ D f (x)≡ ḟ (x)

and we refer to this L as the derivative. Letting x1 + h = x2, an equivalent statement that
f ′ (x1) exists is that

f (x2) = f (x1)+L(x2 − x1)+o(x2 − x1)

As shown above, the derivative can be considered as the slope of a tangent line, assum-
ing such a tangent line exists. Also, at the end points, L must be a one sided derivative.

Proposition 5.1.3 There is at most one L in 5.1 so f ′ (x) is well defined if it exists.

Proof: Suppose you have two, L, L̂. Then from 5.1,
(
L− L̂

)
h = o(h)− ô(h) = o(h) .

Hence L− L̂ = o(h)
h . Letting h → 0 or h → 0 from the right or the left in the case of end

points, it follows L = L̂. ■
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Why bother with this little o notation? It is because this is what generalizes to higher
dimensions and the notion of slope does not. It may be best to get used to it in the simpler
setting of functions of one variable. As explained above, f ′ (x) does have the geometric
interpretation of being the slope of a tangent line at the point (x, f (x)) in one dimension.

Example 5.1.4 Let f (x) = xn where n is a nonnegative integer. Find f ′ (x) .

(x+h)n = xn +nxn−1h+
n

∑
k=2

(
n

k

)
xn−khk = xn +nxn−1 +o(h)

Thus f ′ (x) = nxn−1.

Example 5.1.5 Let f (x) = |x| . Show f ′ (0) does not exist.

If it did exist, then |h|= Lh+o(h) for some L. However, taking h > 0 and letting h → 0
yields L = 1 and letting h < 0 and h → 0 yields L =−1. Note that this function does have
a right and a left derivative at 0.

The following diagram shows how continuity at a point and differentiability there are
related.

f ′(x)exists

f is continuous at x

Theorem 5.1.6 If f is defined near x and f is differentiable at x then f is continuous
at x. Also if f ′ (x) exists for some x in [a,b] , then

o( f (x+h)− f (x)) = o(h)

Proof: Suppose limn→∞ xn = x. Does it follow that limn→∞ f (xn) = f (x)? By assump-
tion,

f (x)− f (xn) = f ′ (x)(x− xn)+o(x− xn)

Now from the definition of o(x− xn) , |o(x− xn)| < |x− xn| if n is large enough. Hence,
for large n, | f (x)− f (xn)| ≤ (| f ′ (x)|+1) |xn − x| and so by the squeezing theorem,

lim
n→∞

f (xn) = f (x) .

Then by Theorem 4.0.8, f is continuous at x.
Consider the other claim. Let ε > 0 be given. Let

H (h)≡

{
o( f (x+h)− f (x))

f (x+h)− f (x) if f (x+h)− f (x) ̸= 0

0 if f (x+h)− f (x) = 0∣∣∣∣o( f (x+h)− f (x))
h

∣∣∣∣= |H (h)|
∣∣∣∣ f (x+h)− f (x)

h

∣∣∣∣
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Now since f ′ (x) exists, | f (x+h)− f (x)| ≤ | f ′ (x)| |h|+ |h| ≤ (1+ | f ′ (x)|) |h| ≡ C |h| for
all h small enough. Hence, for small |h| ,∣∣∣∣ f (x+h)− f (x)

h

∣∣∣∣≤C,

∣∣∣∣o( f (x+h)− f (x))
h

∣∣∣∣≤C |H (h)|

Now limh→0 H (h) = 0 and so o( f (x+h)− f (x)) = o(h). For derivatives from the right or
left, you simply constrain h to be either positive or negative and there is no change. ■

Weierstrass gave an example of a function continuous at every point yet differentiable
at no point, but you can easily see the example of y = |x| which is continuous at 0 but
not differentiable there. To see a standard example of a nowhere differentiable continuous
function, see my single variable advanced calculus book.

5.2 Finding the Derivative
Obviously there need to be simple ways of finding the derivative when it exists. There are
rules of derivatives which make finding the derivative very easy. In the following theorem,
the derivative could refer to right or left derivatives as well as regular derivatives.

Theorem 5.2.1 Let a,b be numbers and suppose f ′ (t) and g′ (t) exist. Then the
following formulas are obtained.

(a f +bg)′ (t) = a f ′ (t)+bg′ (t) . (5.2)

( f g)′ (t) = f ′ (t)g(t)+ f (t)g′ (t) . (5.3)

The formula, 5.3 is referred to as the product rule.
If f ′ (g(t)) exists and g′ (t) exists, then ( f ◦g)′ (t) also exists and

( f ◦g)′ (t) = f ′ (g(t))g′ (t) .

This is called the chain rule. In this rule, for the sake of simiplicity, assume the derivatives
are real derivatives, not derivatives from the right or the left. If f (t) = tn where n is any
integer, then

f ′ (t) = ntn−1. (5.4)

Also, whenever f ′ (t) exists, f ′ (t)= limh→0
f (t+h)− f (t)

h where this definition can be adjusted
in the case where the derivative is a right or left derivative by letting h > 0 or h < 0 only
and considering a one sided limit. This is equivalent to f ′ (t) = lims→t

f (s)− f (t)
t−s with the

limit being one sided in the case of a left or right derivative.

Proof: 5.2 is left for you. Consider 5.3

f g(t +h)− f g(t) =
(

f (t)+ f ′ (t)h+o(h)
)(

g(t)+g′ (t)h+o(h)
)
− f (t)g(t)

= f ′ (t)g(t)h+g′ (t) f (t)h+o(h)

This shows 5.3.
Next consider the chain rule. By Theorem 5.1.6

f (g(t +h))− f (g(t)) = f ′ (g(t))(g(t +h)−g(t))+o(g(t +h)−g(t))
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= f ′ (g(t))
(
g′ (t)h+o(h)

)
+o(h) = f ′ (g(t))g′ (t)h+o(h)

The last claim follows from Example 5.1.4 in case n is a positive integer. If n is 0, then
the claim is obvious because the function is a constant so its derivative is 0. It remains to
consider the case where n is a negative integer. First consider f (t) = t−1. Then

f (t +h)− f (t)
h

=
1

t+h −
1
t

h
=− 1

(t +h) t

For all t ̸= 0, the limit of this last expression is − 1
t2 using the properties of the limit.

Therefore, if f (t) = t−n, then f (t) = (tn)−1and so, by the chain rule and what was just
shown for positive exponent n, f ′ (t) = (−1)(tn)−2 ntn−1 = −nt−(n+1) showing that the
claim holds in this case also. ■

Corollary 5.2.2 Let f ′ (t) ,g′ (t) both exist and g(t) ̸= 0, then the quotient rule holds.(
f
g

)′
=

f ′ (t)g(t)− f (t)g′ (t)

g(t)2

Proof: This is left to you. Use the chain rule and the product rule. ■
Higher order derivatives are defined in the obvious way. f ′′ ≡ ( f ′)′ etc. Also the Leibniz

notation is defined by dy
dx = f ′ (x) where y = f (x) and the second derivative is denoted as

d2y
dx2 with various other higher order derivatives defined similarly. When people write y(n)

they mean the nth derivative. Similarly f (n) (x) refers to the nth derivative.
The chain rule has a particularly attractive form in Leibniz’s notation. Suppose y= g(u)

and u = f (x) . Thus y = g◦ f (x) . Then from the above theorem

(g◦ f )′ (x) = g′ ( f (x)) f ′ (x) = g′ (u) f ′ (x)

or in other words, dy
dx = dy

du
du
dx . Notice how the du cancels. This particular form is a very

useful crutch and is used extensively in applications.

5.3 Derivatives of Inverse Functions
It happens that if f is a differentiable one to one function defined on an interval, [a,b] ,
and f ′ (x) exists and is non zero then the inverse function f−1 has a derivative or one sided
derivative at the point f (x) .

Theorem 5.3.1 Let f : [a,b] → R be continuous and one to one. Suppose f ′ (x)
exists for some x ∈ [a,b] and f ′ (x) ̸= 0, a one sided derivative at the end points. Then(

f−1
)′
( f (x)) exists and is given by the formula,

(
f−1
)′
( f (x)) = 1

f ′(x) .

Proof: By Lemma 4.4.3, and Corollary 4.5.1 on Page 112 f is either strictly increasing
or strictly decreasing and f−1 is continuous on an interval f ([a,b]). Constrain h to have the
appropriate sign if at an endpoint of f ([a,b]) , and letting |h| be sufficiently small otherwise,
let x be a point where f ′ (x) ̸= 0 and f (x) = y

h = f
(

f−1 (y+h)
)
− f

(
f−1 (y)

)
=
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f ′ (x)
(

f−1 (y+h)− f−1 (y)
)
+o
(

f−1 (y+h)− f−1 (y)
)

(∗)

By continuity of f−1,
∣∣o( f−1 (y+h)− f−1 (y)

)∣∣ < 1
2 | f

′ (x)|
∣∣ f−1 (y+h)− f−1 (y)

∣∣ if h is
small enough and so, from the triangle inequality in ∗,

|h| ≥ 1
2

∣∣ f ′ (x)∣∣ ∣∣ f−1 (y+h)− f−1 (y)
∣∣ ,

∣∣o( f−1 (y+h)− f−1 (y)
)∣∣

|h|
≤

2
∣∣o( f−1 (y+h)− f−1 (y)

)∣∣
| f ′ (x)| | f−1 (y+h)− f−1 (y)|

showing that o
(

f−1 (y+h)− f−1 (y)
)
= o(h) . From ∗,

1
f ′ (x)

h+o(h) = f−1 (y+h)− f−1 (y) = f−1 ( f (x)+h)− f−1 ( f (x))

Which proves the theorem. ■
This is one of those theorems which is very easy to remember if you neglect the

difficult questions and simply focus on formal manipulations. Consider the following.
f−1 ( f (x)) = x. Now use the chain rule to write

(
f−1
)′
( f (x)) f ′ (x) = 1, and then divide

both sides by f ′ (x) to obtain
(

f−1
)′
( f (x)) = 1

f ′(x) . Of course this gives the conclusion of
the above theorem rather effortlessly and it is formal manipulations like this which aid in
remembering formulas such as the one given in the theorem.

Example 5.3.2 Let f (x)= 8+x2+x3+7x. Show that f has an inverse and find
(

f−1
)′
(8) .

I am not able to find a formula for the inverse function. This is typical in useful ap-
plications so you need to get used to this idea. The methods of algebra are insufficient to
solve hard problems in analysis. You need something more. The question is to determine
whether f has an inverse. To do this, f ′ (x) = 2x+3x2+7 > 0 for all x. By Corollary 5.11.5
on Page 148, this function is strictly increasing on R and so it has an inverse function al-
though I have no idea how to find an explicit formula for this inverse function. However, I
can see that f (0) = 8 and so by the formula for the derivative of an inverse function,

(
f−1)′ (8) = ( f−1)′ ( f (0)) =

1
f ′ (0)

=
1
7
.

In practice, we typically don’t bother with the mathematical details. We have f (x) = y
and the inverse function is of the form x = f−1 (y) . Thus it involves finding dx

dy (y) ≡(
f−1
)′
(y) . The existence of the derivative of the inverse function exists by the above argu-

ment. Therefore, all that remains is to use the chain rule. Take d
dy of both sides of f (x) = y,

f ′ (x) dx
dy = 1. Thus

dx
dy

(y)≡
(

f−1)′ (y) = 1
f ′ (x)

=
1

f ′ ( f−1 (y))
=

1
f ′ (x)

which is the same as obtained earlier. You know the inverse has a derivative and so it
suffices to use the chain rule.
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5.4 Circular Functions and Inverses
Here in this section, the derivatives of the circular functions are derived and then the deriva-
tives of their inverse functions are considered.

Theorem 5.4.1 sin′ (x) = cos(x) ,cos′ (x) =−sin(x).

Proof: Consider the picture where here h is small

h

(cos(h),sin(h))

(1− cos(h))

From Corollary 2.3.9

(1− cos(h))+ sin(h)≥ h ≥ sin(h)

It follows that

sin(h)
1+ cos(h)

=
1− cos2 (h)

sin(h)(1+ cos(h))
=

1− cos(h)
sin(h)

+1 ≥ h
sin(h)

≥ 1 (5.5)

and so limh→0
h

sin(h) = limh→0
sin(h)

h = 1.

1− cos(h)
h

=
sin2 (h)

h(1+ cos(h))
=

sin(h)
h

sin(h)
1+ cos(h)

→ 0

h− sin(h)
h

=
h
h
− sin(h)

h
→ 0

so 1− cos(h) = o(h) and h− sin(h) = o(h) . Then

sin(x+h)− sin(x) = sin(x)cos(h)+ cos(x)sin(h)− sin(x)
= sin(x)(cos(h)−1)+ cos(x)(sin(h)−h)+ cos(x)h

= cos(x)h+o(h)

so sin′ (x) = cos(x) .

cos(x+h)− cos(x) = cos(x)(cos(h)−1)− sin(x)sin(h)

= o(h)− sin(x)(sin(h)−h)− sin(x)h =−sin(x)h+o(h)

Thus cos′ (x) =−sin(x). ■
The sine function is one to one on

[
−π

2 ,
π

2

]
taking all values between −1 and 1 and so

one can define
arcsin : [−1,1]→

[
−π

2
,

π

2

]
as an inverse function for the sine restricted to

[
−π

2 ,
π

2

]
. In words, arcsin(y) is the angle

whose sine is y which lies in
[
−π

2 ,
π

2

]
. Letting sin(x) = y, you can find dx

dy by using the
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chain rule. Thus cos(x) dx
dy = 1 and so dx

dy = 1
cos(x) . Now for x ∈

[
−π

2 ,
π

2

]
, cos(x) ≥ 0 and

so the above equation reduces to

arcsin′ (y)≡ dx
dy

=
1√

1− sin2 (x)
=

1√
1− y2

The cosine function is one to one on [0,π] taking all values between −1 and 1 and so
one can define

arccos : [−1,1]→ [0,π]

as an inverse function for the cosine restricted to [0,π] . In words, arccos(y) is the an-
gle whose cosine is y which lies in [0,π]. Letting y = cos(x) , you can find dx

dy using
the chain rule. As explained, this is the derivative of the inverse function just described.
1 =−sin(x) dx

dy and so dx
dy = 1

−sin(x) . For x ∈ [0,π] , sin(x)≥ 0 and so

−sin(x) =−
√

1− cos2 (x) =−
√

1− y2

Thus

arccos′ (y)≡ dx
dy

=− 1√
1− cos2 (x)

=− 1√
1− y2

The tangent function is one to one on
(
−π

2 ,
π

2

)
and maps onto (−∞,∞), all of R. Thus

one can define arctan(y) as x ∈
(
−π

2 ,
π

2

)
where tan(x) = y as the above. Now applying the

quotient rule to find tan′ (x) ,

tan′ (x) =
cos2 (x)− (−sin(x))sin(x)

cos2 (x)
=

1
cos2 (x)

= sec2 (x) = 1+ tan2 (x)

the last being a well known identity which says essentially that cos2 (x)+sin2 (x) = 1. Then
as before, y = tan(x) ,

1 =
(
1+ tan2 (x)

) dx
dy

=
(
1+ y2) dx

dy

and so arctan′ (y)= 1
1+y2 . You can do all the other trigonometric functions and their inverses

the same way. Of course none of them have inverses unless their domains are restricted as
above. For example, x ∈

[
−π

2 ,
π

2

]
in order that sin will be one to one. The choice of interval

on which the function is one to one is somewhat arbitrary. One could have done the same
thing for arcsin if the interval had been

[ 3π

2 , 5π

2

]
instead of

[
−π

2 ,
π

2

]
for example. However,

it is traditional to pick the interval to which the function is restricted to be that interval
closest to 0 such that the function is one to one and maps onto its maximum range. This
is done to maximize the usefulness of the definition. The following table summarizes the
derivatives of the trigonometric functions and their inverses. In the table D will be the
domain of the function and R will be the range of the function.
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Table of Derivatives

f (x) Domain Range f ′ (x)

sin(x) R [−1,1] cos(x)

arcsin(x) [−1,1]
[
−π

2 ,
π

2

] 1√
1−x2

cos(x) R [−1,1] −sin(x)

tan(x) all except odd multiples of π

2 R sec2 (x)

arctan(x) R
(
−π

2 ,
π

2

) 1
1+x2

sec(x) all except odd multiples of π

2 [1,∞)∪ (−∞,−1] sec(x) tan(x)

arcsec(x) [1,∞)∪ (−∞,−1] [0, π

2 )∪ (π

2 ,π]
1

|y|
√

y2−1

For the line corresponding to arcsec, I have picked the domain to be [1,∞)∪ (−∞,−1]
to correspond to restricting sec(x) to [0, π

2 )∪ (π

2 ,π]. There is no consensus on how to do
this. I have done it this way because the interval on which cos(x) is one to one which we
use in defining the inverse cosine is [0,π] and I have tried to make it as similar to this as
possible.

One can do similar things for csc, and arccsc and cot and arccot but the above is likely
enough of this tedium to cover the situations of interest.

5.5 Exponential Functions and Logarithms

First consider ln(x). Recall how, for x > 1 it is the area between 1,x, which lies under the
graph of the curve y = 1/t. Thus for x > 1 and small positive h,

ln(x+h)− ln(x)

is the area between x and x+h under the graph of the function y = 1/t. Therefore,

h
1

x+h
≤ ln(x+h)− ln(x)≤ h

(
1
x

)
Divide by h to get

1
x+h

≤ ln(x+h)− ln(x)
h

≤ 1
x
.

Then by the squeezing theorem, limh→0+
ln(x+h)−ln(x)

h = 1
x . If h < 0, a similar argument

shows

lim
h→0−

ln(x+h)− ln(x)
h

= lim
h→0+

ln(x)− ln(x−h)
h

=
1
x

See Problem 22 on Page 127.
Actually one should also consider ln(|x|) because this allows the consideration of neg-

ative values of x. For x < 0, ln(|x|) = ln(−x) and so, by the chain rule, the derivative of this
function of x is 1

−x (−1) = 1
x .
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Thus ln is differentiable as is x → ln |x| for all x ̸= 0. It follows from Theorem 5.3.1
that the inverse function exp is also differentiable. Now by definition, ln(exp(x)) = x and
so, by the chain rule,

1
exp(x)

exp′ (x) = 1

and so exp′ (x) = exp(x). The fact that exp′ is equal to exp turns out to be very significant
in finding solutions to differential equations.

Suppose b > 0,b ̸= 1, and f (x) = bx. What is f ′ (x)? You know that bx = exp(x ln(b))
and so by the chain rule,

f ′ (x) = exp(x ln(b)) ln(b) = ln(b)bx

If f (x) = logb (x) , what is f ′ (x)? f (x)≡ ln(x)
ln(b) and so f ′ (x) = 1

ln(b)
1
x . Also we can consider

f (x) = xr for x > 0 and r a fixed positive real number. Then f (x) ≡ exp(r ln(x)) and so,
by the chain rule,

f ′ (x) = exp(r ln(x))
r
x
≡ rxr−1

Table of Derivatives

f (x) Domain Range f ′ (x)

ln(x) (0,∞) R 1
x

logb (x) ,b ̸= 1 (0,∞) R 1
ln(b)

1
x

exp(x) R (0,∞) exp(x)

ex R (0,∞) ex

bx,b ̸= 1,b > 0 R (0,∞) ln(b)bx

xr,r > 0 (0,∞) (0,∞) rxr−1

ln(|x|) (0,∞)∪ (−∞,0) R 1
x

cosh(x) R [1,∞) sinh(x)

sinh(x) R R cosh(x)

Note that if r < 0,x−r ≡ (xr)−1 and so, by the chain rule, the derivative is

(−1)(xr)−2 rxr−1 =−rx−(r+1)

thanks to Proposition 2.6.3 which says the usual rules of exponents hold. The last two lines
are left as exercises.

5.6 The Complex Exponential
It was shown in introductory topics that every complex number can be written in the form
r (cosθ + isinθ) where r ≥ 0. See Section 1.14. Laying aside the zero complex number,
this shows that every non zero complex number is of the form eα (cosβ + isinβ ) . We write
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this in the form eα+iβ . When you have a function f (t) = u(t)+ iv(t) , f ′ (t) is defined as
u′ (t)+ iv(t) if and only if the derivatives of the real functions u and v exist.

Having made the above definitions, does it follow that the expression for e(α+iβ )t pre-

serves the most important property of the function t → e(α+iβ )t for t real, that
(

e(α+iβ )t
)′

=

(α + iβ )e(α+iβ )t? By the definition just given which does not contradict the usual definition
in case β = 0 and the usual rules of differentiation in calculus,(

e(α+iβ )t
)′

≡
(
eαt (cos(β t)+ isin(β t))

)′
= eαt [α (cos(β t)+ isin(β t))+(−β sin(β t)+ iβ cos(β t))]

Now consider the other side. From the definition it equals

(α + iβ )
(
eαt (cos(β t)+ isin(β t))

)
= eαt [(α + iβ )(cos(β t)+ isin(β t))]

= eαt [α (cos(β t)+ isin(β t))+(−β sin(β t)+ iβ cos(β t))]

which is the same thing. This is of fundamental importance in differential equations. It
shows that there is no change in going from real to complex numbers for ω in the consid-
eration of the problem y′ = ωy, y(0) = 1. The solution is always eωt . The formula just
discussed, that eα (cosβ + isinβ ) = eα+iβ is Euler’s formula.

5.7 Related Rates and Implicit Differentiation
Related rates problems involve variables which are related by some expression and you
know the rate at which all but one of the variables are changing. Then the idea is to find
how fast the other variable is changing. The relation and rules of differentiation give a
relation between their derivatives and enable you to obtain the information.

Example 5.7.1 A point moves along the curve xy = 8 and it is observed that at the point
(2,4) , dx

dt = 3. Find dy
dt at this point.

This is a related rate problem, the relation between the variables being xy = 8. Thus
each variable is really a function of t. By the product rule, x′y+ y′x = 0 and at the point of
interest, certain things are known. Substituting these into the above equation gives 3(4)+
y′ (2) = 0. Then you solve for y′. Thus y′ =−6.

Example 5.7.2 The volume of a ball of radius r is given by V = 4
3 πr3. Suppose r is a

function of t. It is observed that dV
dt = 2π when the radius equals 4. Find dr

dt when the
radius is 4.

You have from the relation, V ′ = 4πr2r′. Now insert the given information. 2π =
4π (16)r′. Then solve for r′ to find that r′ = 1/32.

A similar process is implicit differentiation which I will illustrate with an example.

Example 5.7.3 Suppose y3x2 +3xy+y4 = 5. Assuming the relation defines y as a function
of x, determine y′ (x) at the point (1,1). Of course one should wonder whether the relation
really does define y as a function of x. This is all part of the implicit function theorem in
Section 24.
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See how this is similar to the related rates problems in the sense that you have a relation
between two variables. Differentiate with respect to x regarding y as a function of x. Then
3y2y′x3 + y3 (2x)+3y+3xy′+4y4y′ = 0. Here y′ means dy

dx . Now solve for y′. This yields

y′ =− 3y+2xy3

3x+3x3y2+4y4 . At the point of interest, y′ =− 3+2
3+3+4 =− 1

2 . It turns out that this formal
manipulation is perfectly all right provided the denominator in the above formula is not 0
and this is what the implicit function theorem says.

5.8 Exercises
1. Verify the last two lines in Table 5.5.

2. In each of the following, assume the relation defines y as a function of x for val-
ues of x and y of interest and find y′ (x) . This illustrates the technique of implicit
differentiation.

(a) xy2 + sin(y) = x3 +1

(b) y3 + xcos
(
y2
)
= x4

(c) ycos(x) = tan(y)cos
(
x2
)
+2

(d)
(
x2 + y2

)6
= x3y+3

(e) xy2+y
y5+x + cos(y) = 7

(f)
√

x2 + y4 sin(y) = 3x

(g) y3 sin(x)+ y2x2 = 2x2
y+ ln |y|

(h) y2 sin(y)x+ log3 (xy) = y2 +11

(i) sin
(
x2 + y2

)
+ sec(xy) = ex+y +

y2y +2

(j) sin
(
tan
(
xy2
))

+ y3 = 16

3. In each of the following, assume the relation defines y as a function of x for values
of x and y of interest. Use the chain rule to show y satisfies the given differential
equation.

(a) x2y+ siny = 7,
(
x2 + cosy

)
y′+2xy = 0.

(b) x2y3 + sin
(
y2
)
= 5, 2xy3 +

(
3x2y2 +2

(
cos
(
y2
))

y
)

y′ = 0.

(c) y2 sin(y)+ xy = 6,
(
2y(sin(y))+ y2 (cos(y))+ x

)
y′+ y = 0.

4. Suppose f (x+ y) = f (x)+ f (y) and f is continuous at 0. Find all solutions to this
functional equation which are continuous at x = 0. Now find all solutions which are
bounded near 0.

5. Suppose f (x+ y) = f (x) f (y) and f is differentiable and not identically zero. Find
all solutions to this functional equation. Hint: First show the functional equation
requires f > 0.

6. Suppose f (xy) = f (x)+ f (y) for x,y > 0. Suppose also f is differentiable. Find all
solutions to this functional equation.

7. The volume of a cylinder is πr2h and suppose it equals a constant value of 6π but
that dh

dt = 2 when r = 4. Find dr
dt when r = 4.

8. Let V = πr2h be the volume of a cylinder of radius r and height h. Suppose it is
observed that dV

dt = 2π , dr
dt = 2 when r = 2 and h = 4. Determine dh

dt .
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9. The ideal gas law is of the form PV = kT where k is a constant depending on the
gas and number of moles, T is the temperature, P the pressure, and V the volume.
Assuming these variables are all functions of t, suppose it is observed at some time
that T ′ (t) = 5, V (t) = 1,P(t) = 2, P′ (t) = 2. Determine V ′ (t) at this time.

10. Bernoulli’s law states that in an incompressible fluid, v2

2g + z+ P
γ
= C where C is

a constant. Here v is the speed, P is the pressure, and z is the height above some
reference point. The constants g and γ are the acceleration of gravity and the weight
density of the fluid. Suppose measurements indicate that dv

dt =−3, and dz
dt = 2. Find

dP
dt when v = 7 in terms of g and γ .

5.9 Local Extreme Points
When you are on top of a hill, you are at a local maximum although there may be other
hills higher than the one on which you are standing. Similarly, when you are at the bottom
of a valley, you are at a local minimum even though there may be other valleys deeper than
the one you are in. The word, “local” is applied to the situation because if you confine your
attention only to points close to your location, you are indeed at either the top or bottom.

Definition 5.9.1 Let f : D( f ) → R where here D( f ) is only assumed to be some
subset of R. Then x ∈ D( f ) is a local minimum (maximum) if there exists δ > 0 such that
whenever y∈B(x,δ )∩D( f ), it follows f (y)≥ (≤) f (x) . The plural of minimum is minima
and the plural of maximum is maxima.

Derivatives can be used to locate local maxima and local minima.

Note how the tangent line is horizontal. If you were not at a local maximum or local
minimum, the function would be falling or climbing and the tangent line would not be
horizontal.

Theorem 5.9.2 Suppose f : U → R where U is an open subset of R and suppose
x ∈U is a local maximum or minimum and f ′(x) exists. Then f ′ (x) = 0.

Proof: Since U is an open set, there exists δ > 0 such that (x−δ ,x+δ )⊆U . Now if
x is a local minimum,

f ′ (x) = lim
h→0+

f (x+h)− f (x)
h

≥ 0

f ′ (x) = lim
h→0−

f (x+h)− f (x)
h

≤ 0

Therefore, f ′ (x) = 0. The case where x is a local maximum is similar. You just turn around
the inequality signs in the above. ■

Points at which the derivative of a function equals 0 are sometimes called critical points.
Included in the set of critical points are those points where f ′ fails to exist. You could end
up with a local maximum or minimum at such a point. Think of y = |x|. When x = 0 no
derivative exists and it is a local minimum.

The following is a typical minimization problem, this one heavily dependent on geom-
etry.
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Example 5.9.3 Find the volume of the smallest right circular cone which can be circum-
scribed about a ball of radius 4 inches. Such a cone has volume equal to π

3 r2h where r is
the radius of the cone and h the height.

Consider the following picture of a cross section in which l is the length of the line
from the center of the ball to the to vertex of the cone as shown.

θ

4

l

The angle between the indicated radius of length 4 and the side of the cone is π/2 from
geometric considerations. Thus l sinθ = 4 and the volume of the cone is

π

3
(l +4)((l +4) tan(θ))2 .

2θ is no more than π and so θ < π/2. Thus tanθ is positive and equals sinθ√
1−sin2 θ

=

4/l√
1−(4/l)2 = 4√

l2−16
. Then the volume of the cone is

π

3
(l +4)

(
(l +4)

4√
l2 −16

)2

=
16
3

π

l2 −16
(l +4)3

It seems there should be a solution to this problem and so we only have to find it by taking
a derivative and setting it equal to 0 because the solution will surely be a local minimum.
To take the derivative, use the rules of differentiation developed above. The derivative is
− 16

3
π

(l−4)2

(
−l2 +8l +48

)
. Obviously you cannot have l = 4. Such a situation would not

even give a triangle. Therefore, the solution to the problem involves l2 − 8l − 48 = 0.
There are two solutions, l = 12 or l = −4, the latter making absolutely no sense at all.
Hence l = 12 must be the answer and the height of the cone is 16. The minimum volume
is then 16

3
π

122−16 (12+4)3 = 512
3 π. I think you probably could not do this problem without

the methods of calculus.
Now here is an example about minimizing cost. It is another example which you could

not work without the methods of calculus.

Exercise 5.9.4 A cylindrical can is to have volume 20π cubic inches. The top costs 2 cents
per square inch and the sides cost 1 cent per square inch. What is the radius of the can
which costs as little as possible.

You need 20π = πr2h and so r2h = 20. Now the cost is C = 2πrh+2πr2 (2) . Then the
total cost in terms of r is C = 40 π

r +4πr2. Thus, taking the derivative and setting equal to
0 yields the radius which minimizes the cost is 3√5 inches.
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This scheme in which you take the derivative and set it equal to zero might not find the
answer. It only gives candidates for the answer on the interior of an interval. Perhaps, like
the above two examples these are the only points of interest. However, in general, when
you look for the absolute maximum or minimum, you must consider the end points of the
interval also.

Example 5.9.5 Let f (x) = x3 −3x for x ∈ [0,4]. Find the maximum and minimum of this
function on this interval.

There exists a maximum and a minimum by the extreme value theorem. These could
occur on (0,4) or at an end point. To find possibilities on (0,4) , take the derivative and
set equal to 0. 3x2 − 3 = 0,x = 1. Now x = 1,0,4 are all possibilities. f (0) = 0, f (1) =
−2, f (4) = 52. Thus the maximum occurs at the right endpoint and is 52. The minimum
occurs when x = 1 and is −2.

The above illustrates how it is done in general. You consider critical points and end
points. Then among these points, you find the one which gives the best answer.

5.10 Exercises
1. If f ′ (x) = 0, is it necessary that x is either a local minimum or local maximum?

Hint: Consider f (x) = x3.

2. A continuous function f defined on [a,b] is to be maximized. It was shown above
in Theorem 5.9.2 that if the maximum value of f occurs at x ∈ (a,b) , and if f
is differentiable there, then f ′ (x) = 0. However, this theorem does not say anything
about the case where the maximum of f occurs at either a or b. Describe an inequality
which will be satisfied at the point where f achieves its maximum on [a,b] assuming
f ′ exists on [a,b]. Describe an inequality which will locate the minimum on [a,b]
also under the assumption that f ′ exists. Hint: If f achieves its maximum at an
interior point x, then f ′ (x)(x− y) = 0 for all y ∈ [a,b]. Look for something like this
except with an inequality rather than an equal sign.

3. Let y = xx for x ∈ (0,∞). Find y′ (x) .

4. Show using the product rule that y′ (x) = 2x for y(x) = x2. Now use induction to
verify that for n a positive integer, if y(x) = xn, then y′ (x) = nxn−1.

5. Find the maximum and minimum values and the values of x where these are achieved
for the function f (x) = x+

√
25− x2.

6. A piece of wire of length L is to be cut in two pieces. One piece is bent into the shape
of an equilateral triangle and the other piece is bent to form a square. How should
the wire be cut to maximize the sum of the areas of the two shapes? How should the
wire be bent to minimize the sum of the areas of the two shapes? Hint: Be sure to
consider the case where all the wire is devoted to one of the shapes separately. This
is a possible solution even though the derivative is not zero there.

7. Lets find the point on the graph of y = x2

4 which is closest to (0,1) . One way to

do it is to observe that a typical point on the graph is of the form
(

x, x2

4

)
and then
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to minimize the function f (x) = x2 +
(

x2

4 −1
)2

. Taking the derivative of f yields

x+ 1
4 x3 and setting this equal to 0 leads to the solution, x = 0. Therefore, the point

closest to (0,1) is (0,0) . Now lets do it another way. Lets use y= x2

4 to write x2 = 4y.
Now for (x,y) on the graph, it follows it is of the form

(√
4y,y

)
. Therefore, minimize

f (y) = 4y+(y−1)2 . Take the derivative to obtain 2+ 2y which requires y = −1.
However, on this graph, y is never negative. What on earth is the problem?

8. Find the dimensions of the rectangle of largest area that can be inscribed in the el-
lipse, x2

9 + y2

4 = 1.

9. A function f , is said to be odd if f (−x) =− f (x) and a function is said to be even if
f (−x) = f (x) . Show that if f is even, then f ′ is odd and if f is odd, then f ′ is even.
Sketch the graph of a typical odd function and a typical even function.

10. Find the point on the curve, y =
√

25−2x which is closest to (0,0) .

11. A street is 200 feet long and there are two lights located at the ends of the street.
One of the lights is 1

8 times as bright as the other. Assuming the brightness of light
from one of these street lights is proportional to the brightness of the light and the
reciprocal of the square of the distance from the light, locate the darkest point on the
street.

12. Find the maximum and minimum values for the following functions defined on the
given intervals.

(a) x3 −3x2 + x−7, [0,4]

(b) ln
(
x2 − x+2

)
, [0,2]

(c) x3 +3x, [−1,10]

(d) x2+1+3x3

3x2+5 , [−1,1]

(e) sin
(
x3 − x

)
, [−1,1]

(f) x2 − x tanx, [−1,1]

(g) 1−2x2 + x4, [−2,2]

(h) ln
(
2−2x2 + x4

)
, [−1,2]

(i) x2 +4x−8, [−4,2]

(j) x2 −3x+6, [−2,4]

(k) −x2 +3x, [−4,2]

(l) x+ 1
x , (0,∞)

13. A cylindrical can is to be constructed to hold 30 cubic inches. The top and bottom of
the can are constructed of a material costing one cent per square inch and the sides
are constructed of a material costing 2 cents per square inch. Find the minimum cost
for such a can.

14. Two positive numbers sum to 8. Find the numbers if their product is to be as large as
possible.

15. The ordered pair (x,y) is on the ellipse x2 +4y2 = 4. Form the rectangle which has
(x,y) as one end of a diagonal and (0,0) at the other end. Find the rectangle of this
sort which has the largest possible area.

16. A rectangle is inscribed in a circle of radius r. Find the formula for the rectangle of
this sort which has the largest possible area.



5.10. EXERCISES 145

17. A point is picked on the ellipse x2 + 4y2 = 4 which is in the first quadrant. Then a
line tangent to this point is drawn which intersects the x axis at a point x1 and the y
axis at the point y1. The area of the triangle formed by the y axis, the x axis, and the
line just drawn is thus x1y1

2 . Out of all possible triangles formed in this way, find the
one with smallest area.

18. Find maximum and minimum values if they exist for the function f (x) = lnx
x for

x > 0.

19. Describe how you would find the maximum value of the function f (x) = lnx
2+sinx for

x ∈ (0,6) if it exists. Hint: You might want to use a calculator to graph this and get
an idea what is going on.

20. A rectangular beam of height h and width w is to be sawed from a circular log of
radius 1 foot. Find the dimensions of the strongest such beam assuming the strength
is of the form kh2w. Here k is some constant which depends on the type of wood
used.

w

h
1

21. A farmer has 600 feet of fence with which to enclose a rectangular piece of land that
borders a river. If he can use the river as one side, what is the largest area that he can
enclose.

22. An open box is to be made by cutting out little squares at the corners of a rectangular
piece of cardboard which is 20 inches wide and 40 inches long and then folding up
the rectangular tabs which result. What is the largest possible volume which can be
obtained?

23. A feeding trough is to be made from a rectangular piece of metal which is 3 feet wide
and 12 feet long by folding up two rectangular pieces of dimension one foot by 12
feet. What is the best angle for this fold?

24. Find the dimensions of the right circular cone which has the smallest area given the
volume is 30π cubic inches. The volume of the right circular cone is (1/3)πr2h and
the area of the cone is πr

√
h2 + r2.

25. A wire of length 10 inches is cut into two pieces, one of length x and the other of
length 10−x. One piece is bent into the shape of a square and the other piece is bent
into the shape of a circle. Find the two lengths such that the sum of the areas of the
circle and the square is as large as possible. What are the lengths if the sum of the
two areas is to be as small as possible.

26. A hiker begins to walk to a cabin in a dense forest. He is walking on a road which
runs from East to West and the cabin is located exactly one mile north of a point two
miles down the road. He walks 5 miles per hour on the road but only 3 miles per
hour in the woods. Find the path which will minimize the time it takes for him to get
to the cabin.
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27. A park ranger needs to get to a fire observation tower which is one mile from a long
straight road in a dense forest. The point on the road closest to the observation tower
is 10 miles down the road on which the park ranger is standing. Knowing that he can
walk at 4 miles per hour on the road but only one mile per hour in the forest, how
far down the road should he walk before entering the forest, in order to minimize the
travel time?

28. A refinery is on a straight shore line. Oil needs to flow from a mooring place for
oil tankers to this refinery. Suppose the mooring place is two miles off shore from a
point on the shore 8 miles away from the refinery which is also on the shore and that
it costs five times as much to lay pipe under water than above the ground. Describe
the most economical route for a pipeline from the mooring place to the refinery.

29. Two hallways, one 5 feet wide and the other 6 feet wide meet. It is desired to carry
a ladder horizontally around the corner. What is the longest ladder which can be
carried in this way? Hint: Consider a line through the inside corner which extends
to the opposite walls. The shortest such line will be the length of the longest ladder.

30. A window is to be constructed for the wall of a church which is to consist of a
rectangle of height b surmounted by a half circle of radius a. Suppose the total
perimeter of the window is to be no more than 4π + 8 feet. Find the dimensions of
the window which will admit the most light.

31. ∗ A parabola opens down. The vertex is at the point (0,a) and the parabola intercepts
the x axis at the points (−b,0) and (b,0) . A tangent line to the parabola is drawn
in the first quadrant which has the property that the triangle formed by this tangent
line and the x and y axes has smallest possible area. Find a relationship between a
and b such that the normal line to the point of tangency passes through (0,0) . Also
determine what kind of triangle this is.

32. Show that for r a rational number and y = xr, it must be the case that if this function
is differentiable, then y′ = rxr−1. This was shown in more generality, but use the
chain rule to verify this directly.

33. Let

f (x) =

 1 if x ∈Q

0 if x /∈Q

Now let g(x) = x2 f (x) . Find where g is continuous and differentiable if anywhere.

34. Use induction to show that for u,v smooth functions,

dn

dxn (uv) =
n

∑
k=0

 n

k

u(n−k)v(k)

Here v(k) denotes the kth derivative of v.
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5.11 Mean Value Theorem
The mean value theorem is the most important theorem about the derivative of a function of
one variable. It pertains only to a real valued function of a real variable. The best versions
of many other theorems depend on this fundamental result. The mean value theorem is
based on the following special case known as Rolle’s theorem1. It is an existence theorem
and like the other existence theorems in analysis, it depends on the completeness axiom.
This was only realized in the nineteenth century.

Theorem 5.11.1 Suppose f : [a,b]→R is continuous, f (a)= f (b) , and f : (a,b)→
R has a derivative at every point of (a,b) . Then there exists x ∈ (a,b) such that f ′ (x) = 0.

Proof: Suppose first that f (x) = f (a) for all x ∈ [a,b] . Then any x ∈ (a,b) is a point
such that f ′ (x) = 0. If f is not constant, either there exists y ∈ (a,b) such that f (y)> f (a)
or there exists y ∈ (a,b) such that f (y) < f (b) . In the first case, the maximum of f is
achieved at some x ∈ (a,b) and in the second case, the minimum of f is achieved at some
x ∈ (a,b). Either way, Theorem 5.9.2 implies f ′ (x) = 0. ■

The next theorem is known as the Cauchy mean value theorem. It is the best version of
this important theorem.

Theorem 5.11.2 Suppose f ,g are continuous on [a,b], differentiable on (a,b) .
Then there exists x ∈ (a,b) such that

f ′ (x)(g(b)−g(a)) = g′ (x)( f (b)− f (a)) .

Proof: Let
h(x)≡ f (x)(g(b)−g(a))−g(x)( f (b)− f (a)) .

Then letting x = a and then letting x = b, a short computation shows h(a) = h(b) . Also, h
is continuous on [a,b] and differentiable on (a,b) . Therefore Rolle’s theorem applies and
there exists x ∈ (a,b) such that

h′ (x) = f ′ (x)(g(b)−g(a))−g′ (x)( f (b)− f (a)) = 0.■

Letting g(x) = x, the usual version of the mean value theorem is obtained. Here is the
usual picture which describes the theorem.

a b

Corollary 5.11.3 Let f be a continuous real valued function defined on [a,b] and dif-
ferentiable on (a,b) . Then there exists x ∈ (a,b) such that f (b)− f (a) = f ′ (x)(b−a) .

1Rolle is remembered for Rolle’s theorem more than his work on diophantine equations. Ironically, he did not
like calculus, in particular infinitesimals. These somewhat ill defined ideas were finally expunged from calculus in
the nineteenth century when the concept of limits, and completeness of R were carefully formulated. The notion
of infinitesimals can be made precise but this was not the case back then.
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Note that f (a)− f (b) = f ′ (x)(a−b).

Corollary 5.11.4 Suppose f ′ (x) = 0 for all x ∈ (a,b) where a ≥−∞ and b ≤ ∞. Then
f (x) = f (y) for all x,y ∈ (a,b) . Thus f is a constant.

Proof: If this is not true, there exists x1 and x2 such that f (x1) ̸= f (x2) . Then by the
mean value theorem, 0 ̸= f (x1)− f (x2)

x1−x2
= f ′ (z) for some z between x1 and x2. This contradicts

the hypothesis that f ′ (x) = 0 for all x. ■

Corollary 5.11.5 Suppose f ′ (x)> 0 for all x ∈ (a,b) where a ≥−∞ and b ≤ ∞. Then
f is strictly increasing on (a,b) . That is, if x < y, then f (x) < f (y) . If f ′ (x) ≥ 0, then f
is non-decreasing in the sense that whenever x < y it follows that f (x)≤ f (y) . If f ′ (x)<
0 on (a,b) , replace “increasing” with decreasing. If f ′ (x) ≤ 0 on (a,b) , replace non-
decreasing with non-increasing.

Proof: Let x < y. Then by the mean value theorem, there exists z ∈ (x,y) such that
0 < f ′ (z) = f (y)− f (x)

y−x . Since y > x, it follows f (y) > f (x) as claimed. Replacing < by ≤
in the above equation and repeating the argument gives the second claim. The last claims
are shown similarly. ■

Suppose f (t) gives the x coordinate at time t of an object. Then the average velocity
on the time interval [t, t +h] equals f (t+h)− f (t)

h . By the mean value theorem, this would
equal f ′ (s) for some s ∈ (t, t +h). Assuming that f ′ is continuous, when you allow h → 0,
this yields that the instantaneous velocity should be defined as f ′ (t). The speed is defined
as the magnitude of the velocity. Thus the speed is | f ′ (t)|.

5.12 Exercises
1. Sally drives her Saturn over the 110 mile toll road in exactly 1.3 hours. The speed

limit on this toll road is 70 miles per hour and the fine for speeding is 10 dollars per
mile per hour over the speed limit. How much should Sally pay?

2. Two cars are careening down a freeway in Utah weaving in and out of traffic, which
is itself exceeding the speed limit. Car A passes car B and then car B passes car A as
the driver makes obscene gestures. This infuriates the driver of car A who passes car
B while firing his handgun at the driver of car B. Show there are at least two times
when both cars have the same speed. Then show there exists at least one time when
they have the same acceleration. The acceleration is the derivative of the velocity.

3. Show the cubic function f (x) = 5x3 +7x−18 has only one real zero.

4. Suppose f (x) = x7 + |x|+ x− 12. How many solutions are there to the equation,
f (x) = 0?

5. Let f (x)= |x−7|+(x−7)2−2 on the interval [6,8] . Then f (6)= 0= f (8) . Does it
follow from Rolle’s theorem that there exists c ∈ (6,8) such that f ′ (c) = 0? Explain
your answer.

6. Suppose f and g are differentiable functions defined on R. Suppose also that it is
known that | f ′ (x)|> |g′ (x)| for all x and that | f ′ (t)|> 0 for all t. Show that whenever
x ̸= y, it follows | f (x)− f (y)| > |g(x)−g(y)| . Hint: Use the Cauchy mean value
theorem, Theorem 5.11.2.
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7. Show that, like continuous functions, functions which are derivatives have the in-
termediate value property. This means that if f ′ (a) < 0 < f ′ (b) then there exists
x ∈ (a,b) such that f ′ (x) = 0. Hint: Argue the minimum value of f occurs at an
interior point of [a,b] .

8. Find an example of a function which has a derivative at every point but such that
the derivative is not everywhere continuous. Hint: Consider something involving
x2 sin(1/x).

9. ∗Let f be a real continuous function defined on the interval [0,1] . Also suppose
f (0) = 0 and f (1) = 1 and f ′ (t) exists for all t ∈ (0,1) . Show there exists n distinct
points {si}n

i=1 of the interval such that ∑
n
i=1 f ′ (si) = n. Hint: Consider the mean

value theorem applied to successive pairs in the following sum. f
( 1

3

)
− f (0) +

f
( 2

3

)
− f

( 1
3

)
+ f (1)− f

( 2
3

)
10. ∗Now suppose f : [0,1]→ R is continuous and differentiable on (0,1) and f (0) = 0

while f (1) = 1. Show there are distinct points {si}n
i=1 ⊆ (0,1) such that

n

∑
i=1

(
f ′ (si)

)−1
= n.

Hint: Let 0 = t0 < t1 < · · · < tn = 1 and pick xi ∈ f−1 (ti) such that these xi are
increasing and xn = 1,x0 = 0. Explain why you can do this. Then argue ti+1 − ti =
f (xi+1)− f (xi) = f ′ (si)(xi+1 − xi) and so xi+1−xi

ti+1−ti
= 1

f ′(si)
. Now choose the ti to be

equally spaced.

11. Show that (x+1)3/2 − x3/2 > 2 for all x ≥ 2. Explain why for n a natural number
larger than or equal to 1, there exists a natural number m such that (n+1)3 >m2 > n3.
Hint: Verify directly for n = 1 and use the above inequality to take care of the case
where n ≥ 2. This shows that between the cubes of any two natural numbers there is
the square of a natural number. This interesting fact was used by Jacobi in 1835 to
show a very important theorem in complex analysis.

12. An initial value problem for undamped vibration is

differential equation︷ ︸︸ ︷
y′′+ω

2y = 0 ,

initial conditions︷ ︸︸ ︷
y(0) = y0,y′ (0) = y1

You are looking for a function y(t) which satisfies this equation.

(a) First show that if you have a complex valued function z(t) satisfying the differ-
ential equation, then the real and imaginary parts of z denoted by Rez and Imz
also solve the differential equation.

(b) Show that if y1 and y2 solve the differential equation, then if C1,C2 are arbitrary
constants, then C1y1 +C2y2 also solves the differential equation.

(c) Now use Euler’s formula in Section 5.6 to show that z= eiωt ,z= e−iωt solve the
differential equation. Use the first part to find that y1 (t) = sinωt and y2 (t) =
cosωt both solve the above equation.



150 CHAPTER 5. THE DERIVATIVE

(d) Show there exist constants C1,C2 such that C1 cos(ωt)+C2 sin(ωt) solve both
the differential equation and the initial conditions where y1 is the real part and
y2 is the imaginary part of z.

(e) Show that there is only one solution to y′′ + ω2y = 0,y(0) = y0,y′ (0) = y1
by assuming there are two. Then the difference of these two would satisfy
y′′+ω2y = 0,y(0) = 0,y′ (0) = 0. Verify the only solution to this is y = 0.

13. Find the solution to the differential equation y′′+2ay′+b2y= 0,y(0)= y0,y′ (0)= y1
assuming that b2 − a2 > 0. Hint: Re write the equation. Let z = eaty. Then show
that z′′ +

(
b2 −a2

)
z = 0 and z(0) = y0,z′ (0) = ay0 + y1 use the above problem if

b2 −a2 > 0.

5.13 First and Second Derivative Tests
These tests are sometimes used to determine whether a critical point is a local minimum or
a local maximum. First consider the first derivative test.

Theorem 5.13.1 Suppose f is defined near x and is differentiable on

(x−δ ,x)∪ (x,x+δ )

and continuous on [x−δ ,x]∪ [x,x+δ ] and suppose f ′ (y)< 0 for y∈ (x−δ ,x) and f ′ (y)>
0 for y ∈ (x,x+δ ). Then x is a local minimum point. That is, for all y ∈ (x−δ ,x+δ ),
f (x) < f (y). If f is defined near x and is differentiable on (x−δ ,x)∪ (x,x+δ ) and
continuous on [x−δ ,x]∪ [x,x+δ ] and f ′ (y) > 0 for y ∈ (x−δ ,x) and f ′ (y) < 0 for y ∈
(x,x+δ ). Then x is a local maximum point. That is, for all y ∈ (x−δ ,x+δ ) , f (x)> f (y).
You can replace all strict inequalities with the corresponding less than or equal or greater
than or equal.

Proof: This follows right away from the mean value theorem. Suppose the first case.
The proof of the second is exactly the same. Say y ∈ (x−δ ,x) . Then by the mean value
theorem, f (y)− f (x) = f ′ (t)(y− x)> 0 because both f ′ (t) ,(y− x)< 0. If y ∈ (x,x+δ )
then f (y)− f (x) = f ′ (t)(y− x) > 0 because by assumption both terms f ′ (t) and (y− x)
are positive. In the second case it works the same way with the inequalities all turned
around. It all works the same way if you replace < with ≤ and > with ≥. ■

Now it is time for the second derivative test. It is an inferior sort of thing since it does
not always work.

Lemma 5.13.2 Suppose f has a continuous derivative near a point x and also f ′ (x)>
0. Then there exists δ > 0 such that f is increasing on (x−δ ,x+δ ) . If f ′ (x) < 0, then
there exists δ > 0 such that f is decreasing on (x−δ ,x+δ ) .

Proof: If f ′ (x) > 0 then there exists δ > 0 such that f ′ (y) > 0 for y ∈ (x−δ ,x+δ )
thanks to continuity of f ′. Then by the mean value theorem, f is increasing on this interval.
Indeed if x, x̂ are in (x−δ ,x+δ ) with x < x̂, then f (x̂)− f (x) = f ′ (y)(x̂− x)> 0. It works
the same way if f ′ (x)< 0 except the inequalities are turned around. ■

Theorem 5.13.3 Suppose f , defined on an open interval, has continuous first and
second derivatives near x and f ′ (x) = 0. Then
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1. If f ′′ (x)> 0, then x is a local minimum.

2. If f ′′ (x)< 0 then x is a local maximum.

3. If f ′′ (x) = 0 the test fails.

Proof: Consider case 1. By Lemma 5.13.2, there is an interval (x−δ ,x+δ ) on which
f ′ is strictly increasing. Thus f ′ (y) > 0 for y > x and f ′ (y) < 0 for y < x. By Theorem
5.13.1, x is a local minimum. Part 2. is similar. Just turn around the inequalities. To see the
test fails if f ′′ (x) = 0, consider f (x) = x4, f (x) =−x4 and f (x) = x3. Each has f ′ (0) = 0
the first is a local minimum at 0, the second has a local maximum at 0 and the third has
neither a local minimum nor a local maximum at 0. ■

The following picture may help remember. The idea is that if the second derivative is
positive, the shape of the curve is a smile. If the second derivative is negative, the graph is
a frown. If it is neither positive nor negative, you don’t know what the graph is. It could be
smiling, frowning, or neither.

Example 5.13.4 Consider f (x)≡ x4 − x3. Find and classify the critical points.

To find critical points, take the derivative and set equal to 0. Thus 4x3 − 3x2 = 0 and
so x = 0,0, 3

4 . The second derivative is 12x2 −6x. This equals 0 when x = 0 so the second
derivative fails. However, you could look at the first derivative. It is negative if x is small
and positive and it is also negative if x is small and negative. Therefore, the function is
decreasing near 0. As to the other critical point, 12

( 3
4

)2 −6
( 3

4

)
= 9

4 which is positive and
so this critical point is a local minimum.

5.14 Exercises
1. For 1 ≥ x ≥ 0, and p ≥ 1, show that (1− x)p ≥ 1− px. Hint: This can be done using

the mean value theorem. Define f (x) ≡ (1− x)p − 1+ px and show that f (0) = 0
while f ′ (x)≥ 0 for all x ∈ (0,1) .

2. The graph of a function y = f (x) is said to be “convex” if whenever t ∈ [0,1] ,

f (x+ t (y− x))≤ (1− t) f (x)+ t f (y)

Show that if f is twice differentiable on an open interval, (a,b) and f ′′ (x)> 0 for all
x, then the graph of f is convex.

3. Suppose you have a function f which has two derivatives. Suppose f ′′ > 0. Give a
sketch of the graph of f . In particular, show that the overall shape of the function is
that it curves up. See the next problem.
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4. Show that if the graph of a function f defined on an interval (a,b) is convex, then if
f ′ exists on (a,b) , it must be the case that f ′ is a non decreasing function. Note you
do not know the second derivative exists.

5. Convex functions defined in Problem 2 have a very interesting property. Suppose
{ai}n

i=1 are all nonnegative, sum to 1, and suppose φ is a convex function defined on
R. Then

φ

(
n

∑
k=1

akxk

)
≤

n

∑
k=1

akφ (xk) .

Verify this interesting inequality.

6. Find all critical points of the function f (x) = 1
4 x4 − 2x3 + 11

2 x2 − 6x. Classify each
critical point according to whether it is a local minimum, maximum, or neither.

7. Let f (x) = cos(x)+ sin(x) . Describe the critical points and classify these. Hint:
You might try writing as

√
2cos

(
x− π

4

)
.

8. Let f (x)≡ x4 −6x3 +12x2 −10x+3. Find and classify the critical points.

5.15 Taylor Series Approximations
One of the really nice applications of the derivative is to the approximation of functions like
sin(x) with a polynomial. The reason this is so nice is that it is easy to compute the value
of a polynomial at various points. If someone asks for sin(.1), how do you find it? You
may say you look on your calculator, but how does it find it? In this section, approximation
with polynomials will be discussed. The main result is the following theorem. A version is
due to Lagrange, about 1790. 2

Theorem 5.15.1 Suppose f has n+ 1 derivatives (That is f (n+1) (t) exists for t ∈
(a,b)) on an interval (a,b) and let c ∈ (a,b) . Then if x ∈ (a,b) , there exists ξ between c
and x such that

f (x) = f (c)+
n

∑
k=1

f (k) (c)
k!

(x− c)k +
f (n+1) (ξ )

(n+1)!
(x− c)n+1 .

(In this formula, the symbol ∑
0
k=1 ak will denote the number 0.)

2Joseph-Louis Lagrange, 25 January 1736 - 10 April 1813 was very important in the development of mathe-
matics. He was actually Italian but lived in France. The above is his French name. With Euler, he invented the
calculus of variations. The Euler Lagrange equations are due to them. He wrote Mécanique analytique an impor-
tant work on mechanics. Lagrange was able to describe analytically the motion of a spinning top using so called
Lagrangian mechanics which is an amazing method used to obtain differential equations of motion. He also made
major contributions to number theory and astronomy. He was among the group of scientists who provided us with
the metric system. Like Laplace, another important figure in the development of mathematics, and in contrast to
many earlier mathematicians, Lagrange was not particularly concerned with theology, a typical attitude for this
time.

This period of time, sometimes called the enlightenment, saw major intellectual achievements in virtually every
human concern. By contrast, in frontier America, believers in magic attempted to mollify guardian spirits through
suitable rituals to prevent buried treasure from slipping further into the earth before they could get it. Some also
created bizarre religious cults.
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Proof: There exists K such that

f (x)−

(
f (c)+

n

∑
k=1

f (k) (c)
k!

(x− c)k +K (x− c)n+1

)
= 0 (5.6)

In fact, solving for K,

K =
− f (x)+

(
f (c)+∑

n
k=1

f (k)(c)
k! (x− c)k

)
(x− c)n+1 .

Now define F (t) for t in the closed interval determined by x and c by

F (t)≡ f (x)−

(
f (t)+

n

∑
k=1

f (k) (t)
k!

(x− t)k +K (x− t)n+1

)
.

The c in 5.6 got replaced by t.
Therefore, F (c) = 0 and also F (x) = 0. Then

F ′ (t) = −

 f ′ (t)−

 ∑
n
k=1

f (k)(t)
k! k (x− t)k−1 −∑

n
k=1

f (k+1)(t)
k! (x− t)k

+K (n+1)(x− t)n


= −

 f ′ (t)−

 ∑
n−1
k=0

f (k+1)(t)
k! (x− t)k −∑

n
k=1

f (k+1)(t)
k! (x− t)k

+K (n+1)(x− t)n


= −

(
f ′ (t)−

(
f ′ (t)− f (n+1) (t)(x− t)n +K (n+1)(x− t)n

))
= − f ′ (t)+ f ′ (t)− f (n+1) (t)(x− t)n +K (n+1)(x− t)n

= − f (n+1) (t)
1
n!

(x− t)n +K (n+1)(x− t)n

By the mean value theorem or Rolle’s theorem, there exists ξ between x and c such that
F ′ (ξ ) = 0. Therefore,

− f (n+1) (ξ )
1
n!

(x−ξ )n +K (n+1)(x−ξ )n = 0

and so K (n+1) = f (n+1) (ξ ) 1
n! , K = f (n+1)(ξ )

(n+1)! ■

The term f (n+1)(ξ )
(n+1)! (x− c)n+1 , is called the remainder and this particular form of the

remainder is called the Lagrange form of the remainder.
Note how the approximations depend on the derivatives evaluated at c and the part of

the approximation before the remainder is called the Taylor series approximation for f
expanded about c.

Example 5.15.2 Find the Taylor series for ex expanded about 0.

In this case, all derivatives are ex and so f (n) (0) , the nth derivative evaluated at 0, is
always 1. Therefore,

ex =
n

∑
k=0

xn

n!
+

eξ xn+1

(n+1)!
, some ξ between 0 and x. (5.7)
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Example 5.15.3 Show ex = limn→∞ ∑
n
k=0

xk

k! .

This is pretty easy if |x| ≤ 1. This is because
∣∣∣ex −∑

n
k=0

xn

n!

∣∣∣ ≤ eξ

(n+1)! ≤
e

(n+1)! . Clearly
the term at the end converges to 0 as n → ∞. Now suppose you have arbitrary x. This works

out exactly the same for arbitrary x if it can be shown that limn→∞
e|x||x|n+1

(n+1)! = 0. This is

because x → ex is an increasing function. It suffices to show that for r > 0, limn→∞
rn

n! = 0.

Why would this be so? It is because (rn+1/(n+1)!)
rn/n! = r

n+1 < 1
2 for all n large enough. Say

this happens for all n ≥ N. Then, letting an =
rn

n! to save space, this has shown that there is
some N such that ak+1/ak ≤ 1

2 for all k ≥ N. Thus, for k > N,

ak+1 ≤
1
2

ak ≤
1
22 ak−1 ≤ ·· · ≤ 1

2k−N aN =
1
2k

(
aN2N)

clearly limk→∞
1
2k = 0 and so this shows the desired result that limn→∞

rn

n! = 0.

Exercise 5.15.4 What is e to several decimal places?

From the above,
∣∣e−∑

n
k=0

1
k!

∣∣ ≤ e
(n+1)! . One can easily see that ln3 > 1 directly from

the definition of ln . Therefore, 3 > e. Also 3
10! ≤ 10−6. It follows that ∑

10
k=0

1
k! is within

10−6 of e. Therefore, ∑
10
k=0

1
k! = 2.7182818 is within 10−6 of e.

5.16 Exercises
1. Let f have n derivatives on an open interval containing c. Suppose you desire to

approximate f (x) with a polynomial pn (x) = ∑
n
k=0 ak (x− c)k such that both pn and

f have the same first n derivatives at c. Show that it must be the case that ak =
f (k)(c)

k! .

2. Show that sin(x) = ∑
n
k=0 (−1)k x2k+1

(2k+1)! +
sin(2n+2)(ξ )x2n+2

(2n+2)! for some ξ between 0 and
x. Find sin(.1) to a few decimal places and estimate how close your approximation
is using the remainder term.

3. Show that cos(x) = ∑
n
k=0 (−1)k x2k

(2k)! +
cos(2n+2)(ξ )x2n+1

(2n+1)! for some ξ between 0 and x.
Find cos(.1) to a few decimal places and estimate how close your approximation is
using the remainder term.

4. Explain why, for |x| ≤ 1, cos(x) = limn→∞ ∑
n
k=0 (−1)k x2k

(2k)! .

5. Suppose you want to find a function y such that y′ (x)+xy(x) = sin(x) and y(0) = 1.
This is called an initial value problem for y. Find a polynomial of degree 3 which will
approximate the solution to this equation in the sense that the first three derivatives
of both y and the polynomial coincide at x = 0, assuming there is such a solution y.
Hint: Use Problem 1 and the differential equation to determine this polynomial.

6. The following is the graph of a function and there are two points indicated (x1,0)
and (x2,0) , the latter coming from the intersection of the tangent line to the graph of
the function at (x1, f (x1)) and the x axis as shown.
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x1x2
Determine a formula for x2 in terms of the function and its derivative evaluated at x1.
The idea is that x2 is a better approximation to a solution to f (x) = 0 than x1. Now
describe an iterative procedure which hopefully will yield a sequence of approximate
solutions to f (x)= 0 which converges to a solution to this equation. If you do it right,
it is called the Newton Ralphson procedure.

7. Use the above Newton Ralphson procedure to find
√

3 valid to four decimal places.

8. Consider the function y= x1/3 which has a zero at x= 0. Show that the above Newton
Ralphson method will not work for this example. Is there some condition which will
cause the above procedure to work?

9. If x is small and positive, explain why tanx− x > 0. Hint: This amounts to showing
that sinx > xcos(x) . Now use Taylor series approximations.

5.17 L’Hôpital’s Rule
There is an interesting rule which is often useful for evaluating difficult limits. This is
called L’Hôpital’s3 rule. The best versions of this rule are based on the Cauchy Mean value
theorem, Theorem 5.11.2 on Page 147.

Theorem 5.17.1 Let [a,b]⊆ [−∞,∞] and suppose f ,g are functions which satisfy,

lim
x→b−

f (x) = lim
x→b−

g(x) = 0, (5.8)

and f ′ and g′ exist on (a,b) with g′ (x) ̸= 0 on (a,b). Suppose also that

lim
x→b−

f ′ (x)
g′ (x)

= L. (5.9)

Then

lim
x→b−

f (x)
g(x)

= L. (5.10)

Proof: By the definition of limit and 5.9 there exists c < b such that if t > c, then∣∣∣∣ f ′ (t)
g′ (t)

−L
∣∣∣∣< ε

2
.

3L’Hôpital published the first calculus book in 1696. This rule, named after him, appeared in this book. The
rule was actually due to Bernoulli who had been L’Hôpital’s teacher. L’Hôpital did not claim the rule as his
own but Bernoulli accused him of plagiarism. Nevertheless, this rule has become known as L’Hôpital’s rule ever
since. There was entirely too much squabbling about who originated various ideas during this period of time. The
version of the rule presented here is superior to what was discovered by Bernoulli and depends on the Cauchy
mean value theorem which was found over 100 years after the time of L’Hôpital. Cauchy often saw things which
were both significant and unobserved by all the others before him. In addition to this, he invented whole new parts
of mathematics such as complex analysis and made significant contributions to mechanics and algebra.
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Now pick x,y such that c < x < y < b. By the Cauchy mean value theorem, there exists
t ∈ (x,y) such that

g′ (t)( f (x)− f (y)) = f ′ (t)(g(x)−g(y)) .

Since g′ (s) ̸= 0 for all s ∈ (a,b) it follows from the mean value theorem g(x)−g(y) ̸= 0.
Therefore,

f ′ (t)
g′ (t)

=
f (x)− f (y)
g(x)−g(y)

and so, since t > c, ∣∣∣∣ f ′ (t)
g′ (t)

−L
∣∣∣∣= ∣∣∣∣ f (x)− f (y)

g(x)−g(y)
−L
∣∣∣∣< ε

2
.

Now taking limy→b−, ∣∣∣∣ f (x)
g(x)

−L
∣∣∣∣≤ ε

2
< ε.

Since ε > 0 is arbitrary, this shows 5.10. ■
The following corollary is proved in the same way.

Corollary 5.17.2 Let [a,b]⊆ [−∞,∞] and suppose f ,g are functions which satisfy,

lim
x→a+

f (x) = lim
x→a+

g(x) = 0, (5.11)

and f ′ and g′ exist on (a,b) with g′ (x) ̸= 0 on (a,b). Suppose also that

lim
x→a+

f ′ (x)
g′ (x)

= L. (5.12)

Then

lim
x→a+

f (x)
g(x)

= L. (5.13)

Here is a simple example which illustrates the use of this rule.

Example 5.17.3 Find limx→0
5x+sin3x

tan7x .

The conditions of L’Hôpital’s rule are satisfied because the numerator and denomina-
tor both converge to 0 and the derivative of the denominator is nonzero for x close to 0.
Therefore, if the limit of the quotient of the derivatives exists, it will equal the limit of the
original function. Thus,

lim
x→0

5x+ sin3x
tan7x

= lim
x→0

5+3cos3x
7sec2 (7x)

=
8
7
.

Sometimes you have to use L’Hôpital’s rule more than once.

Example 5.17.4 Find limx→0
sinx−x

x3 .

Note that limx→0 (sinx− x) = 0 and limx→0 x3 = 0. Also, the derivative of the de-
nominator is nonzero for x close to 0. Therefore, if limx→0

cosx−1
3x2 exists and equals L,

it will follow from L’Hôpital’s rule that the original limit exists and equals L. How-
ever, limx→0 (cosx−1) = 0 and limx→0 3x2 = 0 so L’Hôpital’s rule can be applied again
to consider limx→0

−sinx
6x . From L’Hôpital’s rule, if this limit exists and equals L, it will

follow that limx→0
cosx−1

3x2 = L and consequently limx→0
sinx−x

x3 = L. But, limx→0
−sinx

6x =

limx→0
(−1

6

) sinx
x = −1

6 . Therefore, by L’Hôpital’s rule, limx→0
sinx−x

x3 = −1
6 .
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Warning 5.17.5 Always check assumptions of L’Hôpital’s rule before using
it.

Example 5.17.6 Find limx→0+
cos2x

x .

The numerator becomes close to 1 and the denominator gets close to 0. Therefore, the
assumptions of L’Hôpital’s rule do not hold and so it does not apply. In fact there is no limit
unless you define the limit to equal +∞. Now lets try to use the conclusion of L’Hôpital’s
rule even though the conditions for using this rule are not verified. Take the derivative
of the numerator and the denominator which yields −2sin2x

1 , an expression whose limit as
x → 0+ equals 0. This is a good illustration of the above warning.

Some people get the unfortunate idea that one can find limits by doing experiments with
a calculator. If the limit is taken as x gets close to 0, these people think one can find the limit
by evaluating the function at values of x which are closer and closer to 0. Theoretically,
this should work although you have no way of knowing how small you need to take x to
get a good estimate of the limit. In practice, the procedure may fail miserably.

Example 5.17.7 Find limx→0
ln|1+x10|

x10 .

This limit equals limy→0
ln|1+y|

y = limy→0

(
1

1+y

)
1 = 1 where L’Hôpital’s rule has been

used. This is an amusing example. You should plug .001 in to the function
ln|1+x10|

x10 and see
what your calculator or computer gives you. If it is like mine, it will give 0 and will keep on
returning the answer of 0 for smaller numbers than .001. This illustrates the folly of trying
to compute limits through calculator or computer experiments. Indeed, you could say that
a calculator is as useful for understanding limits as a bicycle is for swimming. Those who
say otherwise are either guilty of ignorance or dishonesty.

There is another form of L’Hôpital’s rule in which

lim
x→b−

f (x) =±∞ and lim
x→b−

g(x) =±∞.

Theorem 5.17.8 Let [a,b]⊆ [−∞,∞] and suppose f ,g are functions which satisfy,

lim
x→b−

f (x) =±∞ and lim
x→b−

g(x) =±∞, (5.14)

and f ′ and g′ exist on (a,b) with g′ (x) ̸= 0 on (a,b). Suppose also

lim
x→b−

f ′ (x)
g′ (x)

= L. (5.15)

Then

lim
x→b−

f (x)
g(x)

= L. (5.16)

Proof: By the definition of limit and 5.15 there exists c < b such that if t > c, then∣∣∣∣ f ′ (t)
g′ (t)

−L
∣∣∣∣< ε

2
.
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Now pick x,y such that c < x < y < b. By the Cauchy mean value theorem, there exists
t ∈ (x,y) such that

g′ (t)( f (x)− f (y)) = f ′ (t)(g(x)−g(y)) .

Since g′ (s) ̸= 0 on (a,b) , it follows from mean value theorem g(x)−g(y) ̸= 0. Therefore,

f ′ (t)
g′ (t)

=
f (x)− f (y)
g(x)−g(y)

and so, since t > c, ∣∣∣∣ f (x)− f (y)
g(x)−g(y)

−L
∣∣∣∣< ε

2
.

Now this implies ∣∣∣∣∣∣ f (y)
g(y)

(
f (x)
f (y) −1

)
(

g(x)
g(y) −1

) −L

∣∣∣∣∣∣< ε

2

where for all y large enough, both f (x)
f (y) −1 and g(x)

g(y) −1 are not equal to zero. Then

∣∣∣∣∣∣ f (y)
g(y)

−L

(
g(x)
g(y) −1

)
(

f (x)
f (y) −1

)
∣∣∣∣∣∣< ε

2

∣∣∣∣∣∣
(

g(x)
g(y) −1

)
(

f (x)
f (y) −1

)
∣∣∣∣∣∣ .

Therefore, for y large enough,

∣∣∣∣ f (y)
g(y)

−L
∣∣∣∣≤
∣∣∣∣∣∣L−L

(
g(x)
g(y) −1

)
(

f (x)
f (y) −1

)
∣∣∣∣∣∣+ ε

2

∣∣∣∣∣∣
(

g(x)
g(y) −1

)
(

f (x)
f (y) −1

)
∣∣∣∣∣∣< ε

due to the assumption 5.14 which implies limy→b−

(
g(x)
g(y)−1

)
(

f (x)
f (y)−1

) = 1. Therefore, whenever y is

large enough,
∣∣∣ f (y)

g(y) −L
∣∣∣< ε and this is what is meant by 5.16. ■

As before, there is no essential difference between the proof in the case where x → b−
and the proof when x → a+. This observation is stated as the next corollary.

Corollary 5.17.9 Let [a,b]⊆ [−∞,∞] and suppose f ,g are functions which satisfy,

lim
x→a+

f (x) =±∞ and lim
x→a+

g(x) =±∞, (5.17)

and f ′ and g′ exist on (a,b) with g′ (x) ̸= 0 on (a,b). Suppose also that

lim
x→a+

f ′ (x)
g′ (x)

= L. (5.18)

Then

lim
x→a+

f (x)
g(x)

= L. (5.19)
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Theorems 5.17.1 5.17.8 and Corollaries 5.17.2 and 5.17.9 will each be referred to as
L’Hôpital’s rule from now on. Theorem 5.17.1 and Corollary 5.17.2 involve the notion of
indeterminate forms of the form 0

0 . Please do not think any meaning is being assigned to
the nonsense expression 0

0 . It is just a symbol to help remember the sort of thing described
by Theorem 5.17.1 and Corollary 5.17.2. Theorem 5.17.8 and Corollary 5.17.9 deal with
indeterminate forms which are of the form ±∞

∞
. Again, this is just a symbol which is

helpful in remembering the sort of thing being considered. There are other indeterminate
forms which can be reduced to these forms just discussed. Don’t ever try to assign meaning
to such symbols.

Example 5.17.10 Find limy→∞

(
1+ x

y

)y
.

It is good to first see why this is called an indeterminate form. One might think that as
y → ∞, it follows x/y → 0 and so 1+ x

y → 1. Now 1 raised to anything is 1 and so it would
seem this limit should equal 1. On the other hand, if x > 0, 1+ x

y > 1 and a number raised
to higher and higher powers should approach ∞. It really isn’t clear what this limit should
be. It is an indeterminate form which can be described as 1∞. By definition,(

1+
x
y

)y

= exp
(

y ln
(

1+
x
y

))
.

Now using L’Hôpital’s rule,

lim
y→∞

y ln
(

1+
x
y

)
= lim

y→∞

ln
(

1+ x
y

)
1/y

= lim
y→∞

1
1+(x/y)

(
−x/y2

)
(−1/y2)

= lim
y→∞

x
1+(x/y)

= x

Therefore, limy→∞ y ln
(

1+ x
y

)
= x. Since exp is continuous, it follows

lim
y→∞

(
1+

x
y

)y

= lim
y→∞

exp
(

y ln
(

1+
x
y

))
= ex.

5.18 Interest Compounded Continuously
Suppose you put money in the bank and it accrues interest at the rate of r per payment
period. These terms need a little explanation. If the payment period is one month, and
you started with $100 then the amount at the end of one month would equal 100(1+ r) =
100+100r. In this the second term is the interest and the first is called the principal. Now
you have 100(1+ r) in the bank. This becomes the new principal. How much will you
have at the end of the second month? By analogy to what was just done it would equal

100(1+ r)+100(1+ r)r = 100(1+ r)2 .

In general, the amount you would have at the end of n months is 100(1+ r)n .
When a bank says they offer 6% compounded monthly, this means r, the rate per pay-

ment period equals .06/12. Consider the problem of a rate of r per year and compounding
the interest n times a year and letting n increase without bound. This is what is meant by
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compounding continuously. The interest rate per payment period is then r/n and the num-
ber of payment periods after time t years is approximately tn. From the above the amount
in the account after t years is

P
(

1+
r
n

)nt
(5.20)

Recall from Example 5.17.10 that limy→∞

(
1+ x

y

)y
= ex. The expression in 5.20 can be

written as P
[(

1+ r
n

)n]t and so, taking the limit as n → ∞, you get Pert = A. This shows
how to compound interest continuously.

Example 5.18.1 Suppose you have $100 and you put it in a savings account which pays
6% compounded continuously. How much will you have at the end of 4 years?

From the above discussion, this would be 100e(.06)4 = 127.12. Thus, in 4 years, you
would gain interest of about $27.

5.19 Exercises
1. Find the limits.

(a) limx→0
3x−4sin3x

tan3x

(b) limx→ π
2 − (tanx)x−(π/2)

(c) limx→1
arctan(4x−4)
arcsin(4x−4)

(d) limx→0
arctan3x−3x

x3

(e) limx→0+
9secx−1−1
3secx−1−1

(f) limx→0
3x+sin4x

tan2x

(g) limx→π/2
ln(sinx)
x−(π/2)

(h) limx→0
cosh2x−1

x2

(i) limx→0
−arctanx+x

x3

(j) limx→0
x8 sin 1

x
sin3x

(k) limx→∞ (1+5x)
2
x

(l) limx→0
−2x+3sinx

x

(m) limx→1
ln(cos(x−1))

(x−1)2

(n) limx→0+ sin
1
x x

(o) limx→0 (csc5x− cot5x)

(p) limx→0+
3sinx−1
2sinx−1

(q) limx→0+ (4x)x2

(r) limx→∞
x10

(1.01)x

(s) limx→0 (cos4x)(1/x2)

2. Find the following limits.

(a) limx→0+
1−

√
cos2x

sin4(4
√

x)
.

(b) limx→0
2x2−25x

sin
(

x2
5

)
−sin(3x)

.

(c) limn→∞ n
( n
√

7−1
)
.

(d) limx→∞

( 3x+2
5x−9

)x2
.

(e) limx→∞

( 3x+2
5x−9

)1/x
.

(f) limn→∞

(
cos 2x√

n

)n
.

(g) limn→∞

(
cos 2x√

5n

)n
.

(h) limx→3
xx−27
x−3 .

(i) limn→∞ cos
(

π

√
4n2+13n

n

)
.
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(j) limx→∞

 3√x3 +7x2

−
√

x2 −11x

.

(k) limx→∞

 5√x5 +7x4

− 3√x3 −11x2

.

(l) limx→∞

(
5x2+7
2x2−11

) x
1−x

.

(m) limx→∞

(
5x2+7
2x2−11

) x lnx
1−x

.

(n) limx→0+
ln
(

e2x2
+7

√
x
)

sinh(
√

x) .

(o) limx→0+
7√x− 5√x
9√x− 11√x

.

3. Find the following limits.

(a) limx→0+ (1+3x)cot2x

(b) limx→0
sinx−x

x2 = 0

(c) limx→0
sinx−x

x3

(d) limx→0
tan(sinx)−sin(tanx)

x7

(e) limx→0
tan(sin2x)−sin(tan2x)

x7

(f) limx→0
sin(x2)−sin2(x)

x4

(g) limx→0
e−(1/x2)

x

(h) limx→0
( 1

x − cot(x)
)

(i) limx→0
cos(sinx)−1

x2

(j) limx→∞

(
x2
(
4x4 +7

)1/2 −2x4
)

(k) limx→0
cos(x)−cos(4x)

tan(x2)

(l) limx→0
arctan(3x)

x

(m) limx→∞

[(
x9 +5x6

)1/3 − x3
]

4. Suppose you want to have $2000 saved at the end of 5 years. How much money
should you place into an account which pays 7% per year compounded continuously?

5. Using a good calculator, find e.06 −
(
1+ .06

360

)360
. Explain why this gives a measure

of the difference between compounding continuously and compounding daily.

6. You know limx→∞ lnx = ∞. Show that if α > 0, then limx→∞
lnx
xα = 0.

7. Consider the following function 4

f (x) =

 e−1/x2
for x ̸= 0

0 for x = 0

Show that f (k) (0) = 0 for all k so the power series approximations for this function
are all of the form ∑

m
k=0 0xk but the function is not identically equal to 0 on any

interval containing 0. Thus this function has all derivatives at 0 and at every other

point, yet fails to be approximated by finite sums of the form ∑
m
k=0

f (k)(0)
k! xk. This

is an example of a smooth function which is not analytic. (Roughly speaking, a
function is analytic when its power series just described approximates the function
near the point at which all the derivatives are evaluated.) It is smooth because all

4Surprisingly, this function is very important to those who use modern techniques to study differential equa-
tions. One needs to consider test functions which have the property they have infinitely many derivatives but
vanish outside of some interval. The theory of complex variables can be used to show there are no examples of
such functions if they have a valid power series expansion. It even becomes a little questionable whether such
strange functions even exist at all. Nevertheless, they do, there are enough of them, and it is this very example
which is used to show this.
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derivatives exist and are continuous. It fails to be analytic because ∑
m
k=0

f (k)(0)
k! xk

fails to approximate the function at any nonzero point because it always gives 0 no
matter how large an m is chosen and yet e−1/x2 ̸= 0 if x ̸= 0. In fact, there is a
sequence of polynomials which will approximate this function on an interval [0,1],
but they are not obtained in the way just described as partial sums of a power series.
See Section 4.10.

5.20 Videos
Derivative of Inverse antiderivatives and integrals

https://www.youtube.com/watch?v=o6r6eRqQwNc
https://www.youtube.com/watch?v=_FB1npoeKq0


Chapter 6

Infinite Series

6.1 Basic Considerations
Earlier in Definition 3.3.1 on Page 86 the notion of limit of a sequence was discussed.
There is a very closely related concept called an infinite series which is dealt with in this
section.

Definition 6.1.1 Define ∑
∞
k=m ak ≡ limn→∞ ∑

n
k=m ak whenever the limit exists and is

finite. In this case the series is said to converge. If it does not converge, it is said to diverge.
The sequence {∑

n
k=m ak}∞

n=m in the above is called the sequence of partial sums. This is
always the definition. Here it is understood that the ak are in R, but it is the same definition
in any situation.

From this definition, it should be clear that infinite sums do not always make sense.
Sometimes they do and sometimes they don’t, depending on the behavior of the partial
sums. As an example, consider ∑

∞
k=1 (−1)k. The partial sums corresponding to this symbol

alternate between −1 and 0. Therefore, there is no limit for the sequence of partial sums.
It follows the symbol just written is meaningless and the infinite sum diverges.

Example 6.1.2 Find the infinite sum, ∑
∞
n=1

1
n(n+1) .

Note 1
n(n+1) =

1
n −

1
n+1 and so ∑

N
n=1

1
n(n+1) = ∑

N
n=1
( 1

n −
1

n+1

)
=− 1

N+1 +1. Therefore,

lim
N→∞

N

∑
n=1

1
n(n+1)

= lim
N→∞

(
− 1

N +1
+1
)
= 1.

Lemma 6.1.3 If {An} is an increasing sequence in [−∞,∞], then sup{An}= limn→∞ An
If {An} is a decreasing sequence, then inf{An}= limn→∞ An.

Proof: Let sup({An : n ∈ N}) = r. In the first case, suppose r < ∞. Then letting ε > 0
be given, there exists n such that An ∈ (r − ε,r]. Since {An} is increasing, it follows if
m > n, then r − ε < An ≤ Am ≤ r and so limn→∞ An = r as claimed. In the case where
r = ∞, then if a is a real number, there exists n such that An > a. Since {Ak} is increasing,
it follows that if m > n, Am > a. But this is what is meant by limn→∞ An = ∞. The other
case is that r =−∞. But in this case, An =−∞ for all n and so limn→∞ An =−∞. The other
claim is shown the same way. ■

163
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Proposition 6.1.4 Let ak ≥ 0. Then {∑
n
k=m ak}∞

n=m is an increasing sequence. If this
sequence is bounded above, then ∑

∞
k=m ak converges and its value equals

sup

{
n

∑
k=m

ak : n = m,m+1, · · ·

}
.

When the sequence is not bounded above, ∑
∞
k=m ak diverges. However, in this case, people

sometimes write ∑
∞
k=m ak = ∞.

Proof: It follows {∑
n
k=m ak}∞

n=m is an increasing sequence because ∑
n+1
k=m ak−∑

n
k=m ak =

an+1 ≥ 0. If the sequence of partial sums is bounded above, then this sequence of partial
sums must converge to S ≡ sup{∑

n
k=m ak : n ≥ m} by Lemma 6.1.3. If the sequence of par-

tial sums is not bounded, then it cannot converge because if it converged to S, then for all n
large enough, |∑n

k=m ak −S|< 1, and for all such n,∑n
k=m ak ∈ (1−S,1+S) , and there are

only finitely many other terms so {∑
n
k=m ak} would need to be bounded. ■

In the case where ak ≥ 0, the above proposition shows there are only two alternatives
available. Either the sequence of partial sums is bounded above or it is not bounded above.
In the first case convergence occurs and in the second case, the infinite series diverges. For
this reason, people will sometimes write ∑

∞
k=m ak <∞ to denote the case where convergence

occurs and ∑
∞
k=m ak = ∞ for the case where divergence occurs. Be very careful you never

think this way in the case where it is not true that all ak ≥ 0. For example, the partial
sums of ∑

∞
k=1 (−1)k are bounded because they are all either −1 or 0 but the series does not

converge.
One of the most important examples of a convergent series is the geometric series.

This series is ∑
∞
n=0 rn. The study of this series depends on simple high school algebra and

Theorem 3.3.10 on Page 89. Let Sn ≡ ∑
n
k=0 rk. Then Sn = ∑

n
k=0 rk, rSn = ∑

n
k=0 rk+1 =

∑
n+1
k=1 rk.Therefore, subtracting the second equation from the first yields (1− r)Sn = 1−

rn+1and so a formula for Sn is available. In fact, if r ̸= 1,Sn =
1−rn+1

1−r . By Theorem 3.3.10,
limn→∞ Sn =

1
1−r in the case when |r| < 1. Now if |r| ≥ 1, the limit clearly does not exist

because Sn fails to be a Cauchy sequence (Why?) so by Theorem3.7.3 it cannot converge.
This shows the following.

Theorem 6.1.5 The geometric series, ∑
∞
n=0 rn converges and equals 1

1−r if |r| < 1
and diverges if |r| ≥ 1.

If the series do converge, the following holds.

Theorem 6.1.6 If ∑
∞
k=m ak and ∑

∞
k=m bk both converge and x,y are numbers, then

∞

∑
k=m

ak =
∞

∑
k=m+ j

ak− j (6.1)

∞

∑
k=m

xak + ybk = x
∞

∑
k=m

ak + y
∞

∑
k=m

bk (6.2)∣∣∣∣∣ ∞

∑
k=m

ak

∣∣∣∣∣≤ ∞

∑
k=m

|ak| (6.3)

where in the last inequality, the last sum equals +∞ if the partial sums are not bounded
above.
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Proof: The above theorem is really only a restatement of Theorem 3.3.7 on Page 87
and the above definitions of infinite series. Thus

∞

∑
k=m

ak = lim
n→∞

n

∑
k=m

ak = lim
n→∞

n+ j

∑
k=m+ j

ak− j =
∞

∑
k=m+ j

ak− j.

To establish 6.2, use Theorem 3.3.7 on Page 87 to write

∞

∑
k=m

xak + ybk = lim
n→∞

n

∑
k=m

xak + ybk = lim
n→∞

(
x

n

∑
k=m

ak + y
n

∑
k=m

bk

)

= x
∞

∑
k=m

ak + y
∞

∑
k=m

bk.

Formula 6.3 follows from the observation that, from the triangle inequality,∣∣∣∣∣ n

∑
k=m

ak

∣∣∣∣∣≤ ∞

∑
k=m

|ak|

and so |∑∞
k=m ak|= limn→∞ |∑n

k=m ak| ≤ ∑
∞
k=m |ak| . ■

Recall that if limn→∞ An = A, then limn→∞ |An|= |A|.

Example 6.1.7 Find ∑
∞
n=0
( 5

2n +
6
3n

)
.

From the above theorem and Theorem 6.1.5, ∑
∞
n=0
( 5

2n +
6
3n

)
=

5
∞

∑
n=0

1
2n +6

∞

∑
n=0

1
3n = 5

1
1− (1/2)

+6
1

1− (1/3)
= 19.

The following criterion is useful in checking convergence. All it is saying is that the
series converges if and only if the sequence of partial sums is Cauchy. This is what the
given criterion says. It is just a re-statement of Theorem 3.7.3 on Page 98. It is not new
information.

Theorem 6.1.8 Let {ak} be a sequence of points in R. The sum ∑
∞
k=m ak converges

if and only if for all ε > 0, there exists nε such that if q ≥ p ≥ nε , then∣∣∣∣∣ q

∑
k=p

ak

∣∣∣∣∣< ε. (6.4)

Proof: Suppose first that the series converges. Then {∑
n
k=m ak}∞

n=m is a Cauchy se-
quence by Theorem 3.7.3 on Page 98. Therefore, there exists nε > m such that if q ≥
p−1 ≥ nε > m, ∣∣∣∣∣ q

∑
k=m

ak −
p−1

∑
k=m

ak

∣∣∣∣∣=
∣∣∣∣∣ q

∑
k=p

ak

∣∣∣∣∣< ε. (6.5)

Next suppose 6.4 holds. Then from 6.5 it follows upon letting p be replaced with p+1
that {∑

n
k=m ak}∞

n=m is a Cauchy sequence and so, by Theorem 3.7.3, it converges. By the
definition of infinite series, this shows the infinite sum converges as claimed. ■
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6.2 Absolute Convergence
Absolute convergence is the best kind. It says that if you replace each term with its absolute
value, the resulting series converges.

Definition 6.2.1 A series ∑
∞
k=m ak is converges absolutely if ∑

∞
k=m |ak| converges.

If the series does converge but does not converge absolutely, then it is said to converge
conditionally.

Theorem 6.2.2 If ∑
∞
k=m ak converges absolutely, then it converges.

Proof: Let ε > 0 be given. Then by assumption and Theorem 6.1.8, there exists nε

such that whenever q ≥ p ≥ nε , ∑
q
k=p |ak|< ε.Therefore, from the triangle inequality, ε >

∑
q
k=p |ak| ≥

∣∣∣∑q
k=p ak

∣∣∣ . By Theorem 6.1.8, ∑
∞
k=m ak converges. ■

In fact, the above theorem is really another version of the completeness axiom. Thus
its validity implies completeness. You might try to show this.

One of the interesting things about absolutely convergent series is that you can “add
them up” in any order and you will always get the same thing. This is the meaning of the
following theorem. Of course there is no problem when you are dealing with finite sums
thanks to the commutative law of addition. However, when you have infinite sums strange
and wonderful things can happen because these involve a limit.

Theorem 6.2.3 Let θ : N→ N be one to one and onto. Suppose ∑
∞
k=1 ak converges

absolutely. Then ∑
∞
k=1 aθ(k) = ∑

∞
k=1 ak.

Proof: From absolute convergence, there exists M such that ∑
∞
k=M+1 |ak|< ε. Since θ is

one to one and onto, there exists N ≥M such that {1,2, · · · ,M}⊆{θ (1) ,θ (2) , · · · ,θ (N)} .
It follows that it is also the case that ∑

∞
k=N+1

∣∣aθ(k)
∣∣ < ε. This is because the partial sums

of the above series are each dominated by a partial sum for ∑
∞
k=M+1 |ak| since every index

θ (k) equals some n for n ≥ M + 1. Then since ε is arbitrary, this shows that the partial
sums of ∑aθ(k) are Cauchy. Hence, this series does converge and also∣∣∣∣∣ M

∑
k=1

ak −
N

∑
k=1

aθ(k)

∣∣∣∣∣≤ ∞

∑
k=M+1

|ak|< ε

Hence ∣∣∣∣∣ ∞

∑
k=1

ak −
∞

∑
k=1

aθ(k)

∣∣∣∣∣≤
∣∣∣∣∣ ∞

∑
k=1

ak −
M

∑
k=1

ak

∣∣∣∣∣+
∣∣∣∣∣ M

∑
k=1

ak −
N

∑
k=1

aθ(k)

∣∣∣∣∣
+

∣∣∣∣∣ N

∑
k=1

aθ(k)−
∞

∑
k=1

aθ(k)

∣∣∣∣∣< ∞

∑
k=M+1

|ak|+ ε +
∞

∑
k=N+1

∣∣aθ(k)
∣∣< 3ε

Since ε is arbitrary, this shows the two series are equal as claimed. ■
So what happens when series converge only conditionally?

Example 6.2.4 Consider the series ∑
∞
k=1 (−1)k 1

k . Show that there is a rearrangement
which converges to 7 although this series does converge. (In fact, it converges to − ln2.)
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First of all consider why it converges. Notice that if Sn denotes the nth partial sum, then

S2n −S2n−2 =
1

2n
− 1

2n−1
< 0

S2n+1 −S2n−1 = − 1
2n+1

+
1

2n
> 0

S2n −S2n−1 =
1

2n

Thus the even partial sums are decreasing and the odd partial sums are increasing. The
even partial sums are bounded below also. (Why?) Therefore, the limit of the even partial
sums exists. However, it must be the same as the limit of the odd partial sums because
of the last equality above. Thus limn→∞ Sn exists and so the series converges. Now I will
show later below that ∑k

1
2k and ∑k

1
2k−1 both diverge. Include enough even terms for the

sum to exceed 7. Next add in enough odd terms so that the result will be less than 7. Next
add enough even terms to exceed 7 and continue doing this. Since 1/k converges to 0, this
rearrangement of the series must converge to 7. Of course you could also have picked 5 or
−8 just as well. In fact, given any number, there is a rearrangement of this series which
converges to this number. Calculus is not algebra! No such thing happens with finite sums!

Theorem 6.2.5 (comparison test) Suppose {an} and {bn} are sequences of non neg-
ative real numbers and suppose for all n sufficiently large, an ≤ bn. Then

1. If ∑
∞
n=k bn converges, then ∑

∞
n=m an converges.

2. If ∑
∞
n=k an diverges, then ∑

∞
n=m bn diverges.

Proof: Consider the first claim. From the assumption, there exists n∗ such that n∗ >
max(k,m) and for all n ≥ n∗ bn ≥ an. Then if p ≥ n∗,

p

∑
n=m

an ≤
n∗

∑
n=m

an +
k

∑
n=n∗+1

bn ≤
n∗

∑
n=m

an +
∞

∑
n=k

bn.

Thus the sequence,{∑
p
n=m an}∞

p=m is bounded above and increasing. Therefore, it converges
by completeness. The second claim is left as an exercise. ■

Example 6.2.6 Determine the convergence of ∑
∞
n=1

1
n2 .

For n > 1, 1
n2 ≤ 1

n(n−1) .Now

p

∑
n=2

1
n(n−1)

=
p

∑
n=2

[
1

n−1
− 1

n

]
= 1− 1

p
→ 1 as p → ∞

Therefore, letting an =
1
n2 and bn =

1
n(n−1) the conclusion follows from Theorem 6.2.5.

A convenient way to implement the comparison test is to use the limit comparison test.
This is considered next.

Theorem 6.2.7 Let an,bn > 0 and suppose for all n large enough,

0 < a <
an

bn
≤ an

bn
< b < ∞.

Then ∑an and ∑bn converge or diverge together.
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Proof: Let n∗ be such that n ≥ n∗, then an
bn

> a and an
bn

< b and so for all such n,abn <
an < bbn and so the conclusion follows from the comparison test. ■

The following corollary follows right away from the definition of the limit.

Corollary 6.2.8 Let an,bn > 0 and suppose limn→∞
an
bn

= λ ∈ (0,∞) . Then ∑an and
∑bn converge or diverge together.

Example 6.2.9 Determine the convergence of ∑
∞
k=1

1√
n4+2n+7

.

This series converges by the limit comparison test above. Compare with the series of
Example 6.2.6.

lim
n→∞

(
1
n2

)
(

1√
n4+2n+7

) = lim
n→∞

√
n4 +2n+7

n2 = lim
n→∞

√
1+

2
n3 +

7
n4 = 1.

Therefore, the series converges with the series of Example 6.2.6. How did I know what to
compare with? I noticed that

√
n4 +2n+7 is essentially like

√
n4 = n2 for large enough

n. You see, the higher order term n4 dominates the other terms in n4 + 2n+ 7. Therefore,
reasoning that 1/

√
n4 +2n+7 is a lot like 1/n2 for large n, it was easy to see what to

compare with. Of course this is not always easy and there is room for acquiring skill
through practice.

To really exploit this limit comparison test, it is desirable to get lots of examples of
series, some which converge and some which do not. The tool for obtaining these examples
here will be the following wonderful theorem known as the Cauchy condensation test.

Theorem 6.2.10 Let an ≥ 0 and suppose the terms of the sequence {an} are de-
creasing. Thus an ≥ an+1 for all n. Then ∑

∞
n=1 an and ∑

∞
n=0 2na2n converge or diverge

together.

Proof: This follows from the inequality of the following claim.
Claim: ∑

n
k=1 2ka2k−1 ≥ ∑

2n

k=1 ak ≥ ∑
n
k=0 2k−1a2k .

Proof of the Claim: Note the claim is true for n = 1. Suppose the claim is true for n.
Then, since 2n+1 −2n = 2n, and the terms, an, are decreasing,

n+1

∑
k=1

2ka2k−1 = 2n+1a2n +
n

∑
k=1

2ka2k−1 ≥ 2n+1a2n +
2n

∑
k=1

ak

≥
2n+1

∑
k=1

ak ≥ 2na2n+1 +
2n

∑
k=1

ak ≥ 2na2n+1 +
n

∑
k=0

2k−1a2k =
n+1

∑
k=0

2k−1a2k . ■

In case it is not clear why the claim implies the assertion, consider the case where ∑
∞
n=0 2na2n

converges. Then 2∑
∞
n=0 2na2n = ∑

∞
n=1 2na2n−1 is finite. Then from the claim, ∑

2n

k=1 ak ≤
∑

n+1
k=1 2ka2k−1 ≤ ∑

∞
n=1 2na2n−1 < ∞ and so the partial sums are bounded. Since the terms of

the series are nonnegative, the infinite series converges as shown earlier. In case ∑
∞
n=0 2na2n

diverges, a similar argument shows the partial sums of the original series are unbounded.

Example 6.2.11 Determine the convergence of ∑
∞
k=1

1
kp where p is a positive number.

These are called the p series.
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Let an =
1

np . Then a2n =
( 1

2p

)n
. From the Cauchy condensation test the two series

∞

∑
n=1

1
np and

∞

∑
n=0

2n
(

1
2p

)n

=
∞

∑
n=0

(
2(1−p)

)n

converge or diverge together. If p > 1, the last series above is a geometric series having
common ratio less than 1 and so it converges. If p ≤ 1, it is still a geometric series but in
this case the common ratio is either 1 or greater than 1 so the series diverges. It follows
that the p series converges if p > 1 and diverges if p ≤ 1. In particular, ∑

∞
n=1 n−1 diverges

while ∑
∞
n=1 n−2 converges.

Example 6.2.12 Determine the convergence of ∑
∞
k=1

1√
n2+100n

.

Use the limit comparison test. limn→∞

( 1
n )(
1√

n2+100n

) = 1 and so this series diverges with

∑
∞
k=1

1
k .

Sometimes it is good to be able to say a series does not converge. The nth term test
gives such a condition which is sufficient for this. It is really a corollary of Theorem 6.1.8.
Here is the nth term test.

Theorem 6.2.13 If ∑
∞
n=m an converges, then limn→∞ an = 0.

Proof:Apply Theorem 6.1.8 to conclude that limn→∞ an = limn→∞ ∑
n
k=n ak = 0.■

It is very important to observe that this theorem goes only in one direction. That is,
you cannot conclude the series converges if limn→∞ an = 0. If this happens, you don’t
know anything from this information. Recall limn→∞ n−1 = 0 but ∑

∞
n=1 n−1 diverges. The

following picture is descriptive of the situation.

∑an converges

liman = 0

an = n−1

6.3 Ratio and Root Tests
A favorite test for convergence is the ratio test. This is discussed next. There are exactly
three possible outcomes for this test: failure, spectacular divergence, and absolute conver-
gence.

Theorem 6.3.1 Suppose |an|> 0 for all n and suppose limn→∞
|an+1|
|an| = r. Then

∞

∑
n=1

an


diverges if r > 1

converges absolutely if r < 1

test fails if r = 1

.
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Proof: Suppose r < 1. Then there exists n1 such that if n ≥ n1, then 0 <
∣∣∣ an+1

an

∣∣∣ < R

where r < R < 1. Then |an+1|< R |an| for all such n. Therefore,∣∣an1+p
∣∣< R

∣∣an1+p−1
∣∣< R2 ∣∣an1+p−2

∣∣< · · ·< Rp |an1 | (6.6)

and so if m > n, then |am| < Rm−n1 |an1 | . By the comparison test and the theorem on geo-
metric series, ∑ |an| converges. This proves the convergence part of the theorem.

To verify the divergence part, note that if r > 1, then 6.6 can be turned around for some
R > 1. Showing limn→∞ |an| = ∞. Since the nth term fails to converge to 0, it follows the
series diverges.

To see the test fails if r = 1, consider ∑n−1 and ∑n−2. The first series diverges while
the second one converges but in both cases, r = 1. (Be sure to check this last claim.) ■

The ratio test is very useful for many different examples but it is somewhat unsatisfac-
tory mathematically. One reason for this is the assumption that an ̸= 0, necessitated by the
need to divide by an, and the other reason is the possibility that the limit might not exist.
The next test, called the root test removes both of these objections.

Theorem 6.3.2 Suppose |an|1/n < R < 1 for all n sufficiently large. Then ∑
∞
n=1 an

converges absolutely. If there are infinitely many values of n such that |an|1/n ≥ 1, then
∑

∞
n=1 an diverges.

Proof: Suppose first that |an|1/n < R < 1 for all n sufficiently large. Say this holds
for all n ≥ nR. Then for such n, n

√
|an| < R.Therefore, for such n, |an| ≤ Rn and so the

comparison test with a geometric series applies and gives absolute convergence as claimed.
Next suppose |an|1/n ≥ 1 for infinitely many values of n. Then for those values of n,

|an| ≥ 1 and so the series fails to converge by the nth term test, Theorem 6.2.13. ■
Stated more succinctly, using Definition 3.3.16 the condition for the root test is this:

Let r ≡ limsupn→∞ |an|1/n then

∞

∑
k=m

ak


converges absolutely if r < 1

test fails if r = 1

diverges if r > 1

To see the test fails when r = 1, consider the same example given above, ∑n
1
n and ∑n

1
n2 .

A special case occurs when the limit exists.

Corollary 6.3.3 Suppose limn→∞ |an|1/n exists and equals r. Then

∞

∑
k=m

ak


converges absolutely if r < 1

test fails if r = 1

diverges if r > 1

Proof: The first and last alternatives follow from Theorem 6.3.2. To see the test fails
if r = 1, consider the two series ∑

∞
n=1

1
n and ∑

∞
n=1

1
n2 both of which have r = 1 but having

different convergence properties. The first diverges and the second converges. ■
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6.4 Exercises
1. Determine whether the following series converge and give reasons for your answers.

(a) ∑
∞
n=1

1√
n2+n+1

(b) ∑
∞
n=1
(√

n+1−
√

n
)

(c) ∑
∞
n=1

(n!)2

(2n)!

(d) ∑
∞
n=1

(2n)!
(n!)2

(e) ∑
∞
n=1

1
2n+2

(f) ∑
∞
n=1
( n

n+1

)n

(g) ∑
∞
n=1
( n

n+1

)n2

2. Determine whether the following series converge and give reasons for your answers.

(a) ∑
∞
n=1

2n+n
n2n

(b) ∑
∞
n=1

2n+n
n22n

(c) ∑
∞
n=1

n
2n+1

(d) ∑
∞
n=1

n100

1.01n

3. Find the exact values of the following infinite series if they converge.

(a) ∑
∞
k=3

1
k(k−2)

(b) ∑
∞
k=1

1
k(k+1)

(c) ∑
∞
k=3

1
(k+1)(k−2)

(d) ∑
∞
k=1

(
1√
k
− 1√

k+1

)
4. Suppose ∑

∞
k=1 ak converges and each ak ≥ 0. Does it follow that ∑

∞
k=1 a2

k also con-
verges?

5. Find a series which diverges using one test but converges using another if possible.
If this is not possible, tell why.

6. If ∑
∞
n=1 an and ∑

∞
n=1 bn both converge and an,bn are nonnegative, can you conclude

the sum, ∑
∞
n=1 anbn converges?

7. If ∑
∞
n=1 an converges and an ≥ 0 for all n and bn is bounded, can you conclude

∑
∞
n=1 anbn converges?

8. Determine the convergence of the series ∑
∞
n=1
(
∑

n
k=1

1
k

)−n/2
.

9. Is it possible there could exist a decreasing sequence of positive numbers, {an}
such that limn→∞ an = 0 but ∑

∞
n=1

(
1− an+1

an

)
converges? (This seems to be a fairly

difficult problem.)Hint: You might do something like this. Show limx→1
1−x

− ln(x) =

1−x
ln(1/x) = 1. Next use a limit comparison test with ∑

∞
n=1 ln

(
an

an+1

)
.

10. Suppose ∑an converges conditionally and each an is real. Show it is possible to add
the series in some order such that the result converges to 13. Then show it is possible
to add the series in another order so that the result converges to 7. Thus there is no
generalization of the commutative law for conditionally convergent infinite series.
Hint: To see how to proceed, consider Example 6.2.4.

11. He takes a drug every evening and after 8 hours there is half of it left. Find upper and
lower bounds for the amount of drug in his body if he has been taking it for a long
time. Assume each dose consists of 10 mg.
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6.5 Convergence Because of Cancellation
So far, the tests for convergence have been applied to non negative terms only. Sometimes,
a series converges, not because the terms of the series get small fast enough, but because of
cancellation taking place between positive and negative terms. A discussion of this involves
some simple algebra and yields a much more subtle test for convergence.

Let {an} and {bn} be sequences and let An ≡ ∑
n
k=1 ak, A−1 ≡ A0 ≡ 0. Then if p < q

q

∑
n=p

anbn =
q

∑
n=p

bn (An −An−1) =
q

∑
n=p

bnAn −
q

∑
n=p

bnAn−1

=
q

∑
n=p

bnAn −
q−1

∑
n=p−1

bn+1An = bqAq −bpAp−1 +
q−1

∑
n=p

An (bn −bn+1) (6.7)

This formula is called the partial summation formula. It is just like integration by parts.
This yields Dirichlet’s test 1.

Theorem 6.5.1 (Dirichlet’s test) Suppose An ≡ ∑
n
k=1 ak is bounded independent of

n, meaning for some C > 0, |An| ≤C for all n. and limn→∞ bn = 0, with bn ≥ bn+1 for all
n. Then ∑anbn converges. Thus it makes perfect sense to write ∑

∞
n=1 anbn.

Proof: This follows quickly from Theorem 6.1.8. Indeed, letting |An| ≤ C, and using
the partial summation formula above along with the assumption that the bn are decreasing,∣∣∣∣∣ q

∑
n=p

anbn

∣∣∣∣∣=
∣∣∣∣∣bqAq −bpAp−1 +

q−1

∑
n=p

An (bn −bn+1)

∣∣∣∣∣
≤C

(∣∣bq
∣∣+ ∣∣bp

∣∣)+C
q−1

∑
n=p

(bn −bn+1) =C
(∣∣bq

∣∣+ ∣∣bp
∣∣)+C (bp −bq)

and by assumption, this last expression is small whenever p and q are sufficiently large.
Thus the partial sums are a Cauchy sequence. ■

Definition 6.5.2 If bn > 0 for all n, a series of the form ∑k (−1)k bk or ∑k (−1)k−1 bk
is known as an alternating series.

The following corollary is known as the alternating series test.

Corollary 6.5.3 (alternating series test) If limn→∞ bn = 0, with bn ≥ bn+1, then it fol-
lows that the series ∑

∞
n=1 (−1)n bn converges.

Proof: Let an = (−1)n . Then the partial sums of ∑n an are bounded and so Theorem
6.5.1 applies. ■

In the situation of Corollary 6.5.3 there is a convenient error estimate available.

1Peter Gustav Lejeune Dirichlet, 1805-1859 was a German mathematician who did fundamental work in
analytic number theory. He also gave the first proof that Fourier series tend to converge to the mid-point of the
jump of the function. He is a very important figure in the development of analysis in the nineteenth century. An
interesting personal fact is that the great composer Felix Mendelsson was his brother in law.
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Theorem 6.5.4 Let bn > 0 for all n such that bn ≥ bn+1 for all n and limn→∞ bn = 0
and consider either ∑

∞
n=1 (−1)n bn or ∑

∞
n=1 (−1)n−1 bn. Then∣∣∣∣∣ ∞

∑
n=1

(−1)n bn −
N

∑
n=1

(−1)n bn

∣∣∣∣∣ ≤ |bN+1| ,∣∣∣∣∣ ∞

∑
n=1

(−1)n−1 bn −
N

∑
n=1

(−1)n−1 bn

∣∣∣∣∣ ≤ |bN+1|

See Problem 8 on Page 177 for an outline of the proof of this theorem along with
another way to prove the alternating series test.

Example 6.5.5 How many terms must I take in the sum, ∑
∞
n=1 (−1)n 1

n2+1 to be closer than
1
10 to ∑

∞
n=1 (−1)n 1

n2+1 ?

From Theorem 6.5.4, I need to find n such that 1
n2+1 ≤ 1

10 and then n−1 is the desired
value. Thus n = 3 and so∣∣∣∣∣ ∞

∑
n=1

(−1)n 1
n2 +1

−
2

∑
n=1

(−1)n 1
n2 +1

∣∣∣∣∣≤ 1
10

Definition 6.5.6 A series ∑an is said to converge absolutely if ∑ |an| converges. It
is said to converge conditionally if ∑ |an| fails to converge but ∑an converges.

Thus the alternating series or more general Dirichlet test can determine convergence of
series which converge conditionally.

6.6 Double Series
Sometimes it is required to consider double series which are of the form

∞

∑
k=m

∞

∑
j=m

a jk ≡
∞

∑
k=m

(
∞

∑
j=m

a jk

)
.

In other words, first sum on j yielding something which depends on k and then sum these.
The major consideration for these double series is the question of when

∞

∑
k=m

∞

∑
j=m

a jk =
∞

∑
j=m

∞

∑
k=m

a jk.

In other words, when does it make no difference which subscript is summed over first? In
the case of finite sums there is no issue here. You can always write

M

∑
k=m

N

∑
j=m

a jk =
N

∑
j=m

M

∑
k=m

a jk

because addition is commutative. However, there are limits involved with infinite sums and
the interchange in order of summation involves taking limits in a different order. Therefore,
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it is not always true that it is permissible to interchange the two sums. Whenever you
interchange the order in which two limits are taken, you need a theorem which will allow
you to do it. Such theorems are often rather technical. One must never interchange limits
of any kind without agonizing over whether the symbol pushing is correct. In general,
limits ruin algebra and also introduce things which are counter intuitive. Failure to keep
this in mind leads to mathematical disasters. Here is an example. This example is a little
technical. It is placed here just to prove conclusively there is a question which needs to be
considered.

Example 6.6.1 Consider the following picture which depicts some of the ordered pairs
(m,n) where m,n are positive integers.

...
0 0 c 0 −c

0 c 0 −c 0

b 0 −c 0 0

0 a 0 0 0

· · ·

The a,b,c are the values of amn. Thus ann = 0 for all n ≥ 1, a21 = a,a12 = b,am(m+1) =−c
whenever m > 1, and am(m−1) = c whenever m > 2. The numbers next to the point are the
values of amn. You see ann = 0 for all n, a21 = a,a12 = b,amn = c for (m,n) on the line
y = 1+ x whenever m > 1, and amn = −c for all (m,n) on the line y = x− 1 whenever
m > 2.

Then ∑
∞
m=1 amn = a if n = 1, ∑

∞
m=1 amn = b− c if n = 2 and if n > 2,∑∞

m=1 amn = 0.
Therefore, ∑

∞
n=1 ∑

∞
m=1 amn = a+b−c. Next observe that ∑

∞
n=1 amn = b if m= 1,∑∞

n=1 amn =
a+ c if m = 2, and ∑

∞
n=1 amn = 0 if m > 2. Therefore, ∑

∞
m=1 ∑

∞
n=1 amn = b+ a+ c and so

the two sums are different. Moreover, you can see that by assigning different values of a,b,
and c, you can get an example for any two different numbers desired.

Don’t become upset by this. It happens because, as indicated above, limits are taken
in two different orders. An infinite sum always involves a limit and this illustrates why
you must always remember this. This example in no way violates the commutative law of
addition which has nothing to do with limits. However, it turns out that if ai j ≥ 0 for all i, j,
then you can always interchange the order of summation. This is shown next and is based
on the following lemma. First, some notation should be discussed.

Definition 6.6.2 Let f (a,b)∈ [−∞,∞] for a∈A and b∈B where A,B are sets which
means that f (a,b) is either a number, ∞, or −∞. The symbol, +∞ is interpreted as a point
out at the end of the number line which is larger than every real number. Of course there is
no such number. That is why it is called ∞. The symbol, −∞ is interpreted similarly. Then
supa∈A f (a,b) means sup(Sb) where Sb ≡ { f (a,b) : a ∈ A} .

Unlike limits, you can take the sup in different orders.

Lemma 6.6.3 Let f (a,b) ∈ [−∞,∞] for a ∈ A and b ∈ B where A,B are sets. Then

sup
a∈A

sup
b∈B

f (a,b) = sup
b∈B

sup
a∈A

f (a,b) .
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Proof: Note that for all a,b, f (a,b) ≤ supb∈B supa∈A f (a,b) and therefore, for all a,
supb∈B f (a,b)≤ supb∈B supa∈A f (a,b). Therefore,

sup
a∈A

sup
b∈B

f (a,b)≤ sup
b∈B

sup
a∈A

f (a,b) .

Repeat the same argument interchanging a and b, to get the conclusion of the lemma. ■

Theorem 6.6.4 Let ai j ≥ 0. Then ∑
∞
i=1 ∑

∞
j=1 ai j = ∑

∞
j=1 ∑

∞
i=1 ai j.

Proof: First note there is no trouble in defining these sums because the ai j are all
nonnegative. If a sum diverges, it only diverges to ∞ and so ∞ is the value of the sum. Next
note that ∑

∞
j=r ∑

∞
i=r ai j ≥ supn ∑

∞
j=r ∑

n
i=r ai j because for all j,∑∞

i=r ai j ≥ ∑
n
i=r ai j.Therefore,

using Lemma 6.1.3,

∞

∑
j=r

∞

∑
i=r

ai j ≥ sup
n

∞

∑
j=r

n

∑
i=r

ai j = sup
n

lim
m→∞

m

∑
j=r

n

∑
i=r

ai j = sup
n

lim
m→∞

n

∑
i=r

m

∑
j=r

ai j

= sup
n

n

∑
i=r

lim
m→∞

m

∑
j=r

ai j = sup
n

n

∑
i=r

∞

∑
j=r

ai j = lim
n→∞

n

∑
i=r

∞

∑
j=r

ai j =
∞

∑
i=r

∞

∑
j=r

ai j

Interchanging the i and j in the above argument proves the theorem. ■
The following is the fundamental result on double sums.

Theorem 6.6.5 Let ai j ∈ R and suppose ∑
∞
i=r ∑

∞
j=r
∣∣ai j
∣∣< ∞ . Then ∑

∞
i=r ∑

∞
j=r ai j =

∑
∞
j=r ∑

∞
i=r ai j and every infinite sum encountered in the above equation converges.

Proof: By Theorem 6.6.4, ∑
∞
j=r ∑

∞
i=r
∣∣ai j
∣∣ = ∑

∞
i=r ∑

∞
j=r
∣∣ai j
∣∣ < ∞. Therefore, for each

j, ∑
∞
i=r
∣∣ai j
∣∣ < ∞ and for each i, ∑

∞
j=r
∣∣ai j
∣∣ < ∞. By Theorem 6.2.2 on Page 166, both of

the series ∑
∞
i=r ai j, ∑

∞
j=r ai j converge, the first one for every j and the second for every i.

Also, ∑
∞
j=r
∣∣∑∞

i=r ai j
∣∣≤ ∑

∞
j=r ∑

∞
i=r
∣∣ai j
∣∣< ∞ and ∑

∞
i=r
∣∣∑∞

j=r ai j
∣∣≤ ∑

∞
i=r ∑

∞
j=r
∣∣ai j
∣∣< ∞ so by

Theorem 6.2.2 again, ∑
∞
j=r ∑

∞
i=r ai j, ∑

∞
i=r ∑

∞
j=r ai j both exist. It only remains to verify they

are equal.
By Theorem 6.6.4 and Theorem 6.1.6 on Page 164

∞

∑
j=r

∞

∑
i=r

∣∣ai j
∣∣+ ∞

∑
j=r

∞

∑
i=r

ai j =
∞

∑
j=r

∞

∑
i=r

(∣∣ai j
∣∣+ai j

)
=

∞

∑
i=r

∞

∑
j=r

(∣∣ai j
∣∣+ai j

)
=

∞

∑
i=r

∞

∑
j=r

∣∣ai j
∣∣+ ∞

∑
i=r

∞

∑
j=r

ai j =
∞

∑
j=r

∞

∑
i=r

∣∣ai j
∣∣+ ∞

∑
i=r

∞

∑
j=r

ai j

and so ∑
∞
j=r ∑

∞
i=r ai j = ∑

∞
i=r ∑

∞
j=r ai j.It follows the two series are equal. ■

One of the most important applications of this theorem is to the problem of multiplica-
tion of series.

Definition 6.6.6 Let ∑
∞
i=r ai and ∑

∞
i=r bi be two series. For n ≥ r, define

cn ≡
n

∑
k=r

akbn−k+r.

The series ∑
∞
n=r cn is called the Cauchy product of the two series.
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It isn’t hard to see where this comes from. Formally write the following in the case
r = 0:

(a0 +a1 +a2 +a3 · · ·)(b0 +b1 +b2 +b3 · · ·)

and start multiplying in the usual way. This yields

a0b0 +(a0b1 +b0a1)+(a0b2 +a1b1 +a2b0)+ · · ·

and you see the expressions in parentheses above are just the cn for n = 0,1,2, · · · . There-
fore, it is reasonable to conjecture that ∑

∞
i=r ai ∑

∞
j=r b j = ∑

∞
n=r cn and of course there would

be no problem with this in the case of finite sums but in the case of infinite sums, it is
necessary to prove a theorem. The following is a special case of Merten’s theorem.

Theorem 6.6.7 Suppose ∑
∞
i=r ai and ∑

∞
j=r b j both converge absolutely2. Then(

∞

∑
i=r

ai

)(
∞

∑
j=r

b j

)
=

∞

∑
n=r

cn

where cn = ∑
n
k=r akbn−k+r.

Proof: Let pnk = 1 if r ≤ k ≤ n and pnk = 0 if k > n. Then cn = ∑
∞
k=r pnkakbn−k+r.

Also,
∞

∑
k=r

∞

∑
n=r

pnk |ak| |bn−k+r|=
∞

∑
k=r

|ak|
∞

∑
n=r

pnk |bn−k+r|

=
∞

∑
k=r

|ak|
∞

∑
n=k

|bn−k+r|=
∞

∑
k=r

|ak|
∞

∑
n=k

∣∣bn−(k−r)
∣∣= ∞

∑
k=r

|ak|
∞

∑
m=r

|bm|< ∞.

Therefore, by Theorem 6.6.5

∞

∑
n=r

cn =
∞

∑
n=r

n

∑
k=r

akbn−k+r =
∞

∑
n=r

∞

∑
k=r

pnkakbn−k+r

=
∞

∑
k=r

ak

∞

∑
n=r

pnkbn−k+r =
∞

∑
k=r

ak

∞

∑
n=k

bn−k+r =
∞

∑
k=r

ak

∞

∑
m=r

bm ■

6.7 Exercises
1. Determine whether the following series converge absolutely, conditionally, or not at

all and give reasons for your answers.

(a) ∑
∞
n=1 (−1)n 2n+n

n2n

(b) ∑
∞
n=1 (−1)n 2n+n

n22n

(c) ∑
∞
n=1 (−1)n n

2n+1

(d) ∑
∞
n=1 (−1)n 10n

n!

(e) ∑
∞
n=1 (−1)n n100

1.01n

(f) ∑
∞
n=1 (−1)n 3n

n3

(g) ∑
∞
n=1 (−1)n n3

3n

(h) ∑
∞
n=1 (−1)n n3

n!

(i) ∑
∞
n=1 (−1)n n!

n100

2Actually, it is only necessary to assume one of the series converges and the other converges absolutely. This
is known as Merten’s theorem and may be read in the 1974 book by Apostol listed in the bibliography.
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2. Suppose ∑
∞
n=1 an converges. Can the same thing be said about ∑

∞
n=1 a2

n? Explain.

3. A person says a series converges conditionally by the ratio test. Explain why his
statement is total nonsense.

4. A person says a series diverges by the alternating series test. Explain why his state-
ment is total nonsense.

5. Find a series which diverges using one test but converges using another if possible.
If this is not possible, tell why.

6. If ∑
∞
n=1 an and ∑

∞
n=1 bn both converge, does ∑

∞
n=1 anbn converge?

7. If ∑
∞
n=1 an converges absolutely, and bn is bounded, does ∑

∞
n=1 anbn converge? What

if it is only the case that ∑
∞
n=1 an converges?

8. Prove Theorem 6.5.4. Hint: For ∑
∞
n=1 (−1)n bn, show the odd partial sums are all no

larger than ∑
∞
n=1 (−1)n bn and are increasing while the even partial sums are at least

as large as ∑
∞
n=1 (−1)n bn and are decreasing. Use this to give another proof of the

alternating series test. If you have trouble, see most standard calculus books.

9. Use Theorem 6.5.4 in the following alternating series to tell how large n must be so
that

∣∣∣∑∞
k=1 (−1)k ak −∑

n
k=1 (−1)k ak

∣∣∣ is no larger than the given number.

(a) ∑
∞
k=1 (−1)k 1

k , .001

(b) ∑
∞
k=1 (−1)k 1

k2 , .001

(c) ∑
∞
k=1 (−1)k−1 1√

k
, .001

10. Consider the series ∑
∞
n=0 (−1)n 1√

n+1
. Show this series converges and so it makes

sense to write
(

∑
∞
n=0 (−1)n 1√

n+1

)2
. What about the Cauchy product of this series?

Does it even converge? What does this mean about using algebra on infinite sums as
though they were finite sums?

11. Verify Theorem 6.6.7 on the two series ∑
∞
k=0 2−k and ∑

∞
k=0 3−k.

12. All of the above involves only real sums of real numbers. However, you can define
infinite series of complex numbers in exactly the same way as infinite series of real
numbers. That is w = ∑

∞
k=1 zk means: For every ε > 0 there exists N such that if

n ≥ N, then |w−∑
n
k=1 zk| < ε. Here the absolute value is the one which applies to

complex numbers. That is, |a+ ib|=
√

a2 +b2. Show that if {an} is a decreasing se-
quence of nonnegative numbers with the property that limn→∞ an = 0 and if ω is any
complex number which is not equal to 1 but which satisfies |ω|= 1, then ∑

∞
n=1 ωnan

must converge. Note a sequence of complex numbers, {an + ibn} converges to a+ ib
if and only if an → a and bn → b. There are quite a few things in this problem you
should think about.

13. Suppose limk→∞ sk = s. Show it follows limn→∞
1
n ∑

n
k=1 sk = s.

14. Using Problem 13 show that if ∑
∞
j=1

a j
j converges, then limn→∞

1
n ∑

n
j=1 a j = 0.
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15. Show that if {pi}∞

i=1 are the prime numbers, then ∑
∞
i=1

1
pi
= ∞. That is, there are

enough primes that the sum of their reciprocals diverges. Hint: Let π (n) denote the
number of primes less than equal to n,

{
p1, ..., pπ(n)

}
. Then explain why

n

∑
k=1

1
k
≤

(
n

∑
k=1

1
pk

1

)
· · ·

(
n

∑
k=1

1
pk

π(n)

)
≤

π(n)

∏
k=1

1
1− 1

pk

≤
π(n)

∏
k=1

e2/pk = e2∑
π(n)
k=1

1
pk

and consequently why limn→∞ π (n) = ∞ and ∑
∞
i=1

1
pi
= ∞.

6.8 Series of Functions
Infinite sequences of functions were discussed earlier. Remember, there were two kinds
of convergence, pointwise and uniform. As was just done for series of numbers, once you
understand sequences, it is no problem to consider series. In this case, series of functions.

Definition 6.8.1 Let { fn} be a sequence of functions defined on D. Then(
∞

∑
k=1

fk

)
(x)≡ lim

n→∞

n

∑
k=1

fk (x) (6.8)

whenever the limit exists. Thus there is a new function denoted by
∞

∑
k=1

fk (6.9)

and its value at x is given by the limit of the sequence of partial sums in 6.8. If for all x ∈ D,
the limit in 6.8 exists, then 6.9 is said to converge pointwise. ∑

∞
k=1 fk is said to converge

uniformly on D if the sequence of partial sums,{∑
n
k=1 fk}∞

n=1 converges uniformly. If the
indices for the functions start at some other value than 1, you make the obvious modification
to the above definition as was done earlier with series of numbers.

Theorem 6.8.2 Let { fn} be a sequence of functions defined on D. The series ∑
∞
k=1 fk

converges pointwise if and only if for each ε > 0 and x ∈ D, there exists Nε,x which may

depend on x as well as ε such that when q > p ≥ Nε,x,
∣∣∣∑q

k=p fk (x)
∣∣∣< ε . The series ∑

∞
k=1 fk

converges uniformly on D if for every ε > 0 there exists Nε such that if q > p ≥ Nε then

sup
x∈D

∣∣∣∣∣ q

∑
k=p

fk (x)

∣∣∣∣∣< ε (6.10)

Proof: The first part follows from Theorem 6.1.8. The second part follows from ob-
serving the condition is equivalent to the sequence of partial sums forming a uniformly
Cauchy sequence and then by Corollary 4.9.5, these partial sums converge uniformly to a
function which is the definition of ∑

∞
k=1 fk. ■

Is there an easy way to recognize when 6.10 happens? Yes, there is. It is called the
Weierstrass M test.

Theorem 6.8.3 Let { fn} be a sequence of functions defined on D. Suppose there
exists Mn such that sup{| fn (x)| : x ∈ D}< Mn and ∑

∞
n=1 Mn converges. Then ∑

∞
n=1 fn con-

verges uniformly on D.
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Proof: Let z ∈ D. Then letting m < n,∣∣∣∣∣ n

∑
k=1

fk (z)−
m

∑
k=1

fk (z)

∣∣∣∣∣≤ n

∑
k=m+1

| fk (z)| ≤
∞

∑
k=m+1

Mk < ε

whenever m is large enough because of the assumption that ∑
∞
n=1 Mn converges. Therefore,

the sequence of partial sums is uniformly Cauchy on D and therefore, converges uniformly
to ∑

∞
k=1 fk on D. ■

Theorem 6.8.4 If { fn} is a sequence of functions defined on D which are continuous
at z and ∑

∞
k=1 fk converges uniformly, then the function ∑

∞
k=1 fk must also be continuous at

z.

Proof: This follows from Theorem 4.9.3 applied to the sequence of partial sums of the
above series which is assumed to converge uniformly to the function ∑

∞
k=1 fk. ■

6.9 Exercises
1. Suppose { fn} is a sequence of decreasing positive functions defined on [0,∞) which

converges pointwise to 0 for every x ∈ [0,∞). Can it be concluded that this sequence
converges uniformly to 0 on [0,∞)? Now replace [0,∞) with (0,∞) . What can be said
in this case assuming pointwise convergence still holds?

2. If { fn} and {gn} are sequences of functions defined on D which converge uniformly,
show that if a,b are constants, then a fn+bgn also converges uniformly. If there exists
a constant, M such that | fn (x)| , |gn (x)|< M for all n and for all x ∈ D, show { fngn}
converges uniformly. Let fn (x)≡ 1/x for x ∈ (0,1) and let gn (x)≡ (n−1)/n. Show
{ fn} converges uniformly on (0,1) and {gn} converges uniformly but { fngn} fails to
converge uniformly.

3. Show that if x > 0,∑∞
k=0

xk

k! converges uniformly on any interval of finite length.

4. Let x≥ 0 and consider the sequence
{(

1+ x
n

)n}
. Show this is an increasing sequence

and is bounded above by ∑
∞
k=0

xk

k! .

5. Show for every x,y real, ∑
∞
k=0

(x+y)k

k! converges and equals(
∞

∑
k=0

yk

k!

)(
∞

∑
k=0

xk

k!

)

6. Consider the series ∑
∞
n=0 (−1)n x2n+1

(2n+1)! . Show this series converges uniformly on any
interval of the form [−M,M] .

7. Formulate a theorem for a series of functions which will allow you to conclude the
infinite series is uniformly continuous based on reasonable assumptions about the
functions in the sum.
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8. Find an example of a sequence of continuous functions such that each function is
nonnegative and each function has a maximum value equal to 1 but the sequence of
functions converges to 0 pointwise on (0,∞) .

9. Suppose { fn} is a sequence of real valued functions which converges uniformly to a
continuous function f . Can it be concluded the functions fn are continuous? Explain.

10. Let h(x) be a bounded continuous function. Show the function f (x) = ∑
∞
n=1

h(nx)
n2 is

continuous.

11. Let S be a any countable subset of R. This means S is actually the set of terms of a
sequence. That is S = {sn}∞

n=1. Show there exists a function f defined on R which is
discontinuous at every point of S but continuous everywhere else. Hint: This is real
easy if you do the right thing. It involves Theorem 6.8.4 and the Weierstrass M test.

12. By Theorem 4.10.3 there exists a sequence of polynomials converging uniformly to
f (x) = |x| on the interval [−1,1] . Show there exists a sequence of polynomials, {pn}
converging uniformly to f on [−1,1] which has the additional property that for all
n, pn (0) = 0.

13. If f is any continuous function defined on [a,b] , show there exists a series of the form
∑

∞
k=1 pk, where each pk is a polynomial, which converges uniformly to f on [a,b].

Hint: You should use the Weierstrass approximation theorem to obtain a sequence
of polynomials. Then arrange it so the limit of this sequence is an infinite sum.

14. Sometimes a series may converge uniformly without the Weierstrass M test being
applicable. Show ∑

∞
n=1 (−1)n x2+n

n2 converges uniformly on [0,1] but does not con-
verge absolutely for any x ∈R. To do this, it might help to use the partial summation
formula, 6.7. Note that ∑

∞
n=1 (−1)n x2+n

n2 = ∑
∞
n=1 (−1)n x2+n

n

( 1
n

)
.



Chapter 7

The Integral

A more traditional treatment of the integral is described in the problems beginning with
Problem 25 on Page 100. This approach is due to Darboux and is his description of the
Riemann integral. The Riemann integral dates from the 1850’s. It includes the case of
continuous and piecewise continuous functions. However, the first integral to be adequate
for considering continuous functions was due to Cauchy in 1820’s who gave the first cor-
rect proof of the fundamental theorem of calculus which is normally credited to Newton
and Liebniz. This is because the concept of what was meant by the integral was not pre-
cisely described until Cauchy. In fact, Cauchy’s integral involved one sided sums and only
worked well on continuous functions, but it was sufficient to give an acceptable proof for
the fundamental theorem of calculus. For a complete discussion including Stieltjes inte-
grals, a very important generalization, see my single variable advanced calculus book on
my web site.

Although their understanding of the integral was incomplete, they found it as follows:

Procedure 7.0.1 To find
∫ b

a f (x)dx do the following:

1. Find F (x) such that F ′ (x) = f (x) . Such an F is called an anti-derivative. Its deriva-
tive is an appropriate one sided derivative at the end points.

2. Then
∫ b

a f (x)dx ≡ F (b)−F (a)

The above procedure to find “
∫ b

a f (x)dx”, was called the fundamental theorem of cal-
culus. What they thought they were getting was a kind of infinite sum of the quantities
f (x)dx,dx being an “infinitesimal” change in x, which is why it is denoted as

∫ b
a f (x)dx,

the long S symbolizing sum. Until Cauchy it was like this: We have something which we
don’t understand but it is like a sum and we can find it by using antiderivatives. It was like
religious ritual. By contrast, Cauchy said exactly what he meant by the integral and showed
that you could find it using antiderivatives. This is a big improvement.

However, defining the integral by the above Procedure, this is in fact a very inter-
esting concept, because many applications can be formulated directly as a solution to an
initial value problem from differential equations. This is a problem of the form F ′ (x) =
f (x) ,F (0) = F0 where F is an unknown function and F (0) = F0 is an initial condition.
Here is a simple example, which is also the main historical motivaton for the integral.

Consider A(x) the area under the graph of a curve y = f (x) as shown in the following
picture between a and x.

181
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a
A(x)

y = f (x)

x x+h

A(x+h)−A(x)

Thus A(x+h)−A(x) ∈ [ f (x)h, f (x+h)h] and so

A(x+h)−A(x)
h

∈ [ f (x) , f (x+h)]

Then taking a limit as h → 0, one obtains A′ (x) = f (x) ,A(a) = 0 and so one would have,
from the above definition of the integral in terms of a procedure, A(x) =

∫ x
a f (t)dt. This

suggests that we should define the area under the graph of the curve between a and x > a
as this integral

∫ x
a f (t)dt which is computed as A(x)−A(a) where A′ = f . The argument

is similar if f is decreasing.
Of course you should wonder whether you get the same thing for

∫ b
a f (x)dx if you use

some other F̂ (x) with F̂ ′ (x) = f (x).

Proposition 7.0.2 Procedure 7.0.1 is well defined in the sense that any F satisfying
F ′ = f , on (a,b) with F continuous on [a,b] yields the same answer for

∫ b
a f (x)dx.

Proof: Suppose both F ′ = f and F̂ ′ = f . Then let G(x) = F (x)− F̂ (x) . For any x,y ∈
[a,b] , G(x)−G(y) = G′ (z)(x− y) for some z between x and y, this by the mean value
theorem. However, G′ (z) = 0 and so G(x) = G(y) for every x,y. In particular, F (b)−
F̂ (b)−

(
F (a)− F̂ (a)

)
= 0 which implies F (b)−F (a) = F̂ (b)− F̂ (a). Also, F (x) =

F̂ (x)+C for some constant equal to the common value of G. ■

Example 7.0.3 Find the area under the graph of the function y = x2 where 0 ≤ x ≤ 2.

You find an antiderivative. One which works is x3

3 because its derivative is x2. Then the

desired area is 23

3 − 03

3 = 8
3 .

Example 7.0.4 Find the area under y = sinx for x ∈
[

π

2 ,π
]
.

An antiderivative is −cos(x), so the desired area is −cos(π)−
(
−cos

(
π

2

))
= 1.

Of course the big question is whether there exists an antiderivative for an arbitrary
continuous function. It turns out that the answer is yes, but sometimes we can’t find it.
However, there is one kind of function for which this is an easy problem. I know, for
example that an antiderivative for p(x) = 1+ x+ 2x2 is x+ x2

2 + 2 x3

3 . Just look at it. It
works. So is there an easy way to find an antiderivative? Yes for polynomials.

Lemma 7.0.5 Let p(x) = a0+a1x+ · · ·+an−1xn−1+anxn. Then if P(x) = a0x+a1
x2

2 +

· · ·+ an−1
xn

n + an
xn+1

n+1 it follows that P′ (x) = p(x). Thus if p(x) = ∑
n
k=0 akxk, then an

antiderivative is ∑
n
k=0 ak

xk+1

k+1 .

Proof: This follows from the rules of differentiation. ■

Definition 7.0.6 ∫
f (x)dx denotes all functions F such that F ′ (x) = f (x). Thus,

from Proposition 7.0.2,
∫

f (x)dx = F (x)+C where F ′ = f and C is an arbitrary constant
of integration.
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There are many examples of how this can be used. Here is another one. Imagine a line
next to a three dimensional solid as shown in the next picture. For each y between a and b,
let A(y) denote the area of the cross section of the solid obtained by intersecting this solid
with a plane through y perpendicular to the indicated line. Then V (y+h)−V (y)

h ≈ hA(y)
h = A(y)

the approximation getting better as h gets smaller. Thus in the limit, V ′ (y) = A(y)

a

b

y

V (y)

A(y)

dy

and so the total volume of the solid between a and y,V (y) , satisfies the initial value problem
dV
dy = A(y) , V (a) = 0. The volume of the solid is V (b) .

Example 7.0.7 Suppose a solid is obtained as a circular disk of radius r and center at
(0,0) is revolved about the y axis. Find the volume of the solid ball of radius r.

x2 + y2 = r2

y
x

r x

Here the line would be the y axis from −r to r. For given y, you have x2 + y2 = r2,
so x =

√
r2 − y2 and this is the radius of a cross section located at y. Then by the above,

V ′ (y) = π
(
r2 − y2

)
,V (−r) = 0. The volume is

∫ r
−r π

(
r2 − y2

)
dy. An antiderivative is

πr2y− π
y3

3 so the volume is
(

πr2 · r−π
r3

3

)
−
(

πr2 · (−r)+π
r3

3

)
= 4

3 πr3. This is the
volume of a ball of radius r.

The above procedure from the 1700’s is how we find integrals. Thus we are finding so-
lutions to an initial value problem and this will include many important applied problems
in geometry and physics. However, there are significant theoretical questions, the most im-
portant being the existence of an antiderivative for a continuous function. These questions
are resolved in the next section. After this, I will give a careful treatment of Darboux’s
formulation of the Riemannn integral which will bring the understanding of the integral up
to the 1850’s. Expressing the integral as a limit of sums is the precise way of avoiding the
fuzzy notion of infinitesimals which was the original idea of Leibniz. However, Leibniz’s
original idea is still very useful in formulating problems to be solved in terms of integrals.

At this point, the reader can do all of the do-able examples involving integrals except
for finding antiderivatives, techniques for which are presented later. The following sections
are theoretical in nature.

7.1 The Definition of the Integral from Antiderivatives
Next is the definition of what is meant by an oriented interval.
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Definition 7.1.1 For the rest of this section, [a,b] will denote the closed interval
having end points a and b but a could be larger than b or smaller than b. It is written this
way to indicate that there is a direction of motion from a to b which will be reflected by the
definition of the integral given below. It is an “oriented interval”.

Definition 7.1.2 The integral of a continuous function defined on an oriented inter-
val [a,b] is defined by Procedure 7.0.1.

However, I need to verify that if f is continuous on [a,b] , then there is an antiderivative
F in order to use that Procedure. This is the following lemma. It is a major result. Recall
that for a function f defined on an interval [a,b] ,∥ f∥ ≡ sup{| f (x)| : x ∈ [a,b]}. Also recall
that if f is a continuous function defined on [a,b] , then there exists a sequence of polyno-
mials {pn (x)} for which ∥ f − pn∥→ 0. This is by the Weierstrass approximation theorem
of the chapter on continuous functions.

The message of the following lemma is that a continuous function on a closed interval
has an antiderivative.

Lemma 7.1.3 Let f be a continuous, real valued function defined on [a,b] . Then there
exists F such that F ′ (x) = f (x) for all x ∈ (a,b) . At the end points, F ′ (x) will refer to a
one sided derivative.

Proof: Assume that a< b in what follows. If not, simply switch a and b in the argument.
Let {pn} be a sequence of polynomials for which ∥pn − f∥ → 0 and let P′

n (x) = pn (x) for
all x ∈ (a,b). By the mean value theorem,

|Pn (x)−Pn (a)− (Pm (x)−Pm (a))|=

|Pn (x)−Pm (x)− (Pn (a)−Pm (a))|
= |(pn (t)− pm (t))(x−a)| ≤ ∥pn − pm∥|b−a|
≤ (∥pn − f∥+∥ f − pm∥) |b−a|

The right side converges to 0 as n,m → ∞ and so by completeness, there exists

F (x) = lim
n→∞

(Pn (x)−Pn (a)) ,

this for any choice of x. It remains to verify that F ′ (x) = f (x) . Say x ∈ [a,b) and let h > 0.
Then by the mean value theorem,

Pn (x+h)−Pn (x)
h

=
(Pn (x+h)−Pn (a))− (Pn (x)−Pn (a))

h
= pn (thn) (∗)

for some thn ∈ (x,x+h). By compactness, there is a subsequence, still denoted as thn for
which limn→∞ thn = th ∈ [x,x+h]. Now

|pn (thn)− f (th)| ≤ |pn (thn)− f (thn)|+ | f (thn)− f (th)|
≤ ∥pn − f∥+ | f (thn)− f (th)|

and so, letting n → ∞, this shows, from continuity of f that |pn (thn)− f (th)| → 0. Taking
a limit in ∗,

F (x+h)−F (x)
h

= f (th) , th ∈ [x,x+h]
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Now by continuity of f , we can take a limit of this as h → 0 and obtain F ′ (x) = f (x) ,
where F ′ (x) is a right derivative at x = a. For x ∈ (a,b], the situation is exactly the same
for when h is restrained to be negative. Indeed,

F (x+h)−F (x)
h

=−F (x− (−h))−F (x)
−h

=
F (x)−F (x− k)

k

where k ≡−h and so for F ′ (x) the left derivative, it exists at each point of (a,b] and equals
f (x). Also, the right derivative exists on [a,b) and equals f (x) and by similar reasoning,
the left derivative exists on (a,b] and equals f (x). Thus F is continuous and F ′ (x) = f (x)
for x ∈ (a,b). ■

Proposition 7.1.4 The above integral is well defined for f continuous on [a,b] and
satisfies the following properties.

1.
∫ b

a f dx = f (x̂)(b−a) for some x̂ between a and b. Thus
∣∣∣∫ b

a f dx
∣∣∣≤ ∥ f∥|b−a| .

2. If f is continuous on an interval which contains all necessary intervals,

∫ c

a
f dx+

∫ b

c
f dx =

∫ b

a
f dx, so

∫ b

a
f dx+

∫ a

b
f dx =

∫ b

b
f dx = 0

3. If F (x)≡
∫ x

a f dt, Then F ′ (x) = f (x) . Also,

∫ b

a
(α f (x)+βg(x))dx = α

∫ b

a
f (x)dx+β

∫
a

βg(x)dx

If a < b, and f (x)≥ 0, then
∫ b

a f dx ≥ 0. Also
∣∣∣∫ b

a f dx
∣∣∣≤ ∣∣∣∫ b

a | f |dx
∣∣∣.

4.
∫ b

a 1dx = b−a.

Proof: The integral is well defined by Lemma 7.1.3 and Proposition 7.0.2. Consider 1.
Let F ′ (x) = f (x) ,F as in Lemma 7.1.3 so

∫ b

a
f (x)dx ≡ F (b)−F (a) = f (x̂)(b−a)

for some x̂ in the open interval determined by a,b. This is by the mean value theorem.
Hence

∣∣∣∫ b
a f dx

∣∣∣≤ ∥ f∥|b−a| .
Now consider 2. Let F ′ = f on a closed interval which contains all necessary intervals.

Then from the definition,∫ c

a
f dx+

∫ b

c
f dx = F (c)−F (a)+F (b)−F (c) = F (b)−F (a)≡

∫ b

a
f (x)dx

Next consider 3. For F (x) ≡
∫ x

a f (x)dx, the definition says that F (x) = G(x)−G(a)
where G′ (x) = f (x) and so, since G′ = F ′, it follows that F ′ (x) = f (x) with an appropriate
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one sided derivative at the ends of the interval. Now let F ′ = f ,G′ = g. Then α f +βg =
(αF +βG)′ and so∫ b

a
(α f (x)+βg(x))dx ≡ (αF +βG)(b)− (αF +βG)(a)

= αF (b)+βG(b)− (αF (a)+βG(a))

= α (F (b)−F (a))+β (G(b)−G(a))

≡ α

∫ b

a
f (x)dx+β

∫
a

βg(x)dx

If f ≥ 0,a < b, then the mean value theorem implies that for F ′ = f , and some

t ∈ (a,b) ,F (b)−F (a) =
∫ b

a
f dx = f (t)(b−a)≥ 0.

Thus ∫ b

a
(| f |− f )dx ≥ 0,

∫ b

a
(| f |+ f )dx ≥ 0 so∫ b

a
| f |dx ≥

∫ b

a
f dx and

∫ b

a
| f |dx ≥−

∫ b

a
f dx

so this proves
∣∣∣∫ b

a f dx
∣∣∣ ≤ ∫ b

a | f |dx. This, along with part 2 implies the other claim that∣∣∣∫ b
a f dx

∣∣∣≤ ∣∣∣∫ b
a | f |dx

∣∣∣ even if a > b.
The last claim is obvious because an antiderivative of 1 is F (x) = x. ■
The change of variables theorem is available from the chain rule because if F ′ = f , then

f (g(x))g′ (x) = d
dx F (g(x)) so that, from the above proposition,

F (g(b))−F (g(a)) =
∫ g(b)

g(a)
f (y)dy =

∫ b

a
f (g(x))g′ (x)dx.

We also have the integration by parts formula from the product rule. Say F ′ = f ,G′ = g.
Then from the product rule, (FG)′ = f G+gF. In particular, if f ,g are continuous on [a,b] ,

F (b)G(b)−F (a)G(a) =
∫ b

a
f (t)G(t)dt +

∫ b

a
g(t)F (t)dt

These formulas are discussed more later.

Definition 7.1.5 A function f : [a,b] → R is piecewise continuous if there is an
ordered list of intermediate points zi having an order consistent with [a,b] , meaning that
zi−1 − zi has the same sign as a − b, a = z0,z1, · · · ,zn = b, called a partition of [a,b] ,
and functions fi continuous on [zi−1,zi] such that f = fi on (zi−1,zi). For f piecewise
continuous, define ∫ b

a
f (t)dt ≡

n

∑
i=1

∫ zi

zi−1

fi (s)ds

If such a function fi exists, then it is uniquely defined on [zi−1,zi] as fi (zi)≡ limx→zi− f (x)
with a similar definition for fi (zi−1).
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Observation 7.1.6 Note that this actually defines the integral even if the function has
finitely many discontinuities and that changing the value of the function at finitely many
points does not affect the integral.

Of course this gives what appears to be a new definition because if f is continuous on
[a,b] , then it is piecewise continuous for any such partition. However, it gives the same
answer because, from this new definition,

∫ b
a f (t)dt = ∑

n
i=1 (F (zi)−F (zi−1)) = F (b)−

F (a).
Suppose f ,g are piecewise continuous. Then let {zi}n

i=1 include all the partition points
of both of these functions. Then, since it was just shown that no harm is done by including
more partition points,

∫ b
a α f (t)+βg(t)dt ≡

n

∑
i=1

∫ zi

zi−1

(α fi (s)+βgi (s))ds =
n

∑
i=1

α

∫ zi

zi−1

fi (s)ds+
n

∑
i=1

β

∫ zi

zi−1

gi (s)ds

= α

n

∑
i=1

∫ zi

zi−1

fi (s)ds+β

n

∑
i=1

∫ zi

zi−1

gi (s)ds = α

∫ b

a
f (t)dt +β

∫ b

a
g(t)dt

Also, the claim that
∫ b

a f dt =
∫ c

a f dt +
∫ b

c f dt is obtained exactly as before by considering
all partition points on each integral preserving the order of the limits in the small intervals
determined by the partition points.

Definition 7.1.7 Let I be an interval. Then XI (t) is 1 if t ∈ I and 0 if t /∈ I.
Then a step function will be of the form ∑

n
k=1 ckXIk (t) where Ik = [ak−1,ak] is an inter-

val and {Ik}n
k=1 are non-overlapping intervals whose union is an interval [a,b] so b−a =

∑
n
k=1 (ak −ak−1). Then, as explained above,

∫ b

a

n

∑
k=1

ckXIk (t)dt =
n

∑
k=1

ck

∫ ak

ak−1

1dt =
n

∑
k=1

ck (ak −ak−1) .

Is this as general as a complete treatment of Riemann integration? No it is not. The
1800’s version of the integral is presented in the next section which is due to Riemann and
Darboux. However, this version is sufficiently general to include all cases which are typi-
cally of interest. It is also enough to build a theory of ordinary differential equations. Note
that Proposition 7.1.4 says that

∫ b
a f (t)dt = G(b)−G(a) whenever G′ = f . This proposi-

tion also proves the fundamental theorem of calculus discovered by Newton and Leibniz,(∫ t
a f (s)ds

)′
= f (t) if f is continuous. Unlike what was done by Newton and Leibniz, this

approach also includes a rigorous definition of what is meant by the integral. To summarize,
here is the procedure for finding an integral of a piecewise continuous function.

Procedure 7.1.8 Let f be continuous on [a,b]. To find
∫ b

a f (t)dt, find an an-
tiderivative of f ,F. Then

∫ b
a f (t)dt = F (b)− F (a). If f is piecewise continuous and

equals the continuous function fk on (zk−1,zk) where fk is continuous on [zk−1,zk] and
a = z0 < z1 < z2 < · · ·< zn = b, then

∫ b
a f (x)dx ≡ ∑

n
k=1

∫ zk
zk−1

fk (x)dx.

The main assertion of the above Proposition 7.1.4 is that for any f continuous, there
exists a unique solution to the initial value problem F ′ (t) = f (t) , along with F (a) = 0 and
it is F (t) =

∫ t
a f (x)dx.
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7.2 Uniform Convergence and the Integral
It turns out that uniform convergence is very agreeable in terms of the integral. The follow-
ing is the main result.

Theorem 7.2.1 Let fn be continuous and converging uniformly to f on [a,b] ,a < b.
Then it follows f is also continuous and∫ b

a
f dx = lim

n→∞

∫ b

a
fndx

Proof: The uniform convergence implies f is also continuous. See Theorem 4.9.3.
Therefore,

∫ b
a f dx exists. Using the triangle inequality and definition of ∥·∥ described ear-

lier in conjunction with this theorem,∣∣∣∣∫ b

a
f (x)dx−

∫ b

a
fn (x)dx

∣∣∣∣= ∣∣∣∣∫ b

a
( f (x)− fn (x))dx

∣∣∣∣
≤
∫ b

a
| f (x)− fn (x)|dx ≤

∫ b

a
∥ f − fn∥dx ≤ ∥ f − fn∥(b−a)

which is given to converge to 0 as n → ∞. ■

7.3 The Riemann Darboux Integral∗

In the 1850’s Riemann gave a completely satisfactory description of the integral. The one
Cauchy gave had some problems. I will present Darboux’s version of this integral and show
that it is the same as the earlier one for continuous and piecewise continuous functions. I
will also present the fundamental theorem of calculus from this integral. In this section,
[a,b] will represent the usual notion of an interval in which a < b.

Definition 7.3.1 For f a bounded function, and P = {x0,x1, ...,xn} ⊆ [a,b] where,
a = x0 < · · ·< xn = b, let

Mi ( f )≡ sup{ f (x) : x ∈ [xi−1,xi]} , mi ( f )≡ inf{ f (x) : x ∈ [xi−1,xi]} .

Then upper sums, U ( f ,P) and lower sums L( f ,P) are defined as

U ( f ,P)≡
n

∑
i=1

Mi ( f )(xi − xi−1) ,L( f ,P)≡
n

∑
i=1

mi ( f )(xi − xi−1)

This collection of points is called a partition of [a,b].

What happens when you add in more points in a partition? In this example a single
additional point, labeled z has been added in.

y = f (x)

x0 x1 x2 x3z

+

x0 x1 x2 x3

-

z
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Note how the lower sum got larger by the amount of the area in the shaded rectangle
and the upper sum got smaller by the amount in the other shaded rectangle. In general this
is the way it works and this is shown in the following lemma.

Lemma 7.3.2 If P ⊆ Q then

U ( f ,Q)≤U ( f ,P) , and L( f ,P)≤ L( f ,Q) .

Proof: This is verified by adding in one point at a time. Thus let P = {x0, · · · ,xn} and
let Q = {x0, · · · ,xk,y,xk+1, · · · ,xn}. Thus exactly one point y, is added between xk and xk+1.
Now the term in the upper sum which corresponds to the interval [xk,xk+1] in U ( f ,P) is

sup{ f (x) : x ∈ [xk,xk+1]}(xk+1 − xk) (7.1)

and the terms which corresponds to the interval [xk,xk+1] in U ( f ,Q) are

sup{ f (x) : x ∈ [xk,y]}(y− xk)+ sup{ f (x) : x ∈ [y,xk+1]}(xk+1 − y) (7.2)
≡ M1 (y− xk)+M2 (xk+1 − y) (7.3)

All the other terms in the two sums coincide. Now

sup{ f (x) : x ∈ [xk,xk+1]} ≥ max(M1,M2)

and so the expression in 7.2 is no larger than

sup{ f (x) : x ∈ [xk,xk+1]}(xk+1 − y)+ sup{ f (x) : x ∈ [xk,xk+1]}(y− xk)

= sup{ f (x) : x ∈ [xk,xk+1]}(xk+1 − xk) ,

the term corresponding to the interval [xk,xk+1] and U ( f ,P) . This proves the first part of
the lemma pertaining to upper sums because if Q ⊇ P, one can obtain Q from P by adding
in one point at a time and each time a point is added, the corresponding upper sum either
gets smaller or stays the same and similarly, the resulting lower sum is no smaller. ■

Lemma 7.3.3 If P and Q are two partitions, then

L( f ,P)≤U ( f ,Q) .

Proof: By Lemma 7.3.2,

L( f ,P)≤ L( f ,P∪Q)≤U ( f ,P∪Q)≤U ( f ,Q) . ■

Definition 7.3.4
I ≡ inf{U ( f ,Q) where Q is a partition}

I ≡ sup{L( f ,P) where P is a partition}.

Note that I and I are well defined real numbers.

Theorem 7.3.5 I ≤ I.
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Proof: From Lemma 7.3.3,

I = sup{L( f ,P) where P is a partition} ≤U ( f ,Q)

because U ( f ,Q) is an upper bound to the set of all lower sums and so it is no smaller than
the least upper bound. Therefore, since Q is arbitrary,

I = sup{L( f ,P) where P is a partition}
≤ inf{U ( f ,Q) where Q is a partition} ≡ I

where the inequality holds because it was just shown that I is a lower bound to the set of
all upper sums and so it is no larger than the greatest lower bound of this set. ■

Now here is the definition of the Darboux integral based on the observation that I ≥ I.

Definition 7.3.6 For f a bounded function on [a,b] ,

I ≡ inf{U ( f ,P) where P is a partition},
I ≡ sup{L( f ,P) where P is a partition}.

Then f is integrable if Ī = I and the Darboux integral is the common value of these. I will
call I the lower integral and Ī the upper integral. Thus the function is integrable exactly
when there is no gap between the upper and lower integrals.

Proposition 7.3.7 A bounded function f defined on [a,b] is integrable if and only if for
each ε > 0 there exists a partition P such that U ( f ,P)−L( f ,P)< ε .

Proof: ⇒ In this case, the upper and lower integrals are equal and so I +ε/3 > Ī,
Ī−ε/3 < I . Thus, there is a partition P such that I +ε/3 >U ( f ,P) and Ī−ε/3 < L( f ,P).
Therefore,

0 ≤U ( f ,P)−L( f ,P)≤ I + ε/3− (Ī − ε/3)< ε

⇐ If there is some P such that U ( f ,P)− L( f ,P) < ε, then 0 ≤ Ī − I ≤ U ( f ,P)−
L( f ,P)< ε and so, since ε is arbitrary, Ī − I = 0. There is no gap between the upper and
lower integrals. ■

Proposition 7.3.8 If f is either increasing or decreasing on [a,b] , then f is integrable.

Proof: Suppose first that f is decreasing. There is no space between Ī and I because if
a = x0 < x1 < · · ·< xn = b where these points in the partition are equally spaced, then

Ī − I ≤
n

∑
k=1

f (xk−1)(xk − xk−1)−
n

∑
k=1

f (xk)(xk − xk−1)

=
n

∑
k=1

( f (xk−1)− f (xk))
b−a

n
= ( f (a)− f (b))

b−a
n

Since n is arbitrary, it must be that Ī− I = 0. It is exactly similar for f increasing. You just
take the upper sum by using the value of f at the right end of the interval and the lower
sum by taking the value of f at the left end of the interval. ■
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Corollary 7.3.9 Suppose [a,b] is an interval and f is a bounded real valued function
defined on this interval and that there is a partition a = z0 < z1 < · · ·< zn = b such that f
is either increasing or decreasing on each sub interval [zi−1,zi] . Then

∫ b
a f dx exists. Thus

all reasonable bounded functions are integrable.

Proof: Let Īk and Īk and Ik pertain to the interval [zk−1,zk] . Then these are equal and so
there is a parition P of [a,b] including all the zk such that U ( f ,P)−L( f ,P)< ε. You just
consider an appropriate partition of [zk−1,zk] making the difference between the upper and
lower sums less than ε/n for each of these sub intervals. Thus there is no space between Ī
and I because ε is arbitrary. ■

Theorem 7.3.10 Suppose a bounded real valued function f is integrable on [a,c]
and that a < b < c. Then the restrictions of this function to [a,b] and [b,c] are integrable
on these intervals and in fact, ∫ b

a
f dx+

∫ c

b
f dx =

∫ c

a
f dx

Proof: By assumption, there is a partition P1 of [a,b] and one for [b,c] P2 such that
U ( f ,P1)−L( f ,P1) <

ε

2 , U ( f ,P2)−L( f ,P2) <
ε

2 . Thus if P = P1 ∪P2, then U ( f ,P)−
L( f ,P) < ε and so there is no space between Ī and I . Thus the function is integrable on
[a,c] and also, using the partitions just described,

−ε < L( f ,P)−U ( f ,P) = L( f ,P1)+L( f ,P2)−U ( f ,P)

≤
∫ b

a
f dx+

∫ c

b
f dx−

∫ c

a
f dx ≤U ( f ,P1)+U ( f ,P2)−L( f ,P)

= U ( f ,P)−L( f ,P)< ε

Thus
∫ b

a f dx+
∫ c

b f dx−
∫ c

a f dx ∈ [−ε,ε] and ε is arbitrary so
∫ b

a f dx+
∫ c

b f dx−
∫ c

a f dx = 0.
■

Definition 7.3.11 Define
∫ a

b f dx ≡−
∫ b

a f dx.

Theorem 7.3.12 Let f be integrable on [min(p,q,r) ,max(p,q,r)]. Then
∫ q

p f dx+∫ r
q f dx =

∫ r
p f dx.

Proof: The case where a < b < c was just done. Suppose a < c < b. Then from what
was just done, ∫ c

a
f dx+

∫ b

c
f dx =

∫ b

a
f dx

and so ∫ c

a
f dx =

∫ b

a
f dx−

∫ b

c
f dx =

∫ b

a
f dx+

∫ c

b
f dx

Other cases are similar. ■

Theorem 7.3.13 If f is continuous on [a,b] , then f is integrable on [a,b]. Also, if
f is integrable on [a,b] and is changed at finitely many points, the resulting function is also
integrable and has the same integral as f .
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Proof: I will show there is no gap between the upper and lower integrals. Let ε > 0 be
given. Let n be so large that if |x− y| < 2δ , then | f (x)− f (y)| < ε/((b−a)+1). Such
a δ exists because f is uniformly continuous due to the fact that [a,b] is compact. See
Theorem 4.7.2. Now let n be so large that b−a

n < δ . Then let P = {x0,x1, ...,xn} be a
uniform partition, each xk − xk−1 =

b−a
n . Then

U ( f ,P)−L( f ,P) =
n

∑
k=1

f (zk)(xk − xk−1)−
n

∑
k=1

f (wk)(xk − xk−1)

where f (zk) is the maximum value of f on [xk−1,xk] and f (wk) the minimum value of f
on [xk−1,xk] . Thus |wk − zk|< 2δ and so the above is no larger than

n

∑
k=1

ε

(b−a)+1

(
b−a

n

)
= (b−a)

ε

(b−a)+1
< ε

Thus, from Proposition 7.3.7, f is integrable.
Now consider the claim about an integrable function being changed at finitely many

points. Let f be the integrable function. Let the finitely many points be z1,z2, ...,zr listed
in order. Also let f̂ be the modified function and let

M ≡ sup
(
max

(∣∣ f̂ (x)∣∣ , | f (x)|) ,x ∈ [a,b]
)
,

m ≡ inf
(
min

(
−
∣∣ f̂ (x)∣∣ ,−| f (x)|

)
,x ∈ [a,b]

)
Let P ≡ {x0,x1, ...,xn} be a partition which contains all the finitely many points and

suppose also that |xk − xk−1|< δ where 2(M−n)rδ < ε

2 and also

U ( f ,P)−L( f ,P)<
ε

2

Let the zi be xki . Then

U
(

f̂ ,P
)
−L

(
f̂ ,P
)
≤U ( f ,P)−L( f ,P)

+(M−m)
r

∑
i=1

(
xki+1 − xki

)
+(M−m)

r

∑
i=1

(
xki − xki−1

)
<

ε

2
+2(M−n)rδ < ε

Since ε is arbitrary, this shows there is no gap between the upper and lower integrals and
so f̂ is also integrable. ■

Corollary 7.3.14 Every piecewise continuous function is integrable and if f is piece-
wise continuous and f = fk on (zk−1,zk) where fk is continuous on [zi−1,zi] , then∫ b

a
f (x)dx =

r

∑
k=1

∫ zk

zk−1

fk (x)dx

Proof: From what was just shown, f is integrable on each [zk−1,zk] because it equals
a continuous function except maybe at the end points. Also, from induction and Theorem
7.3.12 f is integrable on [a,b] and

∫ b
a f (x)dx = ∑

r
k=1

∫ zk
zk−1

f (x)dx = ∑
r
k=1

∫ zk
zk−1

fk (x)dx. ■
Now here is a one version of the fundamental theorem of calculus.
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Theorem 7.3.15 Let f (x) = F ′ (x) for x ∈ (a,b) and F is continuous on [a,b]. Also
suppose f is integrable. Then

∫ b
a f (x)dx = F (b)−F (a).

Proof: There is a partition P such that U ( f ,P)−L( f ,P) < ε . Then letting xk denote
the points of P in the usual way, by the mean value theorem, there exists zk ∈ (xk−1,xk)
such that

F (b)−F (a) =
n

∑
k=1

F (xk)−F (xk−1)

=
n

∑
k=1

f (zk)(xk − xk−1) ∈ [L( f ,P) ,U ( f ,P)]

an interval of length no more than ε . But also
∫ b

a f (x)dx is in this same interval and so∣∣∣∣(F (b)−F (a))−
∫ b

a
f (x)dx

∣∣∣∣< ε

Since ε is arbitrary, this shows
∫ b

a f (x)dx = F (b)−F (a). ■
At this point this integral is seen to be a generalization of the earlier integral defined

according to the fundamental theorem of calculus. Next consider functions of Riemann
Darboux integrable functions.

Proposition 7.3.16 Suppose H : R×R→ R satisfy

|H (x,y)−H (x̂, ŷ)| ≤ K (|x− x̂|+ |y− ŷ|)

Then if f ,g ∈ R([a,b]) it follows that H ( f ,g) ∈ R([a,b]) .

Proof: By hypothesis and the Riemann criterion, there is a partition P such that for
h = f or g,U (h,P)−L(h,P)< ε

2K . Say P = x0 < x1 < · · ·< xn. Then consider
n

∑
i=1

(Mi (H ( f ,g))−mi (H ( f ,g)))(xi − xi−1)

Say H ( f (zi) ,g(zi))+η > Mi (H ( f ,g)) and H ( f (wi) ,g(wi))−η < mi (H ( f ,g)) where
zi,wi are in [xi−1,xi]. Then

Mi (H ( f ,g))−mi (H ( f ,g)) ≤ H ( f (zi) ,g(zi))− (H ( f (wi) ,g(wi)))+2η

≤ K (| f (zi)− f (wi)|+ |g(zi)−g(wi)|)+2η

< K ((Mi ( f )−mi ( f ))+(Mi (g)−mi (g)))+2η

Since η is arbitrary, it follows that

Mi (H ( f ,g))−mi (H ( f ,g))≤ K ((Mi ( f )−mi ( f ))+(Mi (g)−mi (g)))

and so
U (H ( f ,g) ,P)−L(H ( f ,g) ,P)< 2K

ε

2K
= ε

Since ε is arbitrary, this verifies that H ( f ,g) ∈ R([a,b]). ■
Note that H (x,y) = αx + βy satisfies the above conditions for α,β real numbers.

Therefore, if f ,g ∈ R([a,b]) , it follows that the linear combination α f +βg is integrable.
Similarly α f and βg are integrable. If f ,g have values in some interval [a,b] and H :
[a,b]× [a,b] → R is only continuous, it could be shown that if f ,g are integrable so is
H ( f ,g) but this is more trouble.
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Lemma 7.3.17 Let f ,g be integrable. Then
∫ b

a ( f +g)(x)dx =
∫ b

a f (x)dx+
∫ b

a g(x)dx.

Proof: For x ∈ [xi−1,xi] , ( f +g)(x) ≥ mi ( f ) + mi (g) and so mi ( f +g) ≥ mi ( f ) +
mi (g) . Similarly Mi ( f +g)≤ Mi ( f )+Mi (g). Therefore,

U ( f +g,P)≤U ( f ,P)+U (g,P) , L( f +g,P)≥ L( f ,P)+L(g,P)

Let U ( f ,P)−L( f ,P)< ε and U (g,P)−U (g,P)< ε . Then∫ b

a
( f +g)(x)dx ∈ [L( f +g,P) ,U ( f +g,P)]

⊆ [L( f ,P)+L(g,P) ,U ( f ,P)+U (g,P)]∫ b

a
f (x)dx+

∫ b

a
g(x)dx ∈ [L( f ,P)+L(g,P) ,U ( f ,P)+U (g,P)]

Thus both
∫ b

a ( f +g)(x)dx and
∫ b

a f (x)dx+
∫ b

a g(x)dx are in an interval of length 2ε and

so
∣∣∣∫ b

a ( f +g)(x)dx−
(∫ b

a f (x)dx+
∫ b

a g(x)dx
)∣∣∣< 2ε. Since ε is arbitrary, this proves the

lemma. ■

Lemma 7.3.18 Let α ≥ 0. Then
∫ b

a α f (x)dx = α
∫ b

a f (x)dx.

Proof: It is routine to verify that U (α f ,P) = αU ( f ,P) ,L(α f ,P) = αL( f ,P). Let
U ( f ,P)−L( f ,P)< ε . Therefore,∫ b

a
α f (x)dx ∈ [L(α f ,P) ,U (α f ,P)] = [αL( f ,P) ,αU ( f ,P)]

α

∫ b

a
f (x)dx ∈ [αL( f ,P) ,αU ( f ,P)]

Thus both
∫ b

a α f (x)dx and α
∫ b

a f (x)dx are in an interval of length αε so since ε is arbi-
trary, this proves the lemma. ■

Proposition 7.3.19 Let f ,g be integrable. Then if α,β are real numbers,then the fol-
lowing holds for the integrals:

∫ b
a (α f +βg)(x)dx = α

∫ b
a f (x)dx+β

∫ b
a g(x)dx.

Proof: I want to show that
∫ b

a α f (x)dx = α
∫ b

a f (x)dx regardless of whether α is
nonnegative. By the first lemma,∫ b

a
(|α|−α) f (x)dx+

∫ b

a
α f (x)dx =

∫ b

a
|α| f (x)dx

and now, by the second lemma and subtracting |α|
∫ b

a f (x)dx,

(|α|−α)
∫ b

a
f (x)dx+

∫ b

a
α f (x)dx =

∫ b

a
|α| f (x)dx

−α

∫ b

a
f (x)dx+

∫ b

a
α f (x) = 0

so this shows one can factor out any real number.
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Now from what was just shown and the lemmas,∫ b

a
(α f +βg)(x)dx =

∫ b

a
α f (x)dx+

∫ b

a
β f (x)dx

= α

∫ b

a
f (x)dx+β

∫ b

a
f (x)dx ■

Proposition 7.3.20 If a < b, Then
∫ b

a | f (x)|dx ≥
∣∣∣∫ b

a f (x)dx
∣∣∣ . Here f is assumed in-

tegrable.

Proof: From the definition, if a < b, then
∫ b

a f (x)dx ≥ 0 if f (x) ≥ 0 for all x. Now
from Proposition 7.3.16, if f is integrable, so is | f | . Then∫ b

a
(| f (x)|− f (x))dx ≥ 0 so

∫ b

a
| f (x)|dx ≥

∫ b

a
f (x)dx∫ b

a
(| f (x)|+ f (x))dx ≥ 0 so

∫ b

a
| f (x)|dx ≥−

∫ b

a
f (x)dx

which implies that for a < b,
∫ b

a | f (x)|dx ≥
∣∣∣∫ b

a f (x)dx
∣∣∣ . ■

Definition 7.3.21 Suppose f is a function and P is a partition P = x0 = a < x1 <
· · · < xn = b. A Riemann sum is of the form ∑

n
k=1 f (zk)(xk − xk−1) where zk ∈ [xk−1,xk].

Thus every such Riemann sum is between U ( f ,P) and L( f ,P) and so, if f is integrable,
every such Riemann sum can be considered an approximation to

∫ b
a f (x)dx.

7.4 Exercises
1. Let f (x) = sin(1/x) for x ∈ (0,1] and let f (0) = 0. Show that f is Riemann Darboux

integrable. Is f piecewise continuous?

2. Show that if f is Riemann Darboux integrable and if F (x) =
∫ x

a f (t)dt, then F ′ (x) =
f (x) at every point x where f is continuous.

3. Show that if fn is Riemann Darboux integrable on [a,b], and fn → f uniformly on
[a,b] , then f is also Riemann Darboux integrable and

∫ b
a fn (x)dx →

∫ b
a f (x)dx.

4. The first order linear initial value problem for the unknown function y is of the form
y′ (x)+ p(x)y(x) = q(x) , y(0) = y0 where y0 is given and p(x) ,q(x) are given con-
tinuous functions. How do you find y in this problem? This will be discussed in this
problem. Incidentally, this is the most important equation in differential equations
and properly understood includes almost the entire typical undergraduate differen-
tial equations course. Let P(x)≡

∫ x
0 p(t)dt. Then multiply both sides by exp(P(x))

and when you do, show that you obtain d
dx (exp(P)y)(x) = q(x)exp(P(x)) . Now

explain why, when you take an integral of both sides, you get exp(P(x))y(x)−y0 =∫ x
0 q(t)exp(P(t))dt. Then

y(x) = exp(−P(x))y0 + exp(−P(x))
∫ x

0
q(t)exp(P(t))dt
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5. One of the most important inequalities in differential equations is Gronwall’s in-
equality. You have u(t) ≤ u0 +K

∫ t
0 u(s)ds, t ≥ 0 where t → u(t) is some continu-

ous function usually nonnegative. Then you can conclude that u(t)≤ u0eKt . Explain
why this is so. Hint: Let w(t) =

∫ t
0 u(s)ds and write the inequality in terms of w and

its derivatives. Then use the technique of the previous problem involving integrating
factors.

6. A function f satisfies a Lipschitz condition if | f (x)− f (y)| ≤ K |x− y| . A stan-
dard initial value problem is to find a function of t denoted as y such that y′ (t) =
f (y(t)) , y(0) = y0 where y0 is a given value called an initial condition. Show that
this initial value problem has a solution if and only if there is a solution to the integral
equation

y(t) = y0 +
∫ t

0
f (y(s))ds, t ≥ 0 (7.4)

Hint: This is an application of theorems about continuity and the fundamental theo-
rem of calculus.

7. Letting f be Lipschitz continuous as in 7.4, use Gronwall’s inequality of Problem 5,
to show there is at most one function y which is a solution to the integral equation
7.4. Hint: If y, ŷ both work, explain why |y(t)− ŷ(t)| ≤

∫ t
0 K |y(s)− ŷ(s)|ds. Also

give a continuous dependence theorem in the case that you have y, ŷ solutions to

y(t) = y0 +
∫ t

0
f (y(s))ds, t ≥ 0 and ŷ(t) = ŷ0 +

∫ t

0
f (ŷ(s))ds, t ≥ 0

respectively. Verify |y0 − ŷ0|eKt ≥ |y(t)− ŷ(t)| .

8. In fact, show there exists a solution to the initial value problem which is to find y
such that y(t) = y0 +

∫ t
0 f (s,y(s))ds under these conditions for t ∈ [0,T ]. Hint: Use

Picard iteration. Let y0 (t) = y0 and if yn (t) has been obtained, let yn+1 (t) = y0 +∫ t
0 f (s,yn (s))ds and show, using the Weierstrass M test on a telescoping series that

this sequence converges uniformly to a continuous function y which is the solution
to the integral equation and hence the initial value problem.

9. Give an example of piecewise continuous nonnegative functions fn defined on [0,1]
which converge pointwise to 0 but

∫ 1
0 fn (x)dx = 1 for all n. This will show how uni-

form convergence or something else in addition to pointwise convergence is needed
to get a conclusion like that in Theorem 7.2.1.

10. Let F (x) =
∫ x3

x2
t5+7

t7+87t6+1 dt. Find F ′ (x) .

11. Let F (x) =
∫ x

2
1

1+t4 dt. Sketch a graph of F and explain why it looks the way it does.

12. Let a,b > 0 and F (x) =
∫ ax

0
1

a2+t2 dt+
∫ a/x

b
1

a2+t2 dt. Show that F is a constant. Hint:
Use the fundamental theorem of calculus.

13. Here is a function:

f (x) =

 x2 sin
(

1
x2

)
if x ̸= 0

0 if x = 0



7.4. EXERCISES 197

Show this function has a derivative at every point of R. Does it make any sense to
write

∫ 1
0 f ′ (x)dx = f (1)− f (0) = f (1)? Explain. Does this somehow contradict the

fundamental theorem of calculus?

14. ∑
n
k=1 f (xk−1)(xk − xk−1) ,∑

n
k=1 f (xk)(xk − xk−1) are called left and right sums. Also

suppose that all partitions have the property that xk −xk−1 is a constant, (b−a)/n so
the points in the partition are equally spaced, and define the integral to be the number
these right and left sums get close to as n gets larger and larger. Show that for f given
as 1 on rational numbers and 0 on irrational numbers,

∫ x
0 f (t) dt = x if x is rational

and
∫ x

0 f (t) dt = 0 if x is irrational. It turns out that the correct answer should always
equal zero for that function, regardless of whether x is rational. This illustrates why
this method of defining the integral in terms of left and right sums is terribly flawed.
Show that even though this is the case, it makes no difference if f is continuous. This
integral was used by Cauchy in the early 1800’s. He considered one sided sums for
continuous functions and ended up giving the first complete proof of the fundamental
theorem of calculus.

15. Suppose f is a bounded function on [0,1] and for each ε > 0,
∫ 1

ε
f (x)dx exists. Can

you conclude
∫ 1

0 f (x)dx exists? You need to be in the situation of the 1800’s integral
to do this problem.

16. Suppose f is a continuous function on [a,b] and
∫ b

a f 2 (x)dx = 0. Show that then
f (x) = 0 for all x.

17. Let f be Riemann integrable on [0,1] . Show that x →
∫ x

0 f (t)dt is continuous. Hint:
It is always assumed that Riemann integrable functions are bounded.

18. Define F (x) ≡
∫ x

0
1

1+t2 dt. Of course F (x) = arctan(x) as mentioned above but just
consider this function in terms of the integral. Sketch the graph of F using only its
definition as an integral. Show there exists a constant M such that −M ≤ F (x)≤ M.
Next explain why limx→∞ F (x) exists and show this limit equals − limx→−∞ F (x).

19. In Problem 18 let the limit defined there be denoted by π/2 and define T (x) ≡
F−1 (x) for x ∈ (−π/2,π/2) . Show T ′ (x) = 1+ T (x)2 and T (0) = 0. As part of

this, you must explain why T ′ (x) exists. For x ∈ [0,π/2] let C (x) ≡ 1/
√

1+T (x)2

with C (π/2) = 0 and on [0,π/2] , define S (x) by
√

1−C (x)2. Show both S (x) and
C (x) are differentiable on [0,π/2] and satisfy S′ (x) =C (x) and C′ (x) =−S (x) . Find
the appropriate way to define S (x) and C (x) on all of [0,2π] in order that these func-
tions will be sin(x) and cos(x) and then extend to make the result periodic of period
2π on all of R. Note this is a way to define the trig. functions which is independent
of plane geometry and also does not use power series. See the book by Hardy (If I
remember correctly), [19] for this approach.

20. Let p,q > 1 and satisfy 1
p +

1
q = 1. Let x = t p−1. Then solving for t, you get t =

x1/(p−1) = xq−1. Explain this. Now let a,b ≥ 0. Sketch a picture to show why∫ b

0
xq−1dx+

∫ a

0
t p−1dt ≥ ab.

Now do the integrals to obtain a very important inequality bq

q + ap

p ≥ ab. When will
equality hold in this inequality?
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21. Suppose f ,g are two Riemann integrable functions on [a,b]. Verify Holder’s inequal-
ity. ∫ b

a
| f | |g|dx ≤

(∫ b

a
| f |p dx

)1/p(∫ b

a
|g|q dx

)1/q

Hint: Do the following. Let A =
(∫ b

a | f |p dx
)1/p

,B =
(∫ b

a |g|q dx
)1/q

. Then let

a = | f |
A ,b = |g|

B and use the wonderful inequality of Problem 20.

22. If F,G are antiderivatives for f ,g on R, show F (x) = G(x)+C for some constant,
C. Use this to give a proof of the fundamental theorem of calculus which has for its
conclusion

∫ b
a f (t)dt = G(b)−G(a) where G′ (x) = f (x) . Use the version of the

fundamental theorem of calculus which says that (
∫ x

a f (t)dt)′ = f (x) for f continu-
ous.

23. Suppose f and g are continuous functions on [a,b] and that g(x) ̸= 0 on (a,b) . Show
there exists c ∈ [a,b] such that f (c)

∫ b
a g(x) dx =

∫ b
a f (x)g(x) dx. Hint: Define m ≡

min{ f (x) : x ∈ [a,b]} ,M ≡ max{ f (x) : x ∈ [a,b]}. Now consider∫ b
a f (x)g(x) dx∫ b

a g(x) dx
or
∫ b

a f (x)(−g(x)) dx∫ b
a (−g(x)) dx

Argue that one of these quotients is between m and M. Use intermediate value theo-
rem.

24. A differentiable function f defined on (0,∞) satisfies the following conditions.

f (xy) = f (x)+ f (y) , f ′ (1) = 1.

Find f and sketch its graph.

25. There is a general procedure for constructing methods of approximate integration.
Consider [0,1] and divide this interval into n equal pieces determined by {x0, · · · ,xn}
where xi − xi−1 = 1/n for each i. The approximate integration scheme for a function
f , will be of the form (

1
n

) n

∑
i=0

ci fi ≈
∫ 1

0
f (x) dx

where fi = f (xi) and the constants, ci are chosen in such a way that the above sum
gives the exact answer for

∫ 1
0 f (x) dx where f (x) = 1,x,x2, · · · ,xn. When this has

been done, change variables to write∫ b

a
f (y) dy = (b−a)

∫ 1

0
f (a+(b−a)x) dx

≈ b−a
n

n

∑
i=1

ci f
(

a+(b−a)
(

i
n

))
=

b−a
n

n

∑
i=1

ci fi

where fi = f
(
a+(b−a)

( i
n

))
. Show that when n = 1, you get an approximation

with trapezoids and when n = 2 you get an approximation with second degree poly-
nomials. This is called Simpson’s rule. Show also that if this integration scheme is
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applied to any polynomial of degree 3 the result will be exact. That is,

1
2

(
1
3

f0 +
4
3

f1 +
1
3

f2

)
=
∫ 1

0
f (x) dx

whenever f (x) is a polynomial of degree three. Show that if fi are the values of f at
a, a+b

2 , and b with f1 = f
( a+b

2

)
, it follows that the above formula gives

∫ b
a f (x) dx

exactly whenever f is a polynomial of degree three.

26. Let f have four continuous derivatives on [xi−1,xi+1] where xi+1 = xi−1 + 2h and
xi = xi−1 + h. Show using Problem 17, there exists a polynomial of degree three,
p3 (x) , such that

f (x) = p3 (x)+
1
4!

f (4) (ξ )(x− xi)
4

Now use Problem 25 to conclude∣∣∣∣∫ xi+1

xi−1

f (x) dx−
(

h fi−1

3
+

h fi4
3

+
h fi+1

3

)∣∣∣∣< M
4!

2h5

5
,

where M satisfies, M ≥ max
{∣∣∣ f (4) (t)∣∣∣ : t ∈ [xi−1,xi]

}
. You will approximate the

integral with
m−1

∑
i=0

(
h f (x2ih)

3
+

4h f (x2ih+h)

3
+

h f
(
x(2i+2)h

)
3

)
Note how this does an approximation for 0,h,2h, then from 2h,3h,4h, etc. Denote
this as S (a,b, f ,2m) denote the approximation to

∫ b
a f (x) dx obtained from Simp-

son’s rule using 2m+1 equally spaced points with x0 at the left. Show∣∣∣∣∫ b

a
f (x) dx−S (a,b, f ,2m)

∣∣∣∣< M
1920

(b−a)5 1
m4

where M ≥ max
{∣∣∣ f (4) (t)∣∣∣ : t ∈ [a,b]

}
. Better estimates are available in numerical

analysis books but these also have the error in the form C
(
1/m4

)
.

27. Suppose fn converges uniformly to f on [a,b] and that fn ∈ R([a,b]) . Show f ∈
R([a,b]) and that

∫ b
a f (x)dx = limn→∞

∫ b
a fn (x)dx. That is, the uniform limit of Rie-

mann integrable functions is Riemann integrable.

28. Find a power series to approximate ln(1− x) about 0 and show the remainder term
converges to 0 if |x|< 1.

29. Find a power series to approximate ln(1+ x) about 0 and show the remainder term
converges to 0 if |x|< 1.

30. Give a series which will approximate ln
( 1+x

1−x

)
whenever |x| < 1. Show that for any

r > 0, there is x, |x|< 1 such that 1+x
1−x = r. Explain why the partial sums of the series

will converge to lnr.
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31. A two dimensional shape S in a plane has area A and a cone is formed from drawing
all lines from a point in S to a single point at height h above S. By similar triangles,
the linear dimensions of similar shapes at height h in a plane parallel to the given
plane are h−y

h times the corresponding ones in the plane at the base. Thus if A(y) is
the area of the cross section in the plane at height y corresponding to S, it follows
that the cross section at height y has area A(y) = A

h2 (h− y)2. Find the volume of the

cone. Hint: Show
∫
(h− y)2 dy =− (h−y)3

3 +C and use this. This includes pyramids,
tetrahedra, circular cones, etc.

7.5 Videos
Riemann integral

https://www.youtube.com/watch?v=djVCjkoW7T4


Chapter 8

Methods for Finding
Antiderivatives

There are methods for finding antiderivatives. These standard methods are recipes. They
don’t always work but they are the best we have. It turns out you can’t find antiderivatives
in terms of elementary functions in a routine way as you can with finding derivatives. It is
a skill, not a substantial part of mathematics.

8.1 The Method of Substitution
I will illustrate the method of substitution by the use of examples. The method is somewhat
formal. However, it works and you can check the answers obtained. Ultimately it is based
on the chain rule for derivatives.

Example 8.1.1 Find
∫ 3
√

2x+7xdx.

In this example u = 2x+7 so that du = 2dx. Then

∫
3√2x+7xdx =

∫
3
√

u

x︷ ︸︸ ︷
u−7

2

dx︷︸︸︷
1
2

du =
∫ (1

4
u4/3 − 7

4
u1/3

)
du

=
3
28

u7/3 − 21
16

u4/3 +C =
3

28
(2x+7)7/3 − 21

16
(2x+7)4/3 +C

Example 8.1.2 Find
∫

xex2
dx.

Define a new variable u = x2. Then du
dx = 2x and so du = 2xdx and xdx = 1

2 du. Then
in terms of u the above integral is 1

2
∫

eudu = 1
2 eu +C. Now substitute in what u equals in

terms of x. This yields 1
2 ex2

+C. Next check your work. Take the derivative of what you
think the answer is and verify that it really is an antiderivative.

Example 8.1.3
∫

sin(x)cos(x)
√

1+ sin2 (x)dx

201
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This can be done as follows. Let u = 1+ sin2 (x) so du = 2sin(x)cos(x)dx and the
integral in the example simplifies to

1
2

∫ √
udu =

1
3

u
3
2 +C =

1
3
(
1+ sin2 (x)

) 3
2 +C

You might try letting u = sin2 (x). It will also work but will likely take longer.
This illustrates that you are not always sure what substitution to use, but ultimately this

method depends on the chain rule.∫
f (g(x))g′ (x) dx = F (g(x))+C, (8.1)

where F ′ (y) = f (y). Here is another example.

Example 8.1.4 Find
∫

x3x2
dx

Let u = 3x2
so that du

dx = 2x ln(3)3x2
and du

2ln(3) = x3x2
dx. Thus

∫
x3x2

dx =
1

2ln(3)

∫
du =

1
2ln(3)

[u+C] =
1

2ln(3)
3x2

+

(
1

2ln(3)

)
C

Since the constant is an arbitrary constant, this is written as 1
2ln(3)3x2

+C.

Example 8.1.5 Find
∫

cos2 (x) dx

Recall that cos(2x) = cos2 (x)− sin2 (x) and 1 = cos2 (x)+ sin2 (x). Then subtracting
and solving for cos2 (x),

cos2 (x) =
1+ cos(2x)

2
.

Therefore, ∫
cos2 (x) dx =

∫ 1+ cos(2x)
2

dx

Now letting u = 2x, du = 2dx and so∫
cos2 (x) dx =

∫ 1+ cos(u)
4

du =
1
4

u+
1
4

sinu+C =
1
4
(2x+ sin(2x))+C.

Also
∫

sin2 (x) dx =− 1
2 cosxsinx+ 1

2 x+C which is left as an exercise. This trick involving
a trig. identity is almost the only way to do these.

Example 8.1.6 Find
∫

tan(x) dx

Let u = cosx so that du = −sin(x)dx. Then writing the antiderivative in terms of u,
this becomes

∫ −1
u du. At this point, recall that (ln |u|)′ = 1/u. Thus this antiderivative is

− ln |u|+C = ln
∣∣u−1

∣∣+C and so
∫

tan(x) dx = ln |secx|+C.
This illustrates a general procedure.

Procedure 8.1.7 ∫ f ′(x)
f (x) dx = ln | f (x)|+C.

This follows from the chain rule and the derivative of x → ln |x|.
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Example 8.1.8 Find
∫

sec(x)dx.

This is usually done by a trick. You write as
∫ sec(x)(sec(x)+tan(x))

(sec(x)+tan(x)) dx and note that the
numerator of the integrand is the derivative of the denominator. Thus∫

sec(x)dx = ln |sec(x)+ tan(x)|+C.

Example 8.1.9 Find
∫

csc(x)dx.

This is done like the antiderivatives for the secant. d
dx csc(x) = −csc(x)cot(x) and

d
dx cot(x) =−csc2 (x) . Write the integral as

−
∫ −csc(x)(cot(x)+ csc(x))

(cot(x)+ csc(x))
dx =− ln |cot(x)+ csc(x)|+C.

Definition 8.1.10 Let r (t) give a point on R and regard t as time. This is called
the position of the point. Then the velocity of the point is defined as v(t) = r′ (t). The
acceleration is defined as the derivative of the velocity. Thus the acceleration is a(t) ≡
r′′ (t).

Example 8.1.11 Let the velocity v(t) of a point be given by t2 +1 and suppose the point is
at 1 when t = 0. Find the position of the point.

Let the position of the point be r (t) . Then by definition of velocity, r′ (t) = t2 + 1 so
r (t) = t3

3 +t+C. Now C must be determined. It is assumed that r (0) = 1. Therefore, C = 1

and so r (t) = t3

3 + t +1.

Example 8.1.12 The acceleration of an object is given by a(t) = t + 1. When t = 0, the
velocity is 1 and the position is 2. Determine the position.

It is given that r′′ (t) = t + 1,r′ (0) = 1. Therefore, r′ (t) = t2

2 + t + 1. Then r (t) =
t3

6 + t2

2 + t +2.

8.2 Exercises
1. Find the indicated antiderivatives.

(a)
∫ x√

2x−3
dx

(b)
∫

x
(
3x2 +6

)5 dx

(c)
∫

xsin
(
x2
)

dx

(d)
∫

sin3 (2x)cos(2x)

(e)
∫ 1√

1+4x2
dx Hint: Remember the

sinh−1 function and its derivative.

2. Solve the initial value problems. There is an unknown function y and you are given
its derivative and its value at some point.
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(a) dy
dx = x√

2x−3
,y(2) = 1

(b) dy
dx = 5x

(
3x2 +6

)5
,y(0) = 3

(c) dy
dx = 3x2 sin

(
2x3
)
,y(1) = 1

(d) y′ (x) = 1√
1+3x2

.y(1) = 1

(e) y′ (x) = sec(x) ,y(0) = 3

(f) y′ (x) = xcsc
(
x2
)
,y(1) = 1

3. An object moves on the x axis having velocity equal to 3t3

7+t4 . Find the position of the

object given that at t = 1, it is at the point 2. The position is 2+
∫ t

1
3s2

7+s4 ds

4. An object moves on the x axis having velocity equal to t sin
(
2t2
)
. Find the position

of the object given that at t = 1, it is at the point 1.

5. An object moves on the x axis having velocity equal to sec(t) . Find the position of
the object given that at t = 1, it is at the point −2.

6. Find the indicated antiderivatives.

(a)
∫

sec(3x) dx
(b)

∫
sec2 (3x) tan(3x) dx

(c)
∫ 1

3+5x2 dx

(d)
∫ 1√

5−4x2
dx

(e)
∫ 3

x
√

4x2−5
dx

7. Find the indicated antiderivatives.

(a)
∫

xcosh
(
x2 +1

)
dx

(b)
∫

x35x4
dx

(c)
∫

sin(x)7cos(x) dx

(d)
∫

xsin
(
x2
)

dx

(e)
∫

x5
√

2x2 +1dx Hint: Let u =
2x2 +1.

8. Find
∫

sin2 (x) dx. Hint: Derive and use sin2 (x) = 1−cos(2x)
2 .

9. Find the indicated antiderivatives.

(a)
∫ lnx

x dx

(b)
∫ x3

3+x4 dx

(c)
∫ 1

x2+2x+2 dx Hint: Complete the
square in the denominator and then
let u = x+1. Remember the arctan
function.

(d)
∫ 1√

4−x2
dx

(e)
∫ 1

x
√

x2−9
dx Hint: Let x = 3u.

(f)
∫ ln(x2)

x dx

(g) Find
∫ x3√

6x2+5
dx

(h) Find
∫

x 3
√

6x+4dx

10. Find the indicated antiderivatives.

(a)
∫

x
√

2x+4dx
(b)

∫
x
√

3x+2dx
(c)

∫ 1√
36−25x2

dx

(d)
∫ 1√

9−4x2
dx

(e)
∫ 1√

1+4x2
dx

(f)
∫ x√

(3x−1)
dx

(g)
∫ x√

5x+1
dx
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(h)
∫ 1

x
√

9x2−4
dx (i)

∫ 1√
9+4x2

dx

11. Find
∫ 1

x1/3+x1/2 dx. Hint: Try letting x = u6 and use long division.

12. Suppose f is a function defined on R and it satisfies the functional equation given by
f (a+b) = f (a)+ f (b) . Suppose also f ′ (0) = k. Find f (x) .

13. Suppose f is a function defined on R having values in (0,∞) and it satisfies the
functional equation f (a+b) = f (a) f (b) . Suppose also f ′ (0) = k. Find f (x) .

14. Suppose f is a function defined on (0,∞) having values in R and it satisfies the
functional equation f (ab) = f (a)+ f (b) . Suppose also f ′ (1) = k. Find f (x) .

15. Suppose f is a function defined on R and it satisfies the functional equation

f (a+b) = f (a)+ f (b)+3ab.

Suppose also that limh→0
f (h)

h = 7. Find f (x) if possible.

8.3 Integration by Parts
Another technique for finding antiderivatives is called integration by parts and is based on
the product rule. Recall the product rule. If u′ and v′ exist, then

(uv)′ (x) = u′ (x)v(x)+u(x)v′ (x) . (8.2)

Therefore,
(uv)′ (x)−u′ (x)v(x) = u(x)v′ (x)

Proposition 8.3.1 Let u and v be differentiable functions for which∫
u(x)v′ (x) dx,

∫
u′ (x)v(x) dx

are nonempty. Then

uv−
∫

u′ (x)v(x) dx =
∫

u(x)v′ (x) dx. (8.3)

Proof: Let F ∈
∫

u′ (x)v(x) dx. Then

(uv−F)′ = (uv)′−F ′ = (uv)′−u′v = uv′

by the chain rule. Therefore every function from the left in 8.3 is a function found in the
right side of 8.3. Now let G ∈

∫
u(x)v′ (x) dx. Then (uv−G)′ =−uv′+(uv)′ = u′v by the

product rule. It follows that uv−G ∈
∫

u′ (x)v(x) dx and so G ∈ uv−
∫

u′ (x)v(x) dx. Thus
every function from the right in 8.3 is a function from the left. ■

Example 8.3.2 Find
∫

xsin(x) dx.

Let u(x) = x and v′ (x) = sin(x). Then applying 8.3,∫
xsin(x) dx = (−cos(x))x−

∫
(−cos(x))dx =−xcos(x)+ sin(x)+C.
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Example 8.3.3 Find
∫

x ln(x) dx.

Let u(x) = ln(x) and v′ (x) = x. Then from 8.3,∫
x ln(x) dx =

x2

2
ln(x)−

∫ x2

2

(
1
x

)
=

x2

2
ln(x)−

∫ x
2
=

x2

2
ln(x)− 1

4
x2 +C

The next example uses a trick.

Example 8.3.4 Find
∫

arctan(x) dx.

Let u(x) = arctan(x) and v′ (x) = 1. Then from 8.3,∫
arctan(x) dx = xarctan(x)−

∫
x
(

1
1+ x2

)
dx

= xarctan(x)− 1
2

∫ 2x
1+ x2 dx = xarctan(x)− 1

2
ln
(
1+ x2)+C.

This trick works for arctan, ln, and various other inverse trig. functions.
Sometimes you want to find antiderivatives for something like

∫
f gdx where f (m) = 0

for some positive integer m. For example,
∫

x5 sinxdx. If you do integration by parts re-
peatedly, what do you get? Let G′

1 = g,G′
2 = G1,G′

3 = G2 etc. Then the first applica-
tion of integration by parts yields f G1 −

∫
G1 f ′dx. The next application of integration by

parts yields f G1 −G2 f ′+
∫

G2 f ′′dx. Yet another application of integration by parts yields
f G1 −G2 f ′+G3 f ′′−

∫
G3 f ′′′dx. Eventually the process will stop because a high enough

derivative of f equals zero. This justifies the following procedure for finding antiderivatives
in this case.

Procedure 8.3.5 Suppose f (m) = 0 for some m a positive integer and let G′
k = Gk−1

for all k and G0 = g. Then∫
f gdx = f G1 − f ′G2 + f ′′G3 − f ′′′G4 + · · ·

Just keep writing these terms, alternating signs until the process yields a zero. Then add on
an arbitrary constant of integration and stop. Sometimes people remember this in the form
of a table.

g

f +→ G1

f ′ −→ G2

f ′′ +→ G3

f ′′′ −→ G4

Thus you fill in the table until the left column ends in a 0 and then do the arrows, f G1 −
f ′G2 + f ′′G3 · · · till the process ends. Then add C, a constant of integration.

Example 8.3.6 Find
∫

x5 sinxdx.
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From the above procedure, and letting f (x) = x5, this equals

x5 (−cos(x))−5x4 (−sin(x))+20x3 (cos(x))−60x2 (sin(x))
+120x(−cos(x))−120(−sin(x))+C.

To determine the distance an object moves for t ∈ [a,b] , one computes∫ b

a
|v(t)|dt

The reason is as follows. If v(t) is nonnegative on an interval [c,d], this means the position
is increasing. To find the distance travelled, you would consider r (d)− r (c) =

∫ b
a |v(t)|dt.

If v(t) < 0, on an interval [c,d] this means r (t) is decreasing. Thus the distance on this
interval is r (c)− r (d) which equals

∫ d
c −v(t)dt =

∫ d
c |v(t)|dt. Splitting the interval into

sub-intervals on which the velocity is either positive or negative, one obtains that the dis-
tance traveled is

∫ b
a |v(t)|dt. This motivates the following definition.

Definition 8.3.7 Let the position of an object moving on R be denoted as r (t) . Then
the distance moved for t ∈ [a,b] is ∫ b

a

∣∣r′ (t)∣∣dt

Example 8.3.8 Suppose the velocity is v(t) = t − t3. Find the distance the object moves on
the real line for t ∈ [0,2].

As just explained, it is
∫ 2

0

∣∣t − t3
∣∣dt. You must split this up into intervals on which you

can remove the absolute values. t−t3 ≥ 0 on [0,1] and it is ≤ 0 on [1,2] so the total distance
travelled is ∫ 1

0

(
t − t3)dt +

∫ 2

1

(
−t + t3)dt =

5
2

Sometimes people want to use a shortcut on problems like this. They want to say that an
antiderivative is

∣∣∣ t2

2 − t4

4

∣∣∣ and then plug in the end points and evaluate. This is totally wrong

because the function just described is not an antiderivative of the function t →
∣∣t − t3

∣∣!
8.4 Exercises

1. Find the following antiderivatives.

(a)
∫

x3e−3x dx
(b)

∫
x4 cosxdx

(c)
∫

x5ex dx

(d)
∫

x6 sin(2x) dx

(e)
∫

x3 cos
(
x2
)

dx

2. Find the following antiderivatives.

(a)
∫

xe−3x dx

(b)
∫ 1

x(ln(|x|))2 dx
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(c)
∫

x
√

2− xdx

(d)
∫
(ln |x|)2 dx Hint: Let u(x) = (ln |x|)2 and v′ (x) = 1.

(e)
∫

x3 cos
(
x2
)

dx

3. Show that
∫

sec3 (x) dx =

1
2

tan(x)sec(x)+
1
2

ln |secx+ tanx|+C.

4. Find
∫ xex

(1+x)2 dx.

5. Consider the following argument. Integrate by parts, letting u(x) = x and v′ (x) = 1
x2

to get ∫ 1
x

dx =
∫

x
(

1
x2

)
dx =

(
−1

x

)
x+

∫ 1
x

dx =−1+
∫ 1

x
dx.

Now subtracting
∫ 1

x dx from both sides, 0 = −1. Is there anything wrong here? If
so, what?

6. Find the following antiderivatives.

(a)
∫

x3 arctan(x) dx

(b)
∫

x3 ln(x) dx

(c)
∫

x2 sin(x) dx

(d)
∫

x2 cos(x) dx

(e)
∫

xarcsin(x) dx

(f)
∫

cos(2x)sin(3x) dx

(g)
∫

x3ex2
dx

(h)
∫

x3 cos
(
x2
)

dx

7. Find the antiderivatives

(a)
∫

x2 sinxdx

(b)
∫

x3 sinxdx

(c)
∫

x37x dx

(d)
∫

x2 lnxdx

(e)
∫
(x+2)2 ex dx

(f)
∫

x32x dx

(g)
∫

sec3 (2x) tan(2x) dx

(h)
∫

x27x dx

8. Solve the initial value problem y′ (x) = f (x) , limx→0+ y(x) = 1 where f (x) is each
of the integrands in Problem 7.

9. Solve the initial value problem y′ (x) = f (x) , limx→0+ y(x) = 2 where f (x) is each
of the integrands in Problem 6.

10. Try doing
∫

sin2 xdx the obvious way. If you do not make any mistakes, the process
will go in circles. Now do it by taking∫

sin2 xdx = xsin2 x−2
∫

xsinxcosxdx = xsin2 x−
∫

xsin(2x) dx.

11. An object moves on the x axis having velocity equal to t sin t. Find the position of the
object given that at t = 1, it is at the point 2.



8.5. TRIG. SUBSTITUTIONS 209

12. An object moves on the x axis having velocity equal to sec3 (t) . Find the position
of the object given that at t = 0, it is at the point 2. Hint: You might want to use
Problem 3.

13. Find the antiderivatives.

(a)
∫

xcos
(
x2
)

dx
(b)

∫
sin(

√
x)dx

(c)
∫

ln(|sin(x)|)cos(x)dx
(d)

∫
cos4 (x)dx

(e)
∫

arcsin(x)dx

(f)
∫

sec3 (x) tan(x)dx

(g)
∫

tan2 (x)sec(x)dx

14. A car is moving at 14 feet per second when the driver applies the brake causing the
car to slow down at the constant rate of 2 feet per second per second until it stops.
How far does the car travel during the time the brake was applied?

15. Suppose you have the graphs of two functions y = f (x) and y = g(x) defined for
x ∈ [a,b] . How would you define the area between the two graphs for x ∈ [a,b]?
You would first consider an approximation by considering little rectangles of height
| f (zi)−g(zi)| and width xi − xi−1 where a = x0 < · · · < xn = b and zi ∈ [xi−1,xi]
and adding the areas of these. It is reasonable to suppose that as the norm of the
partition becomes increasingly small so that the rectangles get increasingly thin that
what occurs in the limit should be the definition of the area between the two graphs.
But this limit is defined as

∫ b
a | f (x)−g(x)|dx. Find the area between the two given

graphs on the given interval.

(a) f (x) = x,g(x) = x− x3,x ∈ [0,3]

(b) f (x) = sin(x) ,g(x) = cos(x) ,x ∈ [0,2π]

(c) f (x) = ex,g(x) = ln(x) ,x ∈ [1,2]

8.5 Trig. Substitutions

Certain antiderivatives are easily obtained by making an auspicious substitution involving
a trig. function. The technique will be illustrated by presenting examples.

Example 8.5.1 Find
∫ 1

(x2+2x+2)
2 dx.

Complete the square as before and write∫ 1

(x2 +2x+2)2 dx =
∫ 1(

(x+1)2 +1
)2 dx

Use the following substitution next.

x+1 = tanu (8.4)
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so dx =
(
sec2 u

)
du. Therefore, this last indefinite integral becomes∫ sec2 u

(tan2 u+1)2 du =
∫ (

cos2 u
)

du =
∫ 1+ cos2u

2
du

=
u
2
+

sin2u
4

+C =
u
2
+

2sinucosu
4

+C

Next write this in terms of x using the following device based on the following picture.

x+1

1

√
(x+1)2 +1

u

In this picture which is descriptive of 8.4, sinu = x+1√
(x+1)2+1

and cosu = 1√
(x+1)2+1

.

Therefore, putting in this information to change back to the x variable,∫ 1

(x2 +2x+2)2 dx

=
1
2

arctan(x+1)+
1
2

x+1√
(x+1)2 +1

1√
(x+1)2 +1

+C

=
1
2

arctan(x+1)+
1
2

x+1

(x+1)2 +1
+C.

Example 8.5.2 Find
∫ 1√

x2+7
dx.

Let x =
√

7tanu so dx =
√

7
(
sec2 u

)
du. Making the substitution, consider∫ 1√

7
√

tan2 u+1

√
7
(
sec2 u

)
du =

∫
(secu) du = ln |secu+ tanu|+C

Now the following diagram is descriptive of the above transformation.

x

√
7

√
7+ x2

u

Using the above diagram, secu =

√
7+x2
√

7
and tanu = x√

7
. Therefore, restoring the x

variable, ∫ 1√
x2 +3

dx = ln

∣∣∣∣∣
√

7+ x2
√

7
+

x√
7

∣∣∣∣∣+C = ln
∣∣∣√7+ x2 + x

∣∣∣+C.

Note the constant C changed in going from the top to the bottom line. It is C− ln
√

7 but it
is customary to simply write this as C because C is arbitrary.
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Example 8.5.3 Find
∫ (

4x2 +3
)1/2 dx.

Let 2x =
√

3tanu so 2dx =
√

3sec2 (u)du. Then making the substitution,

√
3
∫ (

tan2 u+1
)1/2

√
3

2
sec2 (u) du =

3
2

∫
sec3 (u) du. (8.5)

Now use integration by parts to obtain∫
sec3 (u) du =

∫
sec2 (u)sec(u) du

= tan(u)sec(u)−
∫

tan2 (u)sec(u) du

= tan(u)sec(u)−
∫ (

sec2 (u)−1
)

sec(u) du

= tan(u)sec(u)+
∫

sec(u) du−
∫

sec3 (u) du

= tan(u)sec(u)+ ln |sec(u)+ tan(u)|−
∫

sec3 (u) du

Therefore,
2
∫

sec3 (u) du = tan(u)sec(u)+ ln |sec(u)+ tan(u)|+C

and so ∫
sec3 (u) du =

1
2
[tan(u)sec(u)+ ln |sec(u)+ tan(u)|]+C. (8.6)

Now it follows from 8.5 that in terms of u the set of antiderivatives is given by

3
4
[tan(u)sec(u)+ ln |sec(u)+ tan(u)|]+C

Use the following diagram to change back to the variable x.

2x

√
3

√
3+4x2

u

From the diagram, tan(u) = 2x√
3

and sec(u) =
√

3+4x2
√

3
. Therefore,∫ (

4x2 +3
)1/2

dx

=
3
4

[
2x√

3

√
3+4x2
√

3
+ ln

∣∣∣∣∣
√

3+4x2
√

3
+

2x√
3

∣∣∣∣∣
]
+C

=
3
4

[
2x√

3

√
3+4x2
√

3
+ ln

∣∣∣∣∣
√

3+4x2
√

3
+

2x√
3

∣∣∣∣∣
]
+C

=
1
2

x
√
(3+4x2)+

3
4

ln
∣∣∣√3+4x2 +2x

∣∣∣+C



212 CHAPTER 8. METHODS FOR FINDING ANTIDERIVATIVES

Note that these examples involved something of the form
(

a2 +(bx)2
)

and the trig
substitution bx = a tanu was the right one to use. This is the auspicious substitution which
often simplifies these sorts of problems. However, there is a possibly better way to do these
kinds.

Example 8.5.4 Find
∫ (

4x2 +3
)1/2 dx another way.

Let 2x =
√

3sinhu and so 2dx =
√

3cosh(u)du. Then substituting in the integral leads
to ∫ √

3
√

1+ sinh2 (u)

√
3

2
cosh(u)du =

3
2

∫
cosh2 (u)du+C

=
3
4

cosh(u)sinh(u)+
3
4

u+C =
3
4

√
1+ sinh2 (u)sinh(u)+

3
4

u+C

=
1
2

x
√
(3+4x2)+

3
4

sinh−1
(

2x√
3

)
+C

This other way is often used by computer algebra systems. If you solve for sinh−1 x in
terms of ln, you get the same set of antiderivatives. The function sinh−1 is also written as
arcsinh by analogy to the trig. functions also as asinh.

Example 8.5.5 Find
∫ √

3−5x2 dx.

In this example, let
√

5x =
√

3sin(u) so
√

5dx =
√

3cos(u)du. The reason this might
be a good idea is that it will get rid of the square root sign as shown below. Making the
substitution, leads to

3
2
√

5
u+

3√
5

sin(2u)+C =
3

2
√

5
u+

3
2
√

5
sinucosu+C

The appropriate diagram is the following.

√
5x

√
3−5x2

√
3

u

From the diagram, sin(u) =
√

5x√
3

and cos(u) =
√

3−5x2
√

3
. Therefore, changing back to x,

∫ √
3−5x2 dx =

=
3

10

√
5arcsin

(
1
3

√
15x
)
+

1
2

x
√
(3−5x2)+C

Example 8.5.6 Find
∫ √

5x2 −3dx.
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In this example, let
√

5x =
√

3sec(u) so
√

5dx =
√

3sec(u) tan(u)du. Then changing
the variable, consider

√
3
∫ √

sec2 (u)−1

√
3√
5

sec(u) tan(u) du =
3√
5

∫
tan2 (u)sec(u) du

=
3√
5

[∫
sec3 (u) du−

∫
sec(u) du

]
Now from 8.6, this equals

3√
5

[
1
2
[tan(u)sec(u)+ ln |sec(u)+ tan(u)|]− ln |tan(u)+ sec(u)|

]
+C

=
3

2
√

5
tan(u)sec(u)− 3

2
√

5
ln |sec(u)+ tan(u)|+C.

Now it is necessary to change back to x. The diagram is as follows.

√
5x2 −3

√
3

√
5x

u

Therefore, tan(u) =
√

5x2−3√
3

and sec(u) =
√

5x√
3

and so∫ √
5x2 −3dx

=
1
2

(√
5x2 −3

)
x− 3

10

√
5ln
∣∣∣∣√5x+

√
(−3+5x2)

∣∣∣∣+C

To summarize, here is a short table of auspicious substitutions corresponding to certain
expressions.

Table Of Auspicious Substitutions

Expression a2 +b2x2 a2 −b2x2 a2x2 −b2

Trig. substitution bx = a tan(u) bx = asin(u) ax = bsec(u)

Hyperbolic substitution bx = asinh(u)

Of course there are no “magic bullets” but these substitutions will often simplify an
expression enough to allow you to find an antiderivative. These substitutions are often
especially useful when the expression is enclosed in a square root.

8.6 Exercises
1. Find the antiderivatives.
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(a)
∫ x√

4−x2
dx

(b)
∫ 3√

36−25x2
dx

(c)
∫ 3√

16−25x2
dx

(d)
∫ 1√

4−9x2
dx

(e)
∫ 1√

36−x2
dx

(f)
∫ (√

9−16x2
)3

dx

(g)
∫ (√

16− x2
)5

dx

(h)
∫ √

25−36x2 dx

(i)
∫ (√

4−9x2
)3

dx

(j)
∫ √

1−9x2 dx

2. Find the antiderivatives.

(a)
∫ √

36x2 −25dx

(b)
∫ √

x2 −4dx

(c)
∫ (√

16x2 −9
)3

dx

(d)
∫ √

25x2 −16dx

3. Find the antiderivatives.

(a)
∫ 1

26+x2−2x dx Hint: Complete the
square.

(b)
∫ √

x2 +9dx

(c)
∫ √

4x2 +25dx

(d)
∫

x
√

4x4 +9dx

(e)
∫

x3
√

4x4 +9dx

(f) ∗ ∫ 1

(16+25(x−3)2)
2 dx

(g)
∫ 1

261+25x2−150x dx Hint: Complete
the square.

(h)
∫ (√

25x2 +9
)3

dx

(i)
∫ 1

25+16x2 dx

4. Find the antiderivatives. Hint: Complete the square.

(a)
∫ √

4x2 +16x+15dx

(b)
∫ √

x2 +6xdx

(c)
∫ 3√

−32−9x2−36x
dx

(d)
∫ 3√

−5−x2−6x
dx

(e)
∫ 1√

9−16x2−32x
dx

(f)
∫ √

4x2 +16x+7dx

5. Find
∫

x5
√

1+ x4dx.

6. Find
∫ x√

1−x4
dx. Hint: Try x2 = sin(u).

8.7 Partial Fractions
The main technique for finding antiderivatives in the case f (x) = p(x)

q(x) for p and q poly-
nomials is the technique of partial fractions. Before presenting this technique, a few more
examples are presented. These examples are typical of the kind of thing you end up doing
after you have found the partial fractions expansion.

Example 8.7.1 Find
∫ 1

x2+2x+2 dx.
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To do this, complete the square in the denominator to write∫ 1
x2 +2x+2

dx =
∫ 1

(x+1)2 +1
dx

Now change the variable, letting u = x+1, so that du = dx. Then the last indefinite integral
reduces to ∫ 1

x2 +2x+2
dx = arctan(x+1)+C.

Example 8.7.2 Find
∫ 1

3x+5 dx.

Let u = 3x+5 so du = 3dx. Then you obtain
∫ 1

3x+5 dx = 1
3 ln |3x+5|+C.

Example 8.7.3 Find
∫ 3x+2

x2+x+1 dx.

First complete the square in the denominator.∫ 3x+2
x2 + x+1

dx =
∫ 3x+2

x2 + x+ 1
4 +

3
4

dx =
∫ 3x+2(

x+ 1
2

)2
+ 3

4

dx.

Now let
(
x+ 1

2

)2
= 3

4 u2 so that x+ 1
2 =

√
3

2 u. Therefore, dx =
√

3
2 du and changing the

variable, one obtains

=

√
3

2

(
2
√

3
∫ u

u2 +1
du− 2

3

∫ 1
u2 +1

du
)

=
3
2

ln
(
u2 +1

)
−

√
3

3
arctanu+C

Therefore,
∫ 3x+2

x2+x+1 dx =

3
2

ln

((
2√
3

(
x+

1
2

))2

+1

)
−

√
3

3
arctan

(
2√
3

(
x+

1
2

))
+C.

The method of partial fractions splits rational functions into a sum of functions which
are like those which were just done successfully. In using this method it is essential that in
the rational function the degree of the numerator is smaller than the degree of the denomi-
nator. Lemma 1.12.3 on dividing polynomials implies the following important corollary.

Corollary 8.7.4 Let f (x) and g(x) be polynomials. Then there exists a polynomial,
r (x) such that the degree of r (x)< degree of g(x) and a polynomial, q(x) such that

f (x)
g(x)

= q(x)+
r (x)
g(x)

.

Here is an example where the degree of the numerator exceeds the degree of the de-
nominator.

Example 8.7.5 Find
∫ 3x5+7

x2−1 dx.
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In this case the degree of the numerator is larger than the degree of the denominator
and so long division must first be used. Thus

3x5 +7
x2 −1

= 3x3 +3x+
7+3x
x2 −1

Recall the process of long division from elementary school. The only difference is that you
use x raised to powers rather than 10 raised to powers. I am reviewing the algorithm in
what follows. The first term on the top is 3x3 because 3x3 times x2 gives 3x5 which will
cancel the first term of the 3x5+0x4+0x3+0x2+0x+7. Then you multiply the x2+0x−1
by the 3x3 and subtract. Then you do the same process on 3x3 +0x2 +0x. A more careful
presentation of this algorithm is in my pre calculus book published by worldwide center of
math.

3x3 +3x
x2 +0x−1 |3x5 +0x4 +0x3 +0x2 +0x+7

3x5 +0x4 −3x3

3x3 +0x2 +0x
3x3 +0x2 −3x

3x+7

Now look for a partial fractions expansion of the form

7+3x
x2 −1

=
a

(x−1)
+

b
(x+1)

.

Therefore, 7+ 3x = a(x+1) + b(x−1) . Letting x = 1, a = 5. Then letting x = −1, it
follows b =−2. Therefore,

7+3x
x2 −1

=
5

x−1
− 2

x+1

and so 3x5+7
x2−1 = 3x3 +3x+ 5

x−1 −
2

x+1 . Therefore,

∫ 3x5 +7
x2 −1

dx =
3
4

x4 +
3
2

x2 +5ln(x−1)−2ln(x+1)+C.

Here is another example.

Example 8.7.6 Find
∫ 7x3+19x2+20x+8

(2x+1)(x+3)(x2+x+1)
dx.

The degree of the top is less than the degree of the bottom and so we look for a partial
fractions expansion of the form

7x3 +19x2 +20x+8
(2x+1)(x+3)(x2 + x+1)

=
a

2x+1
+

b
x+3

+
cx+d

x2 + x+1

The reason the last term has a cx+ d on the top is that the bottom of the fraction is an
irreducible polynomial. Now it is just a matter of finding a,b,c,d. Multiply both sides by
(x+3) and then plug in x =−3.

7(−3)3 +19(−3)2 +20(−3)+8

(2(−3)+1)
(
(−3)2 +(−3)+1

) = 2 = b
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Next multiply both sides by (2x+1) and plug in x =−1/2.

7(−1/2)3 +19(−1/2)2 +20(−1/2)+8

((−1/2)+3)
(
(−1/2)2 +(−1/2)+1

) = 1 = a

Plug these values in on the right and subtract from both sides.

7x3 +19x2 +20x+8
(2x+1)(x+3)(x2 + x+1)

−
(

1
2x+1

+
2

x+3

)
=

cx+d
x2 + x+1

x+1
x2 + x+1

=
cx+d

x2 + x+1

Now it is obvious that c = 1 and d = 1.∫ 7x3 +19x2 +20x+8
(2x+1)(x+3)(x2 + x+1)

dx =
∫ ( 1

2x+1
+

2
x+3

+
x+1

x2 + x+1

)
dx

=
1
2

ln
(
x2 + x+1

)
+2ln(x+3)+

1
2

ln
(

x+
1
2

)
− 1

6

√
3π

+
1
3

√
3arctan

√
3
(

2
3

x+
1
3

)
+C

What is done when the factors are repeated?

Example 8.7.7 Find
∫ 3x+7

(x+2)2(x+3)
dx.

First observe that the degree of the numerator is less than the degree of the denominator.
In this case the correct form of the partial fraction expansion is

a
(x+2)

+
b

(x+2)2 +
c

(x+3)
.

The reason there are two terms devoted to (x+2) is that this is squared. Computing the
constants yields

3x+7

(x+2)2 (x+3)
=

1

(x+2)2 +
2

x+2
− 2

x+3

and therefore,∫ 3x+7

(x+2)2 (x+3)
dx =− 1

x+2
+2ln |x+2|−2ln |x+3|+C.

Example 8.7.8 Find the proper form for the partial fractions expansion of

x3 +7x+9

(x2 +2x+2)3 (x+2)2 (x+1)(x2 +1)
.
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First check to see if the degree of the numerator is smaller than the degree of the de-
nominator. Since this is the case, look for a partial fractions decomposition in the following
form.

ax+b
(x2 +2x+2)

+
cx+d

(x2 +2x+2)2 +
ex+ f

(x2 +2x+2)3+

A
(x+2)

+
B

(x+2)2 +
D

(x+1)
+

gx+h
x2 +1

.

These examples illustrate what to do when using the method of partial fractions. You first
check to be sure the degree of the numerator is less than the degree of the denominator. If
this is not so, do a long division. Then you factor the denominator into a product of factors,
some linear of the form ax+b and others quadratic, ax2 +bx+ c which cannot be factored
further. Next follow the procedure illustrated in the above examples and summarized below.

Warning: When you use partial fractions, be sure you look for something which is
of the right form. Otherwise you may be looking for something which is not there. The
rules are summarized next.

Rules For Finding Partial Fractions Expansion Of A Rational Function

1. Check to see if the numerator has smaller degree than the denominator. If this is not
so, correct the situation by doing long division.

2. Factor the denominator into a product of linear factors, (Things like (ax+b)) and
irreducible quadratic factors, (Things like

(
ax2 +bx+ c

)
where b2 −4ac < 0.)1

3. Let m,n be positive integers. Corresponding to (ax+b)m in the denominator, you
should have a sum of the form ∑

m
i=1

ci
(ax+b)i in the partial fractions expansion. Here the

ci are the constants to be found. Corresponding to
(
ax2 +bx+ c

)n in the denominator
where b2−4ac< 0, you should have a sum of the form ∑

m
i=1

pix+qi

(ax2+bx+c)
i in the partial

fractions expansion. Here the pi and qi are to be found.

4. Find the constants, ci, pi, and qi. Use whatever method you like. You might see
if you can make up new ways to do this if you like. If you have followed steps 1
- 3 correctly, it will work out. However, be sure to search for something which is
actually there. Otherwise, you won’t find it.

The above technique for finding the coefficients is fine but some people like to do it
other ways. It really does not matter how you do it. Here is another example.

Example 8.7.9 Find the partial fractions expansion for

15x4 +44x3 +71x2 +64x+28+2x5

(x+2)2 (x2 +2x+2)2

1Of course this factoring of the denominator is easier said than done. In general you cannot do it at all. Of
course there are big theorems which guarantee the existence of such a factorization but these theorems do not tell
how to find it. This is an example of the gap between theory and practice which permeates mathematics.
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The degree of the top is 4 and the degree of the bottom is 6 so you do not need to do
long division. You do have to look for the right thing however. The correct form for the
partial fractions expansion is

a
x+2

+
b

(x+2)2 +
cx+d

x2 +2x+2
+

ex+ f

(x2 +2x+2)2

=
15x4 +44x3 +71x2 +64x+28+2x5

(x+2)2 (x2 +2x+2)2

Multiply both sides by (x+2)2 and then plug in x =−2.

b =
15(−2)4 +44(−2)3 +71(−2)2 +64(−2)+28+2(−2)5(

(−2)2 +2(−2)+2
)2 = 2

Now subtract the term involving b from both sides.

a
x+2

+
cx+d

x2 +2x+2
+

ex+ f

(x2 +2x+2)2 =

15x4 +44x3 +71x2 +64x+28+2x5

(x+2)2 (x2 +2x+2)2 − 2

(x+2)2

=
1

(x+2)(x2 +2x+2)2

(
2x4 +9x3 +18x2 +19x+10

)
Multiply both sides by x+2 and plug in x =−2.

a =
1(

(−2)2 +2(−2)+2
)2

(
2(−2)4 +9(−2)3 +18(−2)2 +19(−2)+10

)
= 1

Subtract this term involving a from both sides.

cx+d
x2 +2x+2

+
ex+ f

(x2 +2x+2)2

=

(
2x4 +9x3 +18x2 +19x+10

)
(x+2)(x2 +2x+2)2 − 1

x+2

=
x3 +3x2 +4x+3

(x2 +2x+2)2

Add the fractions on the left.

cx3 +(2c+d)x2 +(2c+2d + e)x+(2d + f )

(x2 +2x+2)2 =
x3 +3x2 +4x+3

(x2 +2x+2)2

Now you see c = 1,d = 1,e = 0, f = 1.
It follows the partial fractions expansion is

1
x+2

+
2

(x+2)2 +
x+1

x2 +2x+2
+

1

(x2 +2x+2)2 .

One other thing should be mentioned. Suppose you wanted to find the integral in this
example. The first three terms are by now routine. How about the last one?
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Example 8.7.10 Find
∫ 1

(x2+2x+2)
2 dx.

First complete the square to write this as
∫ 1

((x+1)2+1)
2 dx. Now do a trig. substitution.

You should let x+1 = tanθ . Then the integral becomes∫ 1
sec4 θ

sec2
θdθ =

∫
cos2

θdθ =
∫ 1+ cos(2θ)

2
dθ

=
θ

2
+

2sinθ cosθ

4
+C.

Setting up a little triangle as in the section on trig. substitutions, you can restore the original
variables to obtain

1
2

arctan(x+1)+
1
2

(
x+1

x2 +2x+2

)
+C.

The theory of partial fractions is in Problem 40 on Page 48.

8.8 Rational Functions of Trig. Functions
There is a technique which reduces certain kinds of integrals involving trig. functions to
the technique of partial fractions. This is illustrated in the following example.

Example 8.8.1 Find
∫ cosθ

1+cosθ
dθ .

The integrand is an example of a rational function of cosines and sines. When such a
thing occurs there is a substitution which will reduce the integrand to a rational function
like those above which can then be integrated using partial fractions. The substitution is
u = tan

(
θ

2

)
. Thus in this example, du =

(
1+ tan2

(
θ

2

)) 1
2 dθ and so in terms of this new

variable, the indefinite integral is∫ 2cos(2arctanu)
(1+ cos(2arctanu))(1+u2)

du.

You can evaluate cos(2arctanu) exactly. This equals 2cos2 (arctanu)−1. Setting up a little
triangle as above, cos(arctanu) equals 1/

√
1+u2 and so the integrand reduces to

2
(

2
(

1/
√

1+u2
)2

−1
)

(
1+
(

2
(

1/
√

1+u2
)2

−1
))

(1+u2)

=
1−u2

1+u2 =−1+
2

1+u2

therefore, in terms of u, the antiderivative equals −u+2arctanu. Now replace u to obtain

− tan
(

θ

2

)
+2arctan

(
tan
(

θ

2

))
+C.

This procedure can be expected to work in general. Suppose you want to find∫ p(cosθ ,sinθ)

q(cosθ ,sinθ)
dθ
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where p and q are polynomials in each argument. Make the substitution u = tan θ

2 . As
above this means

du =

(
1+ tan2

(
θ

2

))
1
2

dθ =
1
2
(
1+u2)dθ .

It remains to substitute for sinθ and cosθ . Recall that sin
(

θ

2

)
=±

√
1−cosθ

2 and cos
(

θ

2

)
=

±
√

1+cosθ

2 . Thus,

tan
(

θ

2

)
=

±
√

1− cosθ√
1+ cosθ

and so

u2 = tan2
(

θ

2

)
=

1− cosθ

1+ cosθ

and solving this for cosθ and sinθ yields

cosθ =
1−u2

1+u2 , sinθ =± 2u
1+u2 .

It follows that in terms of u the integral becomes

∫ p
(

1−u2

1+u2 ,± 2u
1+u2

)
q
(

1−u2

1+u2 ,± 2u
1+u2

) 2du
1+u2

which is a rational function of u and so in theory, you might be able to find the integral
from the method of partial fractions. As usual, there are no magic bullets. Even the best
techniques can fail if for no other reason than our inability to factor polynomials. In calcu-
lus, there are big theorems like the fundamental theorem of calculus which have universal
application and then there are many gimicks which sometimes work. This chapter has been
devoted to these gimmicks.

8.9 Using MATLAB
You can use computer algebra systems to find antiderivatives and save a lot of pain. I will
explain for MATLAB and note that you can do it for any of the standard computer algebra
systems. Say you want to find the obnoxious antiderivatives∫ √

1+3x2dx

Here is what you do in MATLAB. You must have the symbolic math package installed to
do this. Remember to get to a new line, you press shift enter. You have to first write syms
x to tell it that x is a variable. Enter the following. Then you press enter and it gives the
answer below.

>>syms x
int(sqrt(1+3*xˆ2),x)
ans =
(3ˆ(1/2)*asinh(3ˆ(1/2)*x))/6 + (3ˆ(1/2)*x*(xˆ2 + 1/3)ˆ(1/2))/2
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Note how it gives you the answer in terms of the inverse of the hyperbolic sinh . This
is the meaning of the asinh. If you work it by hand, you will likely get something which
looks different. You can do them all this way. Remember to write 5*6 to indicate 5× 6.
The little ˆ means to write as an exponent. On my keyboard, it is above the 6. Also note
that syms x makes x a variable, not a list of values.

In the distant past when I was young, we used integral tables to help us find anti-
derivatives but now, you can use computer algebra. You might want to do so on some of
the technical problems in the following list.

Another very easy to use algebra system is Scientific Notebook. In this, you simply
type in the integral in math mode and press evaluate. I will do this now with the above
integral. ∫ √

1+3x2dx =
1
6

√
3ln
(√

3x2 +1+
√

3x
)
+

1
2

x
√

3x2 +1

Then you add the arbitrary constant. Note how it looks different. It isn’t. (Why?)

8.10 Exercises
1. Give a condition on a,b, and c such that ax2 +bx+c cannot be factored as a product

of two polynomials which have real coefficients.

2. Find the partial fractions expansion of the following rational functions.

(a) 2x+7
(x+1)2(x+2)

(b) 5x+1
(x2+1)(2x+3)

(c) 5x+1

(x2+1)
2
(2x+3)

(d) 5x4+10x2+3+4x3+6x
(x+1)(x2+1)

2

3. Find the antiderivatives

(a)
∫ x5+4x4+5x3+2x2+2x+7

(x+1)2(x+2)
dx

(b)
∫ 5x+1
(x2+1)(2x+3)

dx

(c)
∫ 5x+1

(x2+1)
2
(2x+3)

4. Each of cotθ , tanθ ,secθ , and cscθ is a rational function of cosθ and sinθ . Use the
technique of substituting u = tan

(
θ

2

)
to find antiderivatives for each of these.

5. Find
∫ sinθ

1+sinθ
dθ . Hint: Use the above procedure of letting u = tan

(
θ

2

)
and then

multiply both the top and the bottom by (1− sinθ) to see another way of doing it.

6. Find
∫ cosθ+1

cosθ+2 dθ using the substitution u = tan
(

θ

2

)
.

7. In finding
∫

sec(x)dx, try the substitution u = sin(x) .

8. In finding
∫

csc(x)dx try the substitution u = cos(x) .

9. Solve the following initial value problem from ordinary differential equations which
is to find a function y such that

y′ (x) =
x4 +2x3 +4x2 +3x+2

x3 + x2 + x+1
, y(0) = 2.
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10. Find the antiderivatives.

(a)
∫ 17x−3

(6x+1)(x−1) dx

(b)
∫ 50x4−95x3−20x2−3x+7

(5x+3)(x−2)(2x−1) dx Hint: Notice the degree of the numerator is larger than
the degree of the denominator.

(c)
∫ 8x2+x−5

(3x+1)(x−1)(2x−1) dx

(d)
∫ 3x+2

(5x+3)(x+1) dx

11. Find the antiderivatives

(a)
∫ 52x2+68x+46+15x3

(x+1)2(5x2+10x+8)
dx

(b)
∫ 9x2−42x+38

(3x+2)(3x2−12x+14)
dx

(c)
∫ 9x2−6x+19

(3x+1)(3x2−6x+5)
dx

12. Solve the initial value problem y′ = f (x) , y(0) = 1 for f (x) equal to each of the
integrands in Problem 11.

13. ∗Find the antiderivatives. You will need to complete the square and then make a trig.
substitution.

(a)
∫ 1

(3x2+12x+13)
2 dx =

(b)
∫ 1

(5x2+10x+7)
2 dx =

(c)
∫ 1

(5x2−20x+23)
2 dx =

14. Solve the initial value problem y′ = f (x) ,y(0) = 1 for f (x) equal to each of the
integrands in Problem 13.

15. Use MATLAB or some other computer algebra system to find the following an-
tiderivatives. Some of these you really don’t want to do by hand.

(a)
∫ 1

1+3x2 dx

(b)
∫ 1√

1+5x2
dx

(c)
∫ x2+2
(x2+2x+1)(x2+1)

dx

(d)
∫ √

6−3x2dx

(e)
∫

x7ex2
dx

(f)
∫

sin8 (x)dx

(g)
∫

sin4 (x)cos7 (x)dx

(h)
∫

ex sin(3x)cos(5x)dx

(i)
∫ x2+7

2x5−9x4+7x3+14x2−12x−8 dx

(j)
∫ 1

1+x4 dx

(k)
∫ x2+3x

(x2+x+1)
2
(x2+3)

dx

(l)
∫ x5+2x

(x2+1)
2 dx

(m)
∫ 1+x2

1+3x4 dx Factor the bottom into
the product of two irreducible
quadratics to get the partial frac-
tions expansion. Then stop. The
remaining details are grievous.
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16. Suppose x0 ∈ (a,b) and that f is a function which has n+ 1 continuous derivatives
on this interval. Consider the following.

f (x) = f (x0)+
∫ x

x0

f ′ (t) dt = f (x0)+(t − x) f ′ (t) |xx0
+
∫ x

x0

(x− t) f ′′ (t) dt

= f (x0)+ f ′ (x0)(x− x0)+
∫ x

x0

(x− t) f ′′ (t) dt.

Explain the above steps and continue the process to eventually obtain Taylor’s for-
mula,

f (x) = f (x0)+
n

∑
k=1

f (k) (x0)

k!
(x− x0)

k +
1
n!

∫ x

x0

(x− t)n f (n+1) (t) dt

where n! ≡ n(n−1) · · ·3 ·2 ·1 if n ≥ 1 and 0! ≡ 1.

17. In the above Taylor’s formula, use the mean value theorem for integrals to obtain the
existence of some z between x0 and x such that

f (x) = f (x0)+
n

∑
k=1

f (k) (x0)

k!
(x− x0)

k +
f (n+1) (z)
(n+1)!

(x− x0)
n+1 .

Hint: You might consider two cases, the case when x > x0 and the case when x < x0.

8.11 Videos
volumes

https://www.youtube.com/watch?v=0-c_JwiggE8


Chapter 9

A Few Standard Applications

As pointed out earlier, one can find the position of an object r (t) by considering where it
starts r0 and knowing its velocity. Thus if the velocity v(t) is known, one needs to solve
the initial value problem

r′ (t) = v(t) , r (0) = r0

There are many other simple problems which can be formulated as initial value problems.
This chapter considers some of the standard ones. When we write dx or dy, this is rather
fuzzy but it indicates a very small change in x or y. Formally,

dy
dx

= f ′ (x) , dy = f ′ (x)dx

This was the way Leibniz thought of things and it is his notation used here. This can be
made more rigorous, by featuring Riemann sums. However, the approach usually used
in what follows is closer to what was done before Riemann. These kinds of problems
and many other more complicated ones were well understood in the 1700’s long before
Riemann sums were introduced to make the integral more rigorous.

You might want to formulate these things in terms of approximate problems involving
Riemann sums or set it up as an initial value problem. I have done this in the case of
lengths, but there is a general principle here. When you do physical modeling, you don’t
try to achieve ultimate mathematical rigor. You make approximations and use geometrical
reasoning and intuition to obtain something which can be dealt with using rigorous math-
ematics. Thus the topics in this chapter other than arc length are not really part of the
essential mathematical content of calculus but are applications. These and other physical
problems are important because they motivated the development of calculus in the first
place. Mathematics is a kind of language and it is used to study various problems from
other disciplines. It does not equate to these problems. It has been my experience that this
distinction is often ignored or not understood, especially by people in university adminis-
tration.

225
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9.1 Lengths of Curves and Areas of Surfaces of Revolu-
tion

9.1.1 Lengths
Consider a partition of [a,b] ,a = x0 < x1 < · · ·< xn = b and observe that the length of the
curve between the two points (xi, f (xi)) and (xi−1, f (xi−1)) is approximately the length of
the line joining these two points and that the length of the curve would be close to the sum
of these as suggested in the following picture.

a b

(x0, f (x0))

(x1, f (x1))

(xn, f (xn))

x

Thus the length of the curve would be approximately the sum of the lengths of the little
straight lines in the above picture and this equals

n

∑
i=1

√
( f (xi)− f (xi−1))

2 +(xi − xi−1)
2

which is equal to
n

∑
i=1

√
( f ′ (zi)(xi − xi−1))

2 +(xi − xi−1)
2

by the mean value theorem. Then this reduces to
n

∑
i=1

√
f ′ (zi)

2 +1(xi − xi−1)

which is a Riemann sum for the integral
∫ b

a

√
1+ f ′ (x)2dx. One would imagine that this

approximation should have as the limit that which should be defined as the length of the
curve.

This definition gives the right answer for the length of a straight line. To see this,
consider a straight line through the points (a,b) and (c,d) where a < c. Then the right an-

swer is given by the Pythagorean theorem or distance formula and is
√
(a− c)2 +(d −b)2.

What is obtained from the above initial value problem? The equation of the line is f (x) =
b+
( d−b

c−a

)
(x−a) and so f ′ (x) =

( d−b
c−a

)
. Therefore, by the new procedure, the length is

∫ c

a

√
1+
(

d −b
c−a

)2

dx = (c−a)

√
1+
(

d −b
c−a

)2

=

√
(a− c)2 +(d −b)2

as hoped. Thus the new procedure gives the right answer in the familiar cases but it also
can be used to find lengths for more general curves than straight lines. Summarizing,
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Procedure 9.1.1 To find the length of the graph of the function y = f (x) for x ∈
[a,b], compute ∫ b

a

√
1+ f ′ (x)2dx.

Here is another familiar example.

Example 9.1.2 Find the length of the part of the circle having radius r which is between
the points (0,r) and

(√
2

2 r,
√

2
2 r
)
.

Here the function is f (x) =
√

r2 − x2 and so f ′ (x) = −x/
√

r2 − x2. Therefore, the
length is ∫

π/4

0

√
1+
(
−x/

√
r2 − x2

)2
dx =

∫
π/4

0
r

√(
1

r2 − x2

)
dx

Using a trig substitution x = r sinθ , it follows dx = r cos(θ)dθ and so∫ r√
r2 − x2

dx =
∫ 1√

1− sin2
θ

r cos(θ) dθ = r
∫

dθ = rθ +C

Hence changing back to the variable x it follows an antiderivative is

l (x) = r arcsin
(x

r

)
Then the length is

r arcsin
( r

r

)
− r arcsin

(
1
r

√
2

2
r

)
= r

π

2
− r

π

4
= r

π

4
.

Note this gives the length of one eighth of the circle and so from this the length of the whole
circle should be 2rπ. Here is another example

Example 9.1.3 Find the length of the graph of y = x2 between x = 0 and x = 1.

Here f ′ (x) = 2x and so the initial value problem to be solved is

dl
dx

=
√

1+4x2, l (0) = 0.

Thus, in terms of the definite integral, the length of this curve is∫ 1

0

√
1+4x2dx =

1
2

√
5− 1

4
ln
(
−2+

√
5
)
=

1
2

√
5+

1
4

ln
(√

5+2
)

To find an antiderivative, you use the trig. substitution 2x = tanu so dx = 1
2

(
sec2 u

)
du.

Then you find the antiderivative in terms of u and change back to x by using an appropriate
triangle as described earlier.
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9.1.2 Surfaces of Revolution

The problem of finding the surface area of a solid of revolution is closely related to that of
finding the length of a graph. First consider the following picture of the frustum of a cone
in which it is desired to find the lateral surface area. In this picture, the frustum of the cone
is the left part which has an l next to it and the lateral surface area is this part of the area of
the cone.

rR

l

l1

To do this, imagine painting the sides and rolling the shape on the floor for exactly one
revolution. The wet paint would make the following shape.

ll1

wet paint on floor
2πR

2πr

What would be the area of this wet paint? Its area would be the difference between the
areas of the two sectors shown, one having radius l1 and the other having radius l+ l1. Both
of these have the same central angle equal to

2πR
2π (l + l1)

2π =
2πR
l + l1

.

Therefore, Theorem 2.3.12, this area is

(l + l1)
2 πR
(l + l1)

− l2
1

πR
(l + l1)

= πRl
l +2l1
l + l1

The view from the side is

l1

lR− r

r
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and so by similar triangles, l1 = lr/(R− r) . Therefore, substituting this into the above, the
area of this frustum is

πRl
l +2

( lr
R−r

)
l +
( lr

R−r

) = πl (R+ r) = 2πl
(

R+ r
2

)
.

Now consider a function f , defined on an interval [a,b] and suppose it is desired to find
the area of the surface which results when the graph of this function is revolved about the
x axis. Consider the following picture of a piece of this graph.

x+hx
x axis

y = f (x)

Let A(x) denote the area which results from revolving the graph of the function re-
stricted to [a,x] about the x axis. Then from the above formula for the area of a frustum,

A(x+h)−A(x)
h

≈ 2π
1
h

√
h2 +( f (x+h)− f (x))2

(
f (x+h)+ f (x)

2

)
where ≈ denotes that these are close to being equal and the approximation gets increasingly
good as h → 0. Therefore, rewriting this a little yields

A(x+h)−A(x)
h

≈ 2π

√
1+
(

f (x+h)− f (x)
h

)2( f (x+h)+ f (x)
2

)
Therefore, taking the limit as h → 0, and using A(a) = 0, this yields the following initial
value problem for A which can be used to find the area of a surface of revolution.

A′ (x) = 2π f (x)
√

1+ f ′ (x)2, A(a) = 0.

What would happen if you revolved about the y axis? I will leave it to you to verify this
would lead to the initial value problem

A′ (x) = 2πx
√

1+ f ′ (x)2, A(a) = 0.

As before, this results in the following simple procedure for finding the surface area of
a surface of revolution.

Procedure 9.1.4 To find the surface area of a surface obtained by revolving the
graph of y = f (x) for x ∈ [a,b] about the x axis, compute∫ b

a
2π f (x)

√
1+ f ′ (x)2dx

Similarly, to get the area of the graph rotated about the y axis, compute∫ b

a
2πx
√

1+ f ′ (x)2dx.
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Example 9.1.5 Find the surface area of the surface obtained by revolving the function
y = r for x ∈ [a,b] about the x axis. Of course this is just the cylinder of radius r and height
b−a so this area should equal 2πr (b−a) . (Imagine painting it and rolling it on the floor
and then taking the area of the rectangle which results.)

Using the above initial value problem, solve

A′ (x) = 2πr
√

1+02, A(a) = 0.

The solution is A(x) = 2πr (x−a) . Therefore, A(b) = 2πr (b−a) as expected.

Example 9.1.6 Find the surface area of a sphere of radius r.

Here the function involved is f (x) =
√

r2 − x2 for x ∈ [−r,r] and it is to be revolved
about the x axis. In this case

f ′ (x) =
−x√

r2 − x2

and so, by the procedure described above, the surface area is

∫ r

−r
2π

√
r2 − x2

√
1+

x2

r2 − x2 dx = 4r2
π

9.2 Exercises
1. Find the length of the graph of y = ln(cosx) for x ∈ [0,π/4] .

2. The curve defined by y = ln(cosx) for x ∈ [0,1] is revolved about the y axis. Find an
integral for the area of the surface of revolution.

3. Find the length of the graph of y = x1/2 − x3/2

3 for x ∈ [1,3] .

4. The graph of the function y = x3 is revolved about the x axis for x ∈ [0,1] . Find the
area of the resulting surface of revolution.

5. The graph of the function y = x3 is revolved about the y axis for x ∈ [0,1] . Find the
area of the resulting surface of revolution. Hint: Formulate this in terms of x and use
a change of variables.

6. The graph of the function y = lnx is revolved about the y axis for x ∈ [1,2] . Find the
area of the resulting surface of revolution. Hint: Consider x as a function of y.

7. The graph of the function y = lnx is revolved about the x axis for x ∈ [1,2] . Find the
area of the resulting surface of revolution. If you cannot do the integral, set it up.

8. Find the length of y = cosh(x) for x ∈ [0,1] .

9. Find the length of y = 2x2 − 1
16 lnx for x ∈ [1,2] .

10. The curve defined by y = 2x2 − 1
16 lnx for x ∈ [1,2] is revolved about the y axis. Find

the area of the resulting surface of revolution.
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11. Find the length of y = x2 − 1
8 lnx for x ∈ [1,2] .

12. The curve defined by y = x2 − 1
8 lnx for x ∈ [1,2] is revolved about the y axis. Find

the area of the resulting surface of revolution.

13. The curve defined by y = cosh(x) for x ∈ [0,1] is revolved about the x axis. Find the
area of the resulting surface of revolution.

14. The curve defined by y = cosh(x) for x ∈ [0,1] is revolved about the line y = −3.
Find the area of the resulting surface of revolution.

15. For a a positive real number, find the length of y = ax2

2 − 1
4a lnx for x ∈ [1,2] . Of

course your answer should depend on a.

16. The graph of the function y = x2 for x ∈ [0,1] is revolved about the x axis. Find the
area of the surface of revolution.

17. The graph of the function y =
√

x for x ∈ [0,1] is revolved about the y axis. Find the
area of the surface of revolution. Hint: Switch x and y and then use the previous
problem.

18. The graph of the function y = x1/2 − x3/2

3 is revolved about the y axis. Find the area
of the surface of revolution if x ∈ [0,2] .

19. The graph of the function y = sinhx for x ∈ [0,1] is revolved about the x axis. Find
the area of the surface of revolution.

20. ∗ The ellipse x2

a2 +
y2

b2 = 1 is revolved about the x axis. Find the area of the surface of
revolution.

21. Find the length of the graph of y = 2
3 (x−1)3/2 for x ∈ [2,3] .

22. The curve defined by y = 2
3 (x−1)3/2 for x ∈ [1,2] is revolved about the y axis. Find

the area of the resulting surface of revolution.

23. Suppose f ′ (x) =
√

sec2 x−1 and f (0) = 0. Find the length of the graph of y = f (x)
for x ∈ [0,1] .

24. The curve defined by y = f (x) for x ∈ [0,π] is revolved about the y axis where

f ′ (x) =
√

(2+ sinx)2 −1, f (0) = 1. Find the area of the resulting surface of revo-
lution.

25. Revolve y = 1/x for x ∈ [1,R] about the x axis. Find the area of this surface of
revolution. Now show the limit of what you got as R → ∞ does not exist. Next find
the volume of this solid of revolution. Show the limit of this are R → ∞ is finite. This
infinite solid has infinite area but finite volume.

26. The surface area of a sphere of radius r was shown to be 4πr2. Note that if V (r) =
4
3 πr3, then V ′ (r) equals the area of the sphere. Why is this reasonable based on
geometrical considerations?
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9.3 Force on a Dam and Work

9.3.1 Force on a Dam

Imagine you are a fish swimming in a lake behind a dam and you are interested in the total
force acting on the dam. The following picture is what you would see.

slice of area of height dy

The reason you would be interested in that long thin slice of area having essentially the
same depth, say at y feet is because the pressure in the water at that depth is constant and
equals 62.5y pounds per square foot1. Therefore, the total force the water exerts on the
long thin slice is

dF = 62.5yL(y)dy

where L(y) denotes the length of the slice. Therefore, the total force on the dam up to depth
y is obtained as a solution to the initial value problem

dF
dy

= 62.5yL(y) , F (0) = 0.

Example 9.3.1 Suppose the width of a dam at depth y feet equals L(y) = 1000− y and its
depth is 500 feet. Find the total force in pounds exerted on the dam.

From the above, this is obtained as the solution to the initial value problem

dF
dy

= 62.5y(1000− y) , F (0) = 0

which is F (y) =−20.83y3 +31250y2. The total force on the dam would be

F (500) =−20.83(500)3 +31250(500)2 = 5,208,750,000.0

pounds. In tons this is 2,604 ,375. That is a lot of force.

9.3.2 Work

Now suppose you are pumping water from a tank of depth d to a height of H feet above
the top of the water in the tank. Suppose also that at depth y below the surface, the area of
a cross section having constant depth is A(y) . The total weight of a slice of water having
thickness dy at this depth is 62.5A(y)dy and the pump needs to lift this weight a distance

1That this is so comes from an assumption that water is incompressible and the use of topics in multivariable
calculus. Here we will simply use this fact, but it is derived later in the book. It was first observed experimentally
by Blaise Pascal, a very important French theologin, philosopher, physicist and mathematician of the 1600’s.
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of y+H feet. Therefore, the work done is dW = (y+H)62.5A(y)dy. An initial value
problem for the work done to pump the water down to a depth of y feet would be

dW
dy

= (y+H)62.5A(y) , W (0) = 0.

The reason for the initial condition is that the pump has done no work to pump no water.
If the weight of the fluid per cubic foot were different than 62.5 you would do the same
things but replace the number.

Example 9.3.2 A spherical storage tank sitting on the ground having radius 30 feet is half
filled with a fluid which weighs 50 pounds per cubic foot. How much work is done to pump
this fluid to a height of 100 feet?

Letting r denote the radius of a cross section y feet below the level of the fluid, r2 +
y2 = 900. Therefore, r =

√
900− y2. It follows the area of the cross section at depth y is

π
(
900− y2

)
. Here H = 70 and so the initial value problem to solve is

dW
dy

= (y+70)50π
(
900− y2) , W (0) = 0.

Therefore, W (y)= 50π
(
− 1

4 y4 − 70
3 y3 +450y2 +63000y

)
and the total work in foot pounds

equals

W (30) = 50π

(
−1

4
(30)4 − 70

3
(30)3 +450(30)2 +63000(30)

)
= 73 ,125, 000π

In general, the work done by a constant force in a straight line equals the product
of the force times the distance over which it acts. If the force is varying with respect
to position, then you have to use calculus to compute the work. For now, consider the
following examples.

Example 9.3.3 A 500 pound safe is lifted 10 feet. How much work is done?

The work is 500×10 = 5000 foot pounds.

Example 9.3.4 The force needed to stretch a spring x feet past its equilibrium position is
kx. This is known as Hooke’s law and is a good approximation as long as the spring is not
stretched too far. If k = 3, how much work is needed to stretch the spring a distance of 2
feet beyond its equilibrium position? The constant k is called the spring constant. Different
springs would have different spring constants. The units on k are pounds/foot.

This is a case of a variable force. To stretch the spring from x to x+ dx requires 3xdx
foot pounds of work. Therefore, letting W denote the work up till time x,dW = 3xdx and
so the initial value problem is

dW
dx

= 3x, W (0) = 0.

Thus W (2) = 3
2

(
22
)
= 6 foot pounds because an antiderivative for 3x is 3

2 x2. In terms of
the definite integral, this is written as

∫ 2
0 3xdx.
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9.4 Using MATLAB
Sometimes when you do applications, you end up with an integral you can’t evaluate be-
cause you don’t know how to find an antiderivative. When this occurs, you need to use
a numerical method. This is a long story best left to numerical analysis courses, but you
can easily get the answer numerically with computer algebra. Suppose you want to find
the really obnoxious integral

∫ 5
0 sin(x)exp

(
−x2

)
dx. In MATLAB, you would enter the

following.
f=@(x)sin(x).*exp(-x.ˆ2);
integral(f,0,5)
Then you press enter and it gives.
ans =
0.4244
The first line defines the function and the second tells it to find the integral mentioned

above. You have to use .* because you are dealing with lists of numbers and you want to
do the multiplication to corresponding entries. MATLAB is like that. It will see x as a list
of numbers and sin(x) as a list of numbers obtained from taking the sine of each number in
the list for x. It is similar for exp.

There is a discussion of numerical integration schemes in Problem 25 on Page 198.
However, a rudimentary integration scheme is the Riemann sum. The versions in the above
problem are much better and what MATLAB uses is still more sophisticated.

If you have Scientific Notebook, it is even easier. You simply type∫ 5

0
sin(x)exp

(
−x2)dx

and then press evaluate numerically #
=? on the toolbar. The result is∫ 5

0
sin(x)exp

(
−x2)dx = 0.42444

Actually, this software is built on Mupad which is a part of the symbolic math package of
MATLAB.

9.5 Exercises
1. The main span of the Portage Lake lift bridge2 weighs 4,400,000 pounds. How much

work is done in raising this main span to a height of 100 feet?

2. A cylindrical storage tank having radius 20 feet and length 40 feet is filled with a
fluid which weighs 50 pounds per cubic foot. This tank is lying on its side on the
ground. Find the total force acting on the ends of the tank by the fluid.

2This is the heaviest lift bridge in the world. It joins the towns of Houghton and Hancock in the upper peninsula
of Michigan spanning Portage lake. It provides 250 feet of clear channel for ships and can provide as much as
100 feet of vertical clearance. The lifting machinery is at the top of two massive towers 180 feet above the water.
Aided by 1,100 ton counter weights on each tower, sixteen foot gears pull on 42 cables to raise the bridge. This
usually creates impressive traffic jams on either side of the lake. The motion up and down of this span is quite
slow.
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3. Suppose the tank in Problem 2 is filled to a depth of 8 feet. Find an integral for the
work needed to pump the fluid to a height of 50 feet.

4. A conical hole is filled with water which has weight 62.5 pounds per cubic feet. If
the depth of the hole is 20 feet and the radius of the hole is 10 feet, how much work
is needed to pump the water to a height of 10 feet above the ground?

5. Suppose the spring constant is 2 pounds per foot. Find the work needed to stretch
the spring 3 feet beyond equilibrium.

6. A 20 foot chain lies on the ground. It weighs 5 pounds per foot. How much work is
done to lift one end of the chain to a height of 20 feet?

7. A 200 foot chain dangles from the top of a tall building. How much work is needed
to haul it to the top of the building if it weighs 1 pound per foot?

8. A dam 500 feet high has a width at depth y equal to 4000−2y feet. What is the total
force on the dam if it is filled?

9. ∗When the bucket is filled with water it weighs 30 pounds and when empty it weighs
2 pounds and the person on top of a 100 foot building exerts a constant force of 40
pounds. The bucket is full at the bottom but leaks at the rate of .1 cubic feet per
second. How much work does the person on the top of the building do in lifting the
bucket to the top? Will the bucket be empty when it reaches the top? You can use
Newton’s law that force equals mass times acceleration. You can neglect the weight
of the rope.

10. In the situation of the above problem, suppose the person on the top maintains a
constant velocity of 1 foot per second and the bucket leaks at the rate of.1 pound per
second. How much work does he do and is the bucket empty when it reaches the
top?

11. A silo is 10 feet in diameter and at a height of 30 feet there is a hemispherical top.
The silage weighs 10 pounds per cubic foot. How much work was done in filling it
to the very top?

12. A cylindrical storage tank having radius 10 feet is filled with water to a depth of 20
feet. If the storage tank stands upright on its circular base, what is the total force the
water exerts on the sides of the tank? Hint: The pressure in the water at depth y is
62.5y pounds per square foot.

13. A spherical storage tank having radius 10 feet is filled with water. What is the total
force the water exerts on the storage tank? Hint: The pressure in the water at depth
y is 62.5y consider the area corresponding to a slice at height y. This is a surface
of revolution and you know how to deal with these. The area of this slice times the
pressure gives the total force acting on it.

14. A water barrel which is 11 inches in radius and 34 inches high is filled with water. If
it is standing on end, what is the total force acting on the circular sides of the barrel?

15. Find the total force acting on the circular sides of the cylinder in Problem 2.
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16. A cylindrical tank having radius 10 feet is contains water which weight 62.5 pounds
per cubic foot. Find the force on one end of this tank if it is filled to a depth of y feet.

17. Here is a calculator problem. In the above problem, to what depth may the tank be
filled if the total force on an end is not to exceed 40000 pounds?

18. The force on a satellite of mass m slugs in pounds is mk
r2 where k is approximately

k = 1.42737408×1016 and r is the distance from the center of the earth. Assuming
the radius of the earth is 4000 miles, find the work in foot pounds needed to place a
satellite weighing 500 pounds on the surface of the earth into an orbit 18,000 miles
above the surface of the earth. You should use a calculator on this problem.

19. A regular Sturm Liouville problem involves the differential equation, for an un-
known function of x which is denoted here by y,(

p(x)y′
)′
+(λq(x)+ r (x))y = 0, x ∈ [a,b]

and it is assumed that p(t) ,q(t)> 0 for any t along with boundary conditions,

C1y(a)+C2y′ (a) = 0,
C3y(b)+C4y′ (b) = 0

where
C2

1 +C2
2 > 0, and C2

3 +C2
4 > 0.

There is an immense theory connected to these important problems. The constant, λ

is called an eigenvalue. Show that if y is a solution to the above problem correspond-
ing toλ = λ 1 and if z is a solution corresponding to λ = λ 2 ̸= λ 1, then∫ b

a
q(x)y(x)z(x)dx = 0. (9.1)

Hint: Do something like this:(
p(x)y′

)′ z+(λ 1q(x)+ r (x))yz = 0,(
p(x)z′

)′ y+(λ 2q(x)+ r (x))zy = 0.

Now subtract and either use integration by parts or show(
p(x)y′

)′ z− (p(x)z′
)′ y = ((p(x)y′

)
z−
(

p(x)z′
)

y
)′

and then integrate. Use the boundary conditions to show that y′ (a)z(a)−z′ (a)y(a)=
0 and y′ (b)z(b)−z′ (b)y(b) = 0. The formula, 9.1 is called an orthogonality relation
and it makes possible an expansion in terms of certain functions called eigenfunc-
tions.



Chapter 10

Improper Integrals and Stirling’s
Formula

10.1 Stirling’s Formula
In this section is an elementary approach to Stirlings formula. This formula is an asymptotic
approximation for n!. It is quite old dating to about 1730. The approach followed here is
like the one in the Calculus book of Courant found in the references. Later I will give a
different one found in [26]. See also [8].

To begin with is a simple lemma which really depends on the shape of the graph of
t → ln t.

Lemma 10.1.1 For n a positive integer,

1
2
(ln(n+1)+ ln(n))≤

∫ n+1

n
ln(t)dt ≤ ln

(
n+

1
2

)
(10.1)

Proof: Consider the following picture.

ln(n)

ln(n+1)

n n+1

x

t

n+ 1
2

There are two trapezoids, the area of the larger one is larger than
∫ n+1

n ln(t)dt and the
area of the smaller being smaller than this integral. The equation of the line which forms
the top of the large trapezoid is

y− ln
(

n+
1
2

)
=

1
n+ 1

2

(
x−
(

n+
1
2

))
237
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Thus the area of the large trapezoid is obtained by averaging the two vertical sides and
multiplying by the length of the base which is 1. This is easily found to be ln

(
n+ 1

2

)
. Then

the area of the smaller trapezoid is obtained also as the average of the two vertical sides
times the length of the base which is 1

2 (ln(n+1)+ ln(n)). ■
Thus a lower approximation for

∫ n
1 ln(t)dt, denoted as Tn is

Tn ≡
n−1

∑
k=1

1
2
(ln(k)+ ln(k+1))

Then, from the above lemma,

∫ n

1
ln(t)dt −Tn =

n−1

∑
k=1

∫ k+1

k
ln(t)dt −

n−1

∑
k=1

1
2
(ln(k)+ ln(k+1))

≤
n−1

∑
k=1

ln
(

k+
1
2

)
−

n−1

∑
k=1

1
2
(ln(k)+ ln(k+1))

=
n−1

∑
k=1

1
2

(
ln
(

k+
1
2

)
− ln(k)

)
−

n−1

∑
k=1

1
2

(
ln(k+1)− ln

(
k+

1
2

))
≤

n−1

∑
k=1

1
2

(
ln(k)− ln

(
k− 1

2

))
−

n−1

∑
k=1

1
2

(
ln(k+1)− ln

(
k+

1
2

))
=

n−2

∑
k=0

1
2

(
ln(k+1)− ln

(
k+

1
2

))
−

n−1

∑
k=1

1
2

(
ln(k+1)− ln

(
k+

1
2

))

=
1
2

(
ln(1)− ln

(
1
2

))
− 1

2

(
ln(n)− ln

(
n− 1

2

))
≤ ln(2)

2

Now this shows that {
∫ n

1 ln(t)dt −Tn}∞

n=1 is an increasing sequence bounded above and so
it must converge to some real number α .

exp(Tn) =
n−1

∏
k=1

exp
(

1
2
(ln(k)+ ln(k+1))

)
=

n−1

∏
k=1

(k (k+1))1/2

= (1 ·2)1/2 (2 ·3)1/2 · · ·((n−1) ·n)1/2 = (n−1)!
√

n = n!n−1/2

Therefore, doing the integral
∫ n

1 ln(t)dt and taking the exponential of the expression,

lim
n→∞

exp((n ln(n)−n)−Tn) = lim
n→∞

e(n ln(n)−n)

n−1/2n!
= lim

n→∞

nn+ 1
2 e−n

n!
= eα

This has proved the following lemma.

Lemma 10.1.2 There exists a positive number c such that

lim
n→∞

n!
nn+(1/2)e−nc

= 1.
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In many applications, the above is enough. However, the constant can be found. There
are various ways to show that this constant c equals

√
2π . The version given here also

includes a formula which is interesting for its own sake.
Using integration by parts, it follows that whenever n is a positive integer larger than 1,∫

π/2

0
sinn (x)dx =

n−1
n

∫
π/2

0
sinn−2 (x)dx

Lemma 10.1.3 For m ≥ 1,∫
π/2

0
sin2m (x)dx =

(2m−1) · · ·1
2m(2m−2) · · ·2

π

2∫
π/2

0
sin2m+1 (x)dx =

(2m)(2m−2) · · ·2
(2m+1)(2m−1) · · ·3

Proof: Consider the first formula in the case where m = 1. From beginning calculus,∫
π/2

0
sin2 (x)dx =

π

4
=

1
2

π

2

so the formula holds in this case. Suppose it holds for m. Then from the above reduction
identity and induction,∫

π/2

0
sin2m+2 (x)dx =

2m+1
2(m+1)

∫
π/2

0
sin2m (x)dx

=
2m+1

2(m+1)
(2m−1) · · ·1

2m(2m−2) · · ·2
π

2
.

The second claim is proved similarly. ■
Then using the reduction identity and the above,

2m+1
2m

≥
∫ π/2

0 sin2m (x)dx
2m

2m+1
∫ π/2

0 sin2m−1 (x)dx
=

∫ π/2
0 sin2m (x)dx∫ π/2

0 sin2m+1 (x)dx
=

=
π

2
(2m+1)

(2m−1)2 (2m−3)2 · · ·1
22m (m!)2 ≥ 1

It follows from the squeezing theorem that

lim
m→∞

1
2m+1

22m (m!)2

(2m−1)2 (2m−3)2 · · ·1
=

π

2

This exceedingly interesting formula is Wallis’ formula.
Now multiply both the top and the bottom of the expression on the left by

(2m)2 (2(m−1))2 · · ·22

which is 22m (m!)2 . This is another version of the Wallis formula.

π

2
= lim

m→∞

22m

2m+1
22m (m!)2 (m!)2

((2m)!)2
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It follows that √
π

2
= lim

m→∞

22m
√

2m+1
(m!)2

(2m)!
= lim

m→∞

22m
√

2m
(m!)2

(2m)!
(10.2)

Now with this result, it is possible to find c in Stirling’s formula. Recall

lim
m→∞

m!
mm+(1/2)e−mc

= 1 = lim
m→∞

mm+(1/2)e−mc
m!

In particular, replacing m with 2m,

lim
m→∞

(2m)!

(2m)2m+(1/2) e−2mc
= lim

m→∞

(2m)2m+(1/2) e−2mc
(2m)!

= 1

Therefore, from 10.2,
√

π

2 =

lim
m→∞

22m
√

2m

(
mm+(1/2)e−mc

m!

)2
(m!)2(

(2m)2m+(1/2)e−2mc
2m!

)
(2m)!

= lim
m→∞

22m
√

2m

(
mm+(1/2)e−mc

)2(
(2m)2m+(1/2) e−2mc

)
= c lim

m→∞

22m
√

2m
m2m+1

22m+1/2
(
m2m+(1/2)

) = c lim
m→∞

1
2

m2m+1

m2m+1 =
c
2

so c =
√

2π . This proves Stirling’s formula.

Theorem 10.1.4 The following formula holds.

lim
m→∞

m!
mm+(1/2)e−m

=
√

2π

10.2 The Gamma Function
This belongs to a larger set of ideas concerning improper integrals, but the main reason for
these ideas are important examples like the Gamma function or Laplace transforms. Gen-
eral theory is much better understood in the context of the Lebesgue integral. Therefore,
the presentation is centered on these examples. The Riemann integral only is defined for
bounded functions which are defined on a bounded interval. If this is not the case, then
the integral has not been defined. Of course, just because the function is bounded does not
mean the integral exists as mentioned above, but if it is not bounded or if it is defined on
an infinite interval, then no definition has been given. However, one can consider limits of
Riemann integrals. The following definition pertains to the Gamma function and Laplace
transforms.

Definition 10.2.1 We say that f defined on [0,∞) is improper Riemann integrable
if it is Riemann integrable on [δ ,R] for each R > 1 > δ > 0 and the following limits exist.∫

∞

0
f (t)dt ≡ lim

δ→0+

∫ 1

δ

f (t)dt + lim
R→∞

∫ R

1
f (t)dt

The gamma function is defined by

Γ(α)≡
∫

∞

0
e−ttα−1 dt

whenever α > 0.
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The following lemma comes from Proposition 4.12.12 about limits of increasing or
decreasing functions.

Lemma 10.2.2 The gamma function exists because the limits in the above definition
exists for each α > 0.

Proof: Note first that as δ → 0+, the Riemann integrals
∫ 1

δ
e−ttα−1dt increase. Thus

limδ→0+
∫ 1

δ
e−ttα−1dt either is +∞ or it will converge to the least upper bound thanks to

completeness of R. See Proposition 4.12.12. However, e−ttα−1 ≤ tα−1 and∫ 1

δ

tα−1dt =
tα

α
|1
δ
=

1
α
− δ

α

α
≤ 1

α

so the limit of these integrals exists because they are bounded above. Also e−ttα−1 ≤
Ce−(t/2) for suitable C if t > 1. This is obvious if α −1 < 0 and in the other case it is also
clear because

0 <
e−ttα−1

e−(t/2) ≤ e−t/2tm, where m is an integer larger than α −1

Now apply L’Hopital’s rule to conclude that the limit of this expression is 0 as t → ∞. Thus
the quotient e−t tα−1

e−(t/2) is less than some constant C.∫ R

1
e−ttα−1dt ≤

∫ R

1
Ce−(t/2)dt ≤ 2Ce(−1/2)−2Ce(−R/2) ≤ 2Ce(−1/2)

Thus these integrals also converge as R → ∞ because they are increasing in R and bounded
above. Hence they converge to sup

{∫ R
1 e−ttα−1dt : R > 1

}
. It follows that Γ(α) makes

sense. ■
The argument also implies the following proposition. Absolute convergence implies

convergence.

Proposition 10.2.3 If f ≥ 0, then
∫

∞

a f (t)dt exists if the partial integrals
∫ R

a f (t)dt
are bounded above independent of R. Also

∫
∞

a f (t)dt exists if
∫

∞

a | f (t)|dt exists.

Proof: The first part is just like what was done with the gamma function. As to the
second part, consider f+ (t) ≡ | f (t)|+ f (t)

2 , f− (t) ≡ | f (t)|− f (t)
2 . These are both nonnegative

and if
∫

∞

a | f |dt exists, then∫ R

a
f+dt ≤

∫
∞

a
| f |dt,

∫ R

a
f−dt ≤

∫
∞

a
| f |dt

and so the first part implies limR→∞

∫ R
a f+dt and limR→∞

∫ R
a f−dt both exist. Hence∫ R

a
f dt =

∫ R

a
f+dt −

∫ R

a
f−dt

also must have a limit as R → ∞. ■
This gamma function has some fundamental properties described in the following pro-

position. In case the improper integral exists, we can obviously compute it in the form

lim
δ→0+

∫ 1/δ

δ

f (t)dt

which is used in what follows. Thus also the usual algebraic properties of the Riemann
integral are inherited by the improper integral.
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Proposition 10.2.4 For n a positive integer, n! = Γ(n+1). In general, the following
identity holds. Γ(1) = 1,Γ(α +1) = αΓ(α)

Proof: First of all, Γ(1) = limδ→0
∫

δ
−1

δ
e−tdt = limδ→0

(
e−δ − e−(δ

−1)
)
= 1. Next,

for α > 0,

Γ(α +1) = lim
δ→0

∫
δ
−1

δ

e−ttα dt = lim
δ→0

[
−e−ttα |δ

−1

δ
+α

∫
δ
−1

δ

e−ttα−1dt

]

= lim
δ→0

(
e−δ

δ
α − e−(δ

−1)δ
−α +α

∫
δ
−1

δ

e−ttα−1dt

)
= αΓ(α)

Now it is defined that 0! = 1 and so Γ(1) = 0!. Suppose that Γ(n+1) = n!, what of
Γ(n+2)? Is it (n+1)!? if so, then by induction, the proposition is established. From
what was just shown,

Γ(n+2) = Γ(n+1)(n+1) = n!(n+1) = (n+1)!

and so this proves the proposition. ■
The properties of the gamma function also allow for a fairly easy proof about differen-

tiating under the integral in a Laplace transform. First is a definition.

Definition 10.2.5 A function φ has exponential growth on [0,∞) if there are posi-
tive constants λ ,C such that |φ (t)| ≤Ceλ t for all t ≥ 0.

Theorem 10.2.6 Let f (s) =
∫

∞

0 e−stφ (t)dt where t → φ (t)e−st is improper Rie-
mann integrable for all s large enough and φ has exponential growth. Then for s large
enough, f (k) (s) exists and equals

∫
∞

0 (−t)k e−stφ (t)dt.

Proof: Suppose true for some k ≥ 0. By definition it is so for k = 0. Then always
assuming s > λ , |h|< s−λ , where |φ (t)| ≤Ceλ t ,λ ≥ 0,

f (k) (s+h)− f (k) (s)
h

=
∫

∞

0
(−t)k e−(s+h)t − e−st

h
φ (t)dt

=
∫

∞

0
(−t)k e−st

(
e−ht −1

h

)
φ (t)dt =

∫
∞

0
(−t)k e−st

(
(−t)eθ(h,t)

)
φ (t)dt

where θ (h, t) is between −ht and 0, this by the mean value theorem. Thus by mean value
theorem again, ∣∣∣∣∣ f (k) (s+h)− f (k) (s)

h
−
∫

∞

0
(−t)k+1 e−st

φ (t)dt

∣∣∣∣∣
≤
∫

∞

0
|t|k+1 Ceλ te−st

∣∣∣eθ(h,t)−1
∣∣∣dt ≤

∫
∞

0
tk+1Ceλ te−steα(h,t) |ht|dt

≤
∫

∞

0
tk+2Ceλ te−st |h|et|h|dt =C |h|

∫
∞

0
tk+2e−(s−(λ+|h|))tdt

Let u = (s− (λ + |h|)) t,du = (s− (λ + |h|))dt. Then the above equals

C |h|
∫

∞

0

(
u

s− (λ + |h|)

)k+2

e−u 1
(s− (λ + |h|))

du
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=
C |h|

(s− (λ + |h|))k+3

∫
∞

0
e−uuk+2du =

C |h|
(s− (λ + |h|))k+3 Γ(k+3)

Thus, as h → 0, this converges to 0 and so this proves the theorem. ■
The function f (s) just defined is called the Laplace transform of φ .

10.3 Laplace Transforms
The Laplace transform is extremely useful in differential equations because it can change
a differential equation into an algebraic equation. This easy equation can then be solved
and then you go backwards in a table of Laplace transforms to find the solution to the
differential equation. It is also useful in statistics, where it is called a moment generating
function, and integral equations.

Suppose f is a piecewise continuous, bounded function, on each [0,R]. Then from
Corollary 7.3.14 t → f (t) is integrable on [0,R] for each R > 0. So is t → e−st f (t) .

Definition 10.3.1 We say that a function defined on [0,∞) has exponential growth
if for some λ ≥ 0, and C > 0, | f (t)| ≤Ceλ t

Note that this condition is satisfied if | f (t)| ≤ a+beλ t . You simply pick C > max(a,b)
and observe that a+beλ t ≤ 2Ceλ t .

Proposition 10.3.2 Let f have exponential growth and be piecewise continuous on
[0,R] for each R. Then

lim
R→∞

∫ R

0
f (t)e−stdt ≡ L f (s)

exists for every s > λ where | f (t)| ≤ eλ t . That limit is denoted as∫
∞

0
f (t)e−stdt.

Proof: Let Rn → ∞. Then for Rm < Rn,∣∣∣∣∫ Rm

0
f (t)e−stdt −

∫ Rn

0
f (t)e−st

∣∣∣∣ ≤
∫ Rn

Rm

| f (t)|e−stdt

≤
∫ Rn

Rm

e−(s−λ )tdt ≤ e−(s−λ )Rm

The elementary computations are left to the reader. Then this converges to 0 as Rm → ∞. It
follows that

{∫ Rn
0 f (t)e−stdt

}∞

n=1
is a Cauchy sequence and so it converges to I ∈ R. The

above computation shows that if R̂n also converges to ∞ as n → ∞, then

lim
n→∞

∫ Rn

0
f (t)e−st = lim

n→∞

∫ R̂n

0
f (t)e−st

and so the limit does indeed exist and this defines the improper integral
∫

∞

0 f (t)e−tsdt. ■
Certain properties are obvious. For example,

1. If a,b scalars and if g, f have exponential growth, then for all s large enough,

L (a f +bg)(s) = aL ( f )(s)+bL (g)(s)
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2. If f ′ (t) exists and has exponential growth, and so does f (t) then for s large enough,

L
(

f ′
)
(s) =− f (0)+ sL ( f )(s)

One can also compute Laplace transforms of many standard functions without much
difficulty. That which is most certainly not obvious is the following major theorem. This
is the thing which is omitted from virtually all ordinary differential equations books, and
it is this very thing which justifies the use of Laplace transforms. Without it or something
like it, the whole method is nonsense. I am following [32]. This theorem says that if you
know the Laplace transform, this will determine the function it came from at every point of
continuity of this function. The proof is fairly technical but only involves the theory of the
integral which was presented in this chapter.

Theorem 10.3.3 Let φ have exponential growth and have finitely many discontinu-
ities on every interval [0,R] and let f (s) ≡ L (φ)(s). Then if t is a point of continuity of
φ , it follows that

φ (t) = lim
k→∞

(−1)k

k!

[
f (k)
(

k
t

)](
k
t

)k+1

.

Thus φ (t) is determined by its Laplace transform at every point of continuity.

Proof: First note that for k a positive integer, you can change the variable letting ku = t
and obtain

kk+1

k!

∫
∞

0

(
e−uu

)k du =
kk+1

k!

∫
∞

0
e−t
( t

k

)k 1
k

dt

The details involve doing this on finite intervals using the theory of the Riemann integral
developed earlier and then passing to a limit. Thus the above equals

1
k!

∫
∞

0
e−ttkdt = Γ(k+1)

1
k!

= k!
1
k!

= 1

by Proposition 10.2.4.
Now assuming that |φ (u)| ≤Ceλu, then from what was just shown,

kk+1

k!

∫
∞

0

(
e−uu

)k
φ (u)du−φ (1) =

∫
∞

0

kk+1

k!
(
e−uu

)k
(φ (u)−φ (1))du

Assuming φ is continuous at 1, the improper integral is of the form∫ 1−δ

0

kk+1

k!
(
e−uu

)k
(φ (u)−φ (1))du+

∫ 1+δ

1−δ

kk+1

k!
(
e−uu

)k
(φ (u)−φ (1))du

+
∫

∞

1+δ

kk+1

k!
(
e−uu

)k
(φ (u)−φ (1))du

Consider the first integral in the above. Letting K be an upper bound for

|φ (u)−φ (1)|

on [0,1] , ∣∣∣∣∫ 1−δ

0

kk+1

k!
(
e−uu

)k
(φ (u)−φ (1))du

∣∣∣∣≤ K
∫ 1−δ

0

kk+1

k!
(
e−uu

)k du
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≤ K
kk+1

k!

(
e−(1−δ ) (1−δ )

)k
(1−δ )

Now this converges to 0 as k → ∞. In fact, for 0 < a < 1,

lim
k→∞

kk+1

k!
(
e−aa

)k
= 0

To see this, take the ratio of the k+1 term to the kth term.

(k+1)k+2

(k+1)! (e−aa)k+1

kk+1

k! (e−aa)k
= e−aa

1
k+1

(k+1)k+2

kk+1 = e−aa
(

1+
1
k

)k(
1+

1
k

)

which converges to e1−aa, a positive number less than 1. Verify this. You can see it is
true by graphing xe1−x on [0,1] for example. Therefore, denoting as Ak the expression
kk+1

k! (e−aa)k
, and letting e1−aa < r < 1, it follows that for all k large enough,

Ak+1

Ak
< r < 1

and so, iterating this,

Ak+m

Ak
=

Ak+m

Ak+m−1

Ak+m−1

Ak+m−2

Ak+m−2

Ak+m−3
· · · Ak+1

Ak
≤ rm−1

Since |r|< 1, limm→∞ Ak+m ≤ limm→∞ Akrm−1 = 0. Here a = 1−δ .
Next consider the last integral. This obviously converges to 0 because of the exponential

growth of φ . In fact,∣∣∣∣∫ ∞

1+δ

kk+1

k!
(
e−uu

)k
(φ (u)−φ (1))du

∣∣∣∣≤ ∫ ∞

1+δ

kk+1

k!
(
e−uu

)k
(

a+beλu
)

du

Now changing the variable letting uk = t, and doing everything on finite intervals followed
by passing to a limit, the absolute value of the above is dominated by∫

∞

k(1+δ )

kk+1

k!
e−t
( t

k

)k 1
k

(
a+beλ (t/k)

)
dt

=
∫

∞

k(1+δ )

1
k!

e−ttk
(

a+beλ (t/k)
)

dt for some a,b ≥ 0

=
∫

∞

0

1
k!

e−ttk
(

a+beλ (t/k)
)

dt −
∫ k(1+δ )

0

1
k!

e−ttk
(

a+beλ (t/k)
)

dt

However, the limit as k → ∞ of the integral on the right equals the improper integral on
the left. Thus this converges to 0 as k → ∞. Thus all that is left to consider is the middle
integral in which δ was chosen such that |φ (u)−φ (1)| < ε. Then from what was shown
earlier, ∣∣∣∣∫ 1+δ

1−δ

kk+1

k!
(
e−uu

)k
(φ (u)−φ (1))du

∣∣∣∣≤ ε

∫
∞

0

kk+1

k!
(
e−uu

)k du = ε
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It follows that if φ is continuous at 1,

lim
k→∞

∫
∞

0

kk+1

k!
(
e−uu

)k
(φ (u)−φ (1))du = 0

and so
∫

∞

0
kk+1

k! (e−uu)k
φ (u)du = φ (1). Now you simply replace φ (u) with φ (tu) where

φ is continuous at t. This function of u still has exponential growth and is continuous at
u = 1. Thus we obtain

lim
k→∞

∫
∞

0

kk+1

k!
(
e−uu

)k
φ (tu)du = φ (t)

Now use Theorem 10.2.6 on

f (s)≡
∫

∞

0
e−st

φ (t)dt

This theorem says that for large s, f (k) (s) exists and equals
∫

∞

0 (−u)k e−suφ (u)du. Then

(−1)k

k!

[
f (k)
(

k
t

)](
k
t

)k+1

=
(−1)k

k!

[∫
∞

0
(−u)k e−(k/t)u

φ (u)du
](

k
t

)k+1

Now letting v = u
t , this reduces to

(−1)k

k!

[∫
∞

0
(−(tv))k e−kv

φ (tv) tdv
](

k
t

)k+1

=
kk+1

k!

∫
∞

0
e−kvvk

φ (tv)dv

which was shown above to converge to φ (t). ■
I think the approach given above is really interesting because it gives an explicit de-

scription of φ (t) at every point. However, there are other ways to show this. See my single
variable advanced calculus book for another approach based on the Weierstrass approxima-
tion theorem. However, to really do it right, one should use complex variable techniques.
You can actually get the inverse Laplace transform from doing contour integrals. It is in
my book on calculus of real and complex variables and in the single variable book just
mentioned. This is called the Bromwich integral, another kind of improper integral and it
converges to the mid point of the jump of the function. It or something like it is actually
used by computer algebra systems to invert Laplace transforms.

10.4 Exercises

1. The improper integrals discussed in the chapter had to do with an infinite interval of
integration. Another kind of improper integral is considered when you try to integrate
an unbounded function. Here is an example:∫ 1

0

1√
x

dx ≡ lim
ε→0

∫ 1

ε

1√
x

dx

Find
∫ 1

0
1

xα dx for various values of α . Consider what happens when α < 1 and when
α ≥ 1.
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2. When f is Riemann integrable on [a,R] for each R > a the “improper” integral is
defined as follows.

∫
∞

a f (t)dt ≡ limR→∞

∫ R
a f (t)dt whenever this limit exists. Show∫

∞

0
sinx

x dx exists. Here the integrand is defined to equal 1 when x = 0, not that this
matters.

3. Show
∫

∞

0 sin
(
t2
)

dt exists.

4. Suppose f is a continuous function which is not equal to zero on [0,b] . Show that∫ b

0

f (x)
f (x)+ f (b− x)

dx =
b
2
.

Hint: First change the variables to obtain the integral equals∫ b/2

−b/2

f (y+b/2)
f (y+b/2)+ f (b/2− y)

dy

Next show by another change of variables that this integral equals∫ b/2

−b/2

f (b/2− y)
f (y+b/2)+ f (b/2− y)

dy.

Thus the sum of these equals b.

5. Letting [a,b] = [−π,π] , consider an example of a regular Sturm Liouville problem
which is of the form

y′′+λy = 0,y(−π) = 0,y(π) = 0.

Show that if λ = n2 and yn (x) = sin(nx) for n a positive integer, then yn is a solution
to this regular Sturm Liouville problem. In this case, q(x) = 1 and so from Problem
19, it must be the case that ∫

π

−π

sin(nx)sin(mx)dx = 0

if n ̸= m. Show directly using integration by parts that the above equation is true.

6. Let f : [a,b]× [c,d] → R satisfy the following condition at (x0,y0) ∈ [a,b]× [c,d].
For every ε > 0 there exists a δ > 0 possibly depending on (x0,y0) such that if

max(|x− x0| , |y− y0|)< δ

then
| f (x,y)− f (x0,y0)|< ε.

This is what it means for f to be continuous at (x0,y0) . Show that if f is continuous
at every point of [a,b]× [c,d] , then it is uniformly continuous on [a,b]× [c,d] . That
is, for every ε > 0 there exists a δ > 0 such that if (x0,y0) ,(x,y) are any two points
of [a,b]× [c,d] such that

max(|x− x0| , |y− y0|)< δ ,
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then
| f (x,y)− f (x0,y0)|< ε.

Also show that such a function achieves its maximum and its minimum on [a,b]×
[c,d] . Hint: This is easy if you follow the same procedure that was used earlier
but you take subsequences for each component to show [a,b]× [c,d] is sequentially
compact.

7. Suppose f is a real valued function defined on [a,b]× [c,d] which is uniformly con-
tinuous as described in Problem 6 and bounded which follow from an assumption
that it is continuous. Show

x →
∫ d

c
f (x,y)dy, y →

∫ b

a
f (x,y)dx

are both continuous functions. The idea is you fix one of the variables, x in the
first and then integrate the continuous function of y obtaining a real number which
depends on the value of x fixed. Explain why it makes sense to write∫ b

a

∫ d

c
f (x,y)dydx,

∫ d

c

∫ b

a
f (x,y)dxdy.

Now consider the first of the above iterated integrals. (That is what these are called.)
Consider the following argument in which you fill in the details.∫ b

a

∫ d

c
f (x,y)dydx =

n

∑
i=1

∫ xi

xi−1

∫ d

c
f (x,y)dydx

=
n

∑
i=1

∫ xi

xi−1

m

∑
j=1

∫ y j

y j−1

f (x,y)dydx =
n

∑
i=1

m

∑
j=1

∫ xi

xi−1

∫ y j

y j−1

f (x,y)dydx

=
n

∑
i=1

m

∑
j=1

∫ xi

xi−1

(
y j − y j−1

)
f (x, t j)dx

=
n

∑
i=1

m

∑
j=1

(
y j − y j−1

)
(xi − xi−1) f (si, t j)

Also ∫ d

c

∫ b

a
f (x,y)dxdy =

m

∑
j=1

n

∑
i=1

(
y j − y j−1

)
(xi − xi−1) f

(
s′i, t

′
j
)

and now because of uniform continuity, it follows that if the partition points are close
enough, ∣∣ f (s′j, t ′j)− f (s j, t j)

∣∣< ε

(d − c)(b−a)

and so ∣∣∣∣∫ d

c

∫ b

a
f (x,y)dxdy−

∫ b

a

∫ d

c
f (x,y)dydx

∣∣∣∣< ε

Since ε is arbitrary, this shows the two iterated integrals are equal. This is a case of
Fubini’s theorem.
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8. This problem is in Apostol [2]. Explain why whenever f is continuous on [a,b]

lim
n→∞

b−a
n

n

∑
k=1

f
(

a+ k
(

b−a
n

))
=
∫ b

a
f dx.

Apply this to f (x) = 1
1+x2 on the interval [0,1] to obtain the very interesting formula

π

4 = limn→∞ ∑
n
k=1

n
n2+k2 .

9. Suppose f : [a,b]× (c,d)→ R is continuous. This means that if tn → t in [a,b] and
xn → x in (c,d) , then limn→∞ f (tn,xn) = f (t,x) . Partial derivatives involve fixing
one variable and taking the derivative with respect to the other. Thus the partial
derivative of f with respect to the second variable, denoted as ∂ f

∂x (t,x) is given by

∂ f
∂x

(t,x)≡ lim
h→0

f (t,x+h)− f (t,x)
h

Suppose also x → ∂ f
∂x (t,x) exists and is continuous and that for some K independent

of t, ∣∣∣∣∂ f
∂x

(t,z)− ∂ f
∂x

(t,x)
∣∣∣∣< K |z− x| .

This last condition happens, for example if ∂ 2 f (t,x)
∂x2 is uniformly bounded on [a,b]×

(c,d) . (Why?) Define F (x) ≡
∫ b

a f (t,x)dt. Take the difference quotient of F and
show using the mean value theorem and the above assumptions that

F ′ (x) =
∫ b

a

∂ f (t,x)
∂x

dt.

Note that the above condition automatically implies x → ∂ f
∂x (t,x) is continuous.

10. This problem is on
∫

∞

0 e−x2
dx. First explain why the integral exists. Supply details in

the following argument.

F (x) ≡
(∫ x

0
e−t2

dt
)2

, F ′ (x) = 2
(∫ x

0
e−t2

dt
)

e−x2

= 2x
(∫ 1

0
e−x2u2

du
)

e−x2
, F (0) = 0

Then using Problem 7,

F (x) =
∫ x

0
2y
(∫ 1

0
e−y2u2

du
)

e−y2
dy =

∫ 1

0

∫ x

0
2ye−y2(1+u2)dydu

=
∫ 1

0

(
1

u2 +1
− e−x2(u2+1)

u2 +1

)
du

By uniform convergence considerations, (explain)(∫
∞

0
e−t2

dt
)2

=
∫ 1

0

1
u2 +1

du = arctan(1) =
π

4
.
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11. Find Γ
( 1

2

)
. Hint: Γ

( 1
2

)
≡
∫

∞

0 e−tt−1/2dt. Explain carefully why this equals

2
∫

∞

0
e−u2

du

Then use Problem 10. Find a formula for Γ
( 3

2

)
,Γ
( 5

2

)
, etc.

12. Verify that L (sin(ωt)) = ω

ω2+s2 and L (cos(t)) = s
ω2+s2 .

13. It was shown that L (sin(t)) = 1
1+s2 . Show that it makes sense to take L

( sin t
t

)
.

Show that ∫
∞

0

sin(t)
t

e−stdt =
π

2
−
∫ s

0

1
1+u2 du (*)

To do this, let f (s) =
∫

∞

0
sin(t)

t e−stdt and show using Theorem 10.2.6 that

f ′ (s) =− 1
1+ s2 so f (s) =−arctan(s)+C

Then, by changing variables, argue that as s → ∞, f (s)→ 0. Use this to determine
C. Then when you have done this, you will have an interesting formula valid for all
positive s. To finish it, let s = 0. Assume f is continuous from the right at 0.

14. Show that L (y′) = sL (y)− y(0) . Then explain why L (y′′) = s2L (y)− sy(0)−
y′ (0) . Give a general formula for L

(
y(k)
)

where y(k) denotes the kth derivative.

15. Suppose you have the differential equation with initial condition

y′′+ω
2y = 0, y(0) = 1,y′ (0) = 0

Use the above problem and the fact that L (sin(ωt)) = ω

ω2+s2 and L (cos(t)) =
s

ω2+s2 to find the solution to this initial value problem. Solve the same problem
with initial condition y(0) = 0,y′ (0) = 1. Now give the solution to the differential
equation with initial condition

y′′+ω
2y = 0, y(0) = a,y′ (0) = b

Congratulations, you just found the general solution to the equation of undamped
oscillation.

16. Use the mean value theorem for integrals, in Proposition 7.1.4 on Page 185 to con-
clude that

∫ a+1
a ln(t)dt = ln(x)≤ ln

(
a+ 1

2

)
for some x ∈ (a,a+1). Hint: Consider

the shape of the graph of ln(x) in the following picture. Explain why if x is the spe-
cial value between a and a+1, then the area of A is equal to area of B. Why should
x < a+ 1

2 ?

A
B

xa a+1

Now use this to obtain the inequality 10.1.
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17. Let r be a positive integer. Then if f (x) = 1
Γ(r/2)2r/2 x(r/2)−1e−x/2, this function is

called a chi-squared density, denoted as X 2 (r). Show for each r,
∫

∞

0 f (x)dx = 1.
This particular function is the basis for a large part of mathematical statistics.

18. Suppose f is a continuous function and∫ b

a
f (x)xndx = 0

for n = 0,1,2,3 · · · . Show that f (x) = 0 for all x. Hint: You might use the Weier-
strass approximation theorem.

19. Suppose |g(t)|<Ce−δ t for some δ > 0, g continuous and defined for t ≥ 0. Suppose
also that whenever s ≥ 1,

∫
∞

0 g(t)e−stdt = 0. Show that then g(t) = 0. Hint: Let
u = e−t . Then the integral reduces to

∫ 1
0 us−1g(− ln(u))du. Here you define φ (u) =

g(− ln(u)) if u> 0 and φ (0)= 0. Then from the growth assumption, φ is continuous.
Now use the previous problem.

20. Suppose f is continuous and | f (t)| ≤Ceλ t ,λ > 0 so it has exponential growth. Then
suppose that if s ≥ s0,

∫
∞

0 e−st f (t)dt = 0. In other words, L ( f (t))(s) = 0 for all s
large enough. Then consider g(t)≡ e−(λ+s0+δ )t f (t) . Then if s ≥ 1,

∫
∞

0 e−stg(t)dt =
0. Hence g(t) = 0 = f (t) . Fill in the details.

21. To show you the power of Stirling’s formula, find whether the series ∑
∞
n=1

n!en

nn con-
verges. The ratio test falls flat but you can try it if you like. Now explain why, if n is
large enough, n! ≥ 1

2
√

π
√

2e−nnn+(1/2) ≡ c
√

2e−nnn+(1/2)

22. Let f ,g be continuous. Show that∫ R

0

∫ t

0
f (t −u)g(u)dudt =

∫ R

0

∫ R

u
f (t −u)g(u)dtdu.

Hint: The formula
∫ R

0
∫ t

0 f (t)g(u)dudt =
∫ R

0
∫ R

u f (t)g(u)dtdu is pretty easy. If f is
a polynomial, then f (t −u) is the sum of things like cktkum−k. Then you could use
the Weierstrass approximation theorem to get the general result.

23. If F (s) ,G(s) are the Laplace transforms of f (t) ,g(t) respectively, define f ∗g(t)≡∫ t
0 f (t −u)g(u)du. Show the Laplace transform of f ∗g is F (s)G(s) and that if f ,g

have exponential growth, then so does f ∗g.

24. Verify the following short table of Laplace transforms. f (t) denotes the function and
F(s) denotes its Laplace transform. Hint: You might use induction on some of these.

f (t) F (s) f (t) F (s) f (t) F (s)
tneat n!

(s−a)n+1 tn,n ∈ N n!
sn+1 eat sinbt b

(s−a)2+b2

eat cosbt s−a
(s−a)2+b2 f ∗g(t) F (s)G(s)

25. Maybe f has exponential growth and finitely many jumps in any finite interval, but∫
∞

0 e−st f (t) = 0 for all s large enough. In this case, let F (t)≡
∫ t

0 f (u)du. Use inte-
gration by parts to verify that for all large enough s,

∫ R
0 F (t)e−stdt =

∫
∞

0
e−st

s f (t)dt =
0. Therefore, by what was shown in the chapter, F (t) = 0. Now use the fundamental
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theorem of calculus to conclude f (t) = 0 except for the jumps. Explain why if f ,g
are continuous except for finitely many jumps on each finite interval with exponential
growth and same Laplace transform for large s, then f = g except for jumps.



Chapter 11

Power Series

11.1 Functions Defined in Terms of Series
Earlier Taylor series expansions were discussed for given functions. More generally power
series can be used to define new functions which you may not have a name for. This is
actually the most exciting thing about power series, their ability to define new functions as
a limit of polynomials.

Definition 11.1.1 Let {ak}∞

k=0 be a sequence of numbers. The expression,

∞

∑
k=0

ak (x−a)k (11.1)

is called a Taylor series or power series centered at a. It is understood that x and a ∈
R. More generally, these variables will be complex numbers, but in this book, only real
numbers.

In the above definition, x is a variable. Thus you can put in various values of x and ask
whether the resulting series of numbers converges. Defining D to be the set of all values of
x such that the resulting series does converge, define a new function f defined on D having
values in R as

f (x)≡
∞

∑
k=0

ak (x−a)k .

This might be a totally new function, one which has no name. Nevertheless, much can be
said about such functions. The following lemma is fundamental in considering the form of
D which always turns out to be of the form B(a,r) along with possibly some points z such
that |z−a|= r. First here is a simple lemma which will be useful.

Lemma 11.1.2 limn→∞ n1/n = 1.

Proof: It is clear n1/n ≥ 1. Let n1/n = 1+ en where 0 ≤ en. Then raising both sides to
the nth power for n > 1 and using the binomial theorem,

n = (1+ en)
n =

n

∑
k=0

(
n
k

)
ek

n ≥ 1+nen +(n(n−1)/2)e2
n ≥ (n(n−1)/2)e2

n

253
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Thus 0 ≤ e2
n ≤ n

n(n−1) =
1

n−1 . From this the desired result follows because∣∣∣n1/n −1
∣∣∣= en ≤

1√
n−1

.■

Theorem 11.1.3 Let ∑
∞
k=0 ak (x−a)k be a Taylor series. Then there exists r ≤ ∞

such that the Taylor series converges absolutely if |x−a| < r. Furthermore, if |x−a| > r,
the Taylor series diverges. If λ < r then the Taylor series converges uniformly on the closed
disk |x−a| ≤ λ .

Proof: See Definition 3.3.16 for the notion of limsup and liminf. Note

lim sup
k→∞

∣∣∣ak (x−a)k
∣∣∣1/k

= lim sup
k→∞

|ak|1/k |x−a| .

Then by the root test, the series converges absolutely if

|x−a| lim sup
k→∞

|ak|1/k < 1

and diverges if
|x−a| lim sup

k→∞

|ak|1/k > 1.

Thus define

r ≡


1/ limsupk→∞ |ak|1/k if ∞ > limsupk→∞ |ak|1/k > 0
∞ if limsupk→∞ |ak|1/k = 0
0 if limsupk→∞ |ak|1/k = ∞

Next let λ be as described. Then if |x−a| ≤ λ , then

lim sup
k→∞

∣∣∣ak (x−a)k
∣∣∣1/k

= lim sup
k→∞

|ak|1/k |x−a| ≤ λ lim sup
k→∞

|ak|1/k ≤ λ

r
< α < 1

It follows that for all k large enough and such x,
∣∣∣ak (x−a)k

∣∣∣< αk. Then by the Weierstrass
M test, convergence is uniform. ■

Note that the radius of convergence r is given by

lim sup
k→∞

|ak|1/k r = 1

Definition 11.1.4 The number in the above theorem is called the radius of con-
vergence and the set on which convergence takes place is called the disc of convergence.
Since this book only considers functions of one real variable, it will be called the interval
of convergence.

Now the theorem was proved using the root test but often you use the ratio test to find
the interval of convergence. This kind of thing is typical in math so get used to it. The
proof of a theorem does not always yield a way to find the thing the theorem speaks about.
The above is an existence theorem. There exists an interval of convergence from the above
theorem. You find it in specific cases any way that is most convenient.
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Example 11.1.5 Find the interval of convergence of the Taylor series ∑
∞
n=1

xn

n .

Use Corollary 6.3.3.

lim
n→∞

(
|x|n

n

)1/n

= lim
n→∞

|x|
n
√

n
= |x|

because limn→∞
n
√

n = 1 and so if |x|< 1 the series converges. The points satisfying |z|= 1
require special attention. When x = 1 the series diverges because it reduces to ∑

∞
n=1

1
n . At

x =−1 the series converges because it reduces to ∑
∞
n=1

(−1)n

n and the alternating series test
applies and gives convergence.

What of the other numbers z satisfying |z| = 1? These numbers will be complex so
outside the content of this book, but it turns out this series will converge at all these numbers
by a use of the Dirichlet test.

Example 11.1.6 Find the radius of convergence of ∑
∞
n=1

nn

n! xn.

Apply the ratio test. Taking the ratio of the absolute values of the (n+1)th and the nth

terms
(n+1)(n+1)

(n+1)n! |x|n+1

nn

n! |x|
n = (n+1)n |x|n−n = |x|

(
1+

1
n

)n

→ |x|e

Therefore the series converges absolutely if |x|e< 1 and diverges if |x|e> 1. Consequently,
r = 1/e because

lim
n→∞

(
1+

1
n

)n

= e

To see this is the case, the limit, if it exists, is the same as

lim
x→0

(1+ x)1/x = lim
x→0

e
ln(1+x)

x = elimx→0
ln(1+x)

x = e

from an application of L’Hopital’s rule.

11.2 Operations on Power Series
It is desirable to be able to differentiate and multiply power series. The following theorem
says you can differentiate power series in the most natural way on the interval of conver-
gence, just as you would differentiate a polynomial. This theorem may seem obvious, but
it is a serious mistake to think this. You usually cannot differentiate an infinite series whose
terms are functions even if the functions are themselves polynomials. The following is spe-
cial and pertains to power series. It is another example of the interchange of two limits, in
this case, the limit involved in taking the derivative and the limit of the sequence of finite
sums.

When you formally differentiate a series term by term, the result is called the derived
series.

Theorem 11.2.1 Let ∑
∞
n=0 an (x−a)n be a Taylor series having radius of conver-

gence R > 0 and let

f (x)≡
∞

∑
n=0

an (x−a)n (11.2)
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for |x−a|< R. Then

f ′ (x) =
∞

∑
n=0

ann(x−a)n−1 =
∞

∑
n=1

ann(x−a)n−1 (11.3)

and this new differentiated power series, the derived series, has radius of convergence
equal to R.

Proof: First consider the claim that the derived series has radius of convergence equal
to R. Let R̂ be the radius of convergence of the derived series. Then from Proposition 3.3.18
and Lemma 11.1.2,

1
R̂
≡ lim sup

n→∞

|an|1/n n1/n = lim sup
n→∞

|an|1/n ≡ 1
R
,

so R̂ = R. If limsupn→∞ |an|1/n = 0, the same is true of limsupn→∞ |an|1/n n1/n and in this
case, the series and derived series both have radius of convergence equal to ∞.

Now let r < R, the radius of convergence of both series, and suppose |x−a| < r. Let
δ be small enough that if |h|< δ , then |x+h−a|< r also. Then for |h|< δ , consider the
difference quotient.

f (x+h)− f (x)
h

=
1
h

∞

∑
k=0

ak

(
(x+h−a)k − (x−a)k

)
By the mean value theorem, there exists θ kh ∈ (0,1) such that

f (x+h)− f (x)
h

=
1
h

∞

∑
k=0

ak

(
(x+h−a)k − (x−a)k

)
=

1
h

∞

∑
k=1

akk (x+θ khh−a)k−1 h =
∞

∑
k=1

akk (x+θ khh−a)k−1

=
∞

∑
k=1

akk
[
(x+θ khh−a)k−1 − (x−a)k−1

]
+

∞

∑
k=1

akk (x−a)k−1

By the mean value theorem again, there exists αkh ∈ (0,1) such that

=
∞

∑
k=2

θ khhakk (k−1)(x+αkhh−a)k−2 +
∞

∑
k=1

akk (x−a)k−1

The second series is the derived series. Consider the first.∣∣∣∣∣ ∞

∑
k=2

θ khhakk (k−1)(x+αkhh−a)k−2

∣∣∣∣∣ ≤ h
∞

∑
k=2

k (k−1) |ak| |x+αkhh−a|k−2

≤ r2h
∞

∑
k=2

k (k−1) |ak|rk

Now

lim sup
k→∞

(k (k−1))1/k |ak|1/k
(

rk
)1/k

= lim sup
k→∞

|ak|1/k r =
r
R
< 1
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and so the series converges by the root test. Hence, letting h → 0 yields the desired result
that

lim
h→0

f (x+h)− f (x)
h

=
∞

∑
k=1

akk (x−a)k−1 ■

As an immediate corollary, it is possible to characterize the coefficients of a Taylor
series.

Corollary 11.2.2 Let ∑
∞
n=0 an (x−a)n be a Taylor series with radius of convergence

r > 0 and let

f (x)≡
∞

∑
n=0

an (x−a)n . (11.4)

Then

an =
f (n) (a)

n!
. (11.5)

Proof: From 11.4, f (a) = a0 ≡ f (0) (a)/0!. From Theorem 11.2.1,

f ′ (x) =
∞

∑
n=1

ann(x−a)n−1 = a1 +
∞

∑
n=2

ann(x−a)n−1 .

Now let x = a and obtain that f ′ (a) = a1 = f ′ (a)/1!. Next use Theorem 11.2.1 again to
take the second derivative and obtain

f ′′ (x) = 2a2 +
∞

∑
n=3

ann(n−1)(x−a)n−2

let x = a in this equation and obtain a2 = f ′′ (a)/2= f ′′ (a)/2!. Continuing this way proves
the corollary. ■

This also shows the coefficients of a Taylor series are unique. That is, if
∞

∑
k=0

ak (x−a)k =
∞

∑
k=0

bk (x−a)k

for all x in some open set containing a, then ak = bk for all k.

Example 11.2.3 Find the sum ∑
∞
k=1 k2−k.

It may not be obvious what this sum equals but with the above theorem it is easy to find.
From the formula for the sum of a geometric series, 1

1−t = ∑
∞
k=0 tk if |t| < 1. Differentiate

both sides to obtain

(1− t)−2 =
∞

∑
k=1

ktk−1

whenever |t|< 1. Let t = 1/2. Then

4 =
1

(1− (1/2))2 =
∞

∑
k=1

k2−(k−1)

and so if you multiply both sides by 2−1,2 = ∑
∞
k=1 k2−k.

The above theorem shows that a power series is infinitely differentiable. Does it go
the other way? That is, if the function has infinitely many continuous derivatives, is it
correctly represented as a power series? The answer is no. See Problem 7 on Page 161
for an example. In fact, this is an important example and distinction. The modern theory
of partial differential equations is built on just such functions which have many derivatives
but no power series.
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11.3 Power Series for Some Known Functions
If x → ex has a power series, it is ∑

∞
k=0

xk

k! . This is because of Corollary 11.2.2 and what was
shown earlier that the derivative of this function is itself while e0 = 1. Thus the question
is whether this series really equals ex. You can see that this is the case by looking at the
Lagrange form of the remainder discussed earlier. In this case, it is

eξ

(n+1)!
xn+1

where ξ is some number between 0 and x. Does this remainder term converge to 0 as
n → ∞. The answer is yes because

∞

∑
n=1

eξ

(n+1)!
|x|n+1

converges by the ratio test. Indeed,

eξ

(n+2)! |x|
n+2

eξ

(n+1)! |x|
n+1

= |x| 1
n+2

→ 0

and by the nth term test, it follows limn→∞
eξ

(n+1)! xn+1 = 0. Thus

ex =
∞

∑
k=0

xk

k!

Similar considerations show that

sin(x) =
∞

∑
k=0

(−1)k x2k+1

(2k+1)!
, cos(x)≡

∞

∑
k=0

(−1)k x2k

(2k)!

The details are left for you to do.

11.4 The Binomial Theorem
The following is a very important example known as the binomial series.

Example 11.4.1 Find a Taylor series for the function (1+ x)α centered at 0 valid for |x|<
1.

Use Theorem 11.2.1 to do this. First note that if y(x) ≡ (1+ x)α , then y is a solution
of the following initial value problem.

y′− α

(1+ x)
y = 0, y(0) = 1. (11.6)

Next it is necessary to observe there is only one solution to this initial value problem. To
see this, multiply both sides of the differential equation in 11.6 by (1+ x)−α . When this is
done, one obtains

d
dx

(
(1+ x)−α y

)
= (1+ x)−α

(
y′− α

(1+ x)
y
)
= 0. (11.7)
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Therefore, from 11.7, there must exist a constant, C, such that

(1+ x)−α y =C.

However, y(0) = 1 and so it must be that C = 1. Therefore, there is exactly one solution to
the initial value problem in 11.6 and it is y(x) = (1+ x)α .

The strategy for finding the Taylor series of this function consists of finding a series
which solves the initial value problem above. Let

y(x)≡
∞

∑
n=0

anxn (11.8)

be a solution to 11.6. Of course it is not known at this time whether such a series exists.
However, the process of finding it will demonstrate its existence. From Theorem 11.2.1
and the initial value problem,

(1+ x)
∞

∑
n=0

annxn−1 −
∞

∑
n=0

αanxn = 0

and so
∞

∑
n=1

annxn−1 +
∞

∑
n=0

an (n−α)xn = 0

Changing the variable of summation in the first sum,

∞

∑
n=0

an+1 (n+1)xn +
∞

∑
n=0

an (n−α)xn = 0

and from Corollary 11.2.2 and the initial condition for 11.6 this requires

an+1 =
an (α −n)

n+1
,a0 = 1. (11.9)

Therefore, from 11.9 and letting n = 0, a1 = α, then using 11.9 again along with this
information,

a2 =
α (α −1)

2
.

Using the same process,

a3 =

(
α(α−1)

2

)
(α −2)

3
=

α (α −1)(α −2)
3!

.

By now you can spot the pattern. In general,

an =

n of these factors︷ ︸︸ ︷
α (α −1) · · ·(α −n+1)

n!
.

Therefore, the candidate for the Taylor series is

y(x) =
∞

∑
n=0

α (α −1) · · ·(α −n+1)
n!

xn.
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Furthermore, the above discussion shows this series solves the initial value problem on its
interval of convergence. It only remains to show the radius of convergence of this series
equals 1. It will then follow that this series equals (1+ x)α because of uniqueness of the
initial value problem. To find the radius of convergence, use the ratio test. Thus the ratio
of the absolute values of (n+1)st term to the absolute value of the nth term is∣∣∣α(α−1)···(α−n+1)(α−n)

(n+1)n!

∣∣∣ |x|n+1∣∣∣α(α−1)···(α−n+1)
n!

∣∣∣ |x|n = |x| |α −n|
n+1

→ |x|

showing that the radius of convergence is 1 since the series converges if |x|< 1 and diverges
if |x|> 1.

The expression, α(α−1)···(α−n+1)
n! is often denoted as

(
α

n

)
. With this notation, the follow-

ing theorem has been established.

Theorem 11.4.2 Let α be a real number and let |x|< 1. Then

(1+ x)α =
∞

∑
n=0

(
α

n

)
xn.

There is a very interesting issue related to the above theorem which illustrates the limi-
tation of power series. The function f (x) = (1+ x)α makes sense for all x >−1 but one is
only able to describe it with a power series on the interval (−1,1) . Think about this. The
above technique is a standard one for obtaining solutions of differential equations and this
example illustrates a deficiency in the method.

To completely understand power series, it is necessary to take a course in complex
analysis. It turns out that the right way to consider Taylor series is through the use of
geometric series and something called the Cauchy integral formula of complex analysis.
However, these are topics for another course.

11.5 Exercises
1. Verify the power series claimed in the chapter for cos(x) ,sin(x) and ex. The method

for doing this was shown in the chapter in the case of ex. Go through the details
carefully and then do the same details for cos(x) ,sin(x).

2. The logarithm test states the following. Suppose ak ̸= 0 for large k and that p =

limk→∞

ln
(

1
|ak|

)
lnk exists. If p > 1, then ∑

∞
k=1 ak converges absolutely. If p < 1, then

the series, ∑
∞
k=1 ak does not converge absolutely. Prove this theorem.

3. Using the Cauchy condensation test, determine the convergence of ∑
∞
k=2

1
k lnk . Now

determine the convergence of ∑
∞
k=2

1
k(lnk)1.001 .

4. Find the values of p for which the following series converges and the values of p for
which it diverges.

∞

∑
k=4

1
lnp (ln(k)) ln(k)k
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5. For p a positive number, determine the convergence of

∞

∑
n=2

lnn
np

for various values of p.

6. Suppose ∑
∞
n=0 an (x− c)n is a power series with radius of convergence r. Show the

series converge uniformly on any interval [a,b] where [a,b] ⊆ (c− r,c+ r) . This is
in the text but go through the details yourself.

7. In this problem, x will be a complex number. Thus you will find the disk of conver-
gence, not just an interval of convergence. In other words, you will find all complex
numbers such that the given series converges. Find the disc of convergence of the
series ∑

xn

np for various values of p. Hint: Use Dirichlet’s test.

8. The power series for ex was given above. Thus

e =
∞

∑
k=0

1
k!
.

Show e is irrational. Hint: If e = p/q for p,q positive integers, then argue

q!

(
p
q
−

q

∑
k=0

1
k!

)
is an integer. However, you can also show

q!

(
∞

∑
k=0

1
k!

−
q

∑
k=0

1
k!

)
< 1

9. Let a ≥ 1. Show that for all x > 0, you have the inequality

ax > ln(1+ xa) .

10. Show
1

1+ x2 =
n

∑
k=0

(−1)k x2k +
(−1)n+1 x2n+2

1+ x2 .

Now use this to find a series which converges to arctan(1) = π/4. Recall

arctan(x) =
∫ x

0

1
1+ t2 dt.

For which values of x will your series converge? For which values of x does the
above description of arctan in terms of an integral make sense? Does this help to
show the inferiority of power series?

11. Show
arcsin(x) =

∫ x

0

1√
1− t2

dt.

Now use the binomial theorem to find a power series for arcsin(x) .
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11.6 Multiplication of Power Series
Next consider the problem of multiplying two power series.

Theorem 11.6.1 Let ∑
∞
n=0 an (x−a)n and ∑

∞
n=0 bn (x−a)n be two power series hav-

ing radii of convergence r1 and r2, both positive. Then(
∞

∑
n=0

an (x−a)n

)(
∞

∑
n=0

bn (x−a)n

)
=

∞

∑
n=0

(
n

∑
k=0

akbn−k

)
(x−a)n

whenever |x−a|< r ≡ min(r1,r2) .

Proof: By Theorem 11.1.3 both series converge absolutely if |x−a|< r. Therefore, by
Theorem 6.6.7 (

∞

∑
n=0

an (x−a)n

)(
∞

∑
n=0

bn (x−a)n

)
=

∞

∑
n=0

n

∑
k=0

ak (x−a)k bn−k (x−a)n−k =
∞

∑
n=0

(
n

∑
k=0

akbn−k

)
(x−a)n .■

The significance of this theorem in terms of applications is that it states you can multiply
power series just as you would multiply polynomials and everything will be all right on the
common interval of convergence.

This theorem can be used to find Taylor series which would perhaps be hard to find
without it. Here is an example.

Example 11.6.2 Find the Taylor series for ex sinx centered at x = 0.

All that is required is to multiply
ex︷ ︸︸ ︷

1+ x+
x2

2!
+

x3

3!
· · ·




sinx︷ ︸︸ ︷
x− x3

3!
+

x5

5!
+ · · ·


From the above theorem the result should be

x+ x2 +

(
− 1

3!
+

1
2!

)
x3 + · · ·

= x+ x2 +
1
3

x3 + · · ·

You can continue this way and get the following to a few more terms.

x+ x2 +
1
3

x3 − 1
30

x5 − 1
90

x6 − 1
630

x7 + · · ·

I don’t see a pattern in these coefficients but I can go on generating them as long as I want.
(In practice this tends to not be very long.) I also know the resulting power series will
converge for all x because both the series for ex and the one for sinx converge for all x.
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Example 11.6.3 Find the Taylor series for tanx centered at x = 0.

Lets suppose it has a Taylor series a0 +a1x+a2x2 + · · · . Then

(
a0 +a1x+a2x2 + · · ·

)
cosx︷ ︸︸ ︷

1− x2

2
+

x4

4!
+ · · ·

=

(
x− x3

3!
+

x5

5!
+ · · ·

)
.

Using the above, a0 = 0,a1x = x so a1 = 1,
(
0
(−1

2

)
+a2

)
x2 = 0 so a2 = 0.

(
a3 − a1

2

)
x3 =

−1
3! x3 so a3 − 1

2 = − 1
6 so a3 = 1

3 . Clearly one can continue in this manner. Thus the first
several terms of the power series for tan are

tanx = x+
1
3

x3 + · · · .

You can go on calculating these terms and find the next two yielding

tanx = x+
1
3

x3 +
2

15
x5 +

17
315

x7 + · · ·

This is a very significant technique because, as you see, there does not appear to be a very
simple pattern for the coefficients of the power series for tanx. Of course there are some
issues here about whether tanx even has a power series, but if it does, the above must be
it. In fact, tan(x) will have a power series valid on some interval centered at 0 and this
becomes completely obvious when one uses methods from complex analysis but it isn’t too
obvious at this point. If you are interested in this issue, read the last section of the chapter.
Note also that what has been accomplished is to divide the power series for sinx by the
power series for cosx just like they were polynomials.

11.7 Exercises
1. Find the radius of convergence of the following.

(a) ∑
∞
k=1
( x

2

)n

(b) ∑
∞
k=1 sin

( 1
n

)
3nxn

(c) ∑
∞
k=0 k!xk

(d) ∑
∞
n=0

(3n)n

(3n)! xn

(e) ∑
∞
n=0

(2n)n

(2n)! xn

2. Find ∑
∞
k=1 k2−k.

3. Find ∑
∞
k=1 k23−k.

4. Find ∑
∞
k=1

2−k

k .

5. Find ∑
∞
k=1

3−k

k .

6. Find the power series centered at 0 for the function 1/
(
1+ x2

)
and give the radius

of convergence. Where does the function make sense? Where does the power series
equal the function?

7. Find a power series for the function f (x)≡ sin(
√

x)√
x for x > 0. Where does f (x) make

sense? Where does the power series you found converge?
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8. Use the power series technique which was applied in Example 11.4.1 to consider the
initial value problem y′ = y,y(0) = 1. This yields another way to obtain the power
series for ex.

9. Use the power series technique on the initial value problem y′ + y = 0, y(0) = 1.
What is the solution to this initial value problem?

10. Use the power series technique to find solutions in terms of power series to the initial
value problem

y′′+ xy = 0, y(0) = 0,y′ (0) = 1.

Tell where your solution gives a valid description of a solution for the initial value
problem. Hint: This is a little different but you proceed the same way as in Example
11.4.1. The main difference is you have to do two differentiations of the power series
instead of one.

11. Find several terms of a likely power series solution to the nonlinear initial value
problem

y′′+asin(y) = 0, y(0) = 1,y′ (0) = 0.

This is the equation which governs the vibration of a pendulum.

12. Suppose the function ex is defined in terms of a power series, ex ≡ ∑
∞
k=0

xk

k! . Use
Theorem 6.6.7 on Page 176 to show directly the usual law of exponents,

ex+y = exey.

Be sure to check all the hypotheses.

13. Let fn (x)≡
( 1

n + x2
)1/2

. Show that for all x,

||x|− fn (x)| ≤
1√
n
.

Thus these approximate functions converge uniformly to the function f (x) = |x|.
Now show f ′n (0) = 0 for all n and so f ′n (0)→ 0. However, the function f (x) ≡ |x|
has no derivative at x = 0. Thus even though fn (x)→ f (x) for all x, you cannot say
that f ′n (0)→ f ′ (0) .

14. Let the functions, fn (x) be given in Problem 13 and consider

g1 (x) = f1 (x) , gn (x) = fn (x)− fn−1 (x) if n > 1.

Show that for all x,∑∞
k=0 gk (x) = |x| and that g′k (0) = 0 for all k. Therefore, you can’t

differentiate the series term by term and get the right answer1.

15. Use the theorem about the binomial series to give a proof of the binomial theorem

(a+b)n =
n

∑
k=0

(
n
k

)
an−kbk

whenever n is a positive integer.
1How bad can this get? It can be much worse than this. In fact, there are functions which are continuous

everywhere and differentiable nowhere. We typically don’t have names for them but they are there just the same.
Every such function can be written as an infinite sum of polynomials which of course have derivatives at every
point. Thus it is nonsense to differentiate an infinite sum term by term without a theorem of some sort.
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16. Find the power series for sin
(
x2
)

by plugging in x2 where ever there is an x in the
power series for sinx. How do you know this is the power series for sin

(
x2
)
?

17. Find the first several terms of the power series for sin2 (x) by multiplying the power
series for sin(x) . Next use the trig. identity, sin2 (x) = 1−cos(2x)

2 and the power series
for cos(2x) to find the power series.

18. Find the power series for f (x) = 1√
1−x2

.

19. Let a,b be two positive numbers and let p > 1. Choose q such that

1
p
+

1
q
= 1.

Now verify the important inequality

ab ≤ ap

p
+

bq

q
.

Hint: You might try considering f (a) = ap

p + bq

q − ab for fixed b > 0 and examine
its graph using the derivative.

20. Using Problem 19, show that if α > 0, p > 1, it follows that for all x > 0(
p−1

p
x+

α

p
x1−p

)p

≥ α.

21. Using Problem 20, define for p > 1 and α > 0 the following sequence

xn+1 ≡
p−1

p
xn +

α

p
x1−p

n , x1 > 0.

Show limn→∞ xn = x where x=α1/p. In fact show that after x1 the sequence decreases
to α1/p.

22. Recall that for a power series, ∑
∞
k=0 ak (x− c)k you could differentiate term by term

on the interval of convergence. Show that if the radius of convergence of the above
series is r > 0 and if [a,b]⊆ (c− r,c+ r) , then∫ b

a

∞

∑
k=0

ak (x− c)k dx

= a0 (b−a)+
∞

∑
k=1

ak

k
(b− c)k+1 −

∞

∑
k=1

ak

k
(a− c)k+1

In other words, you can integrate term by term.

11.8 Some Other Theorems
First recall Theorem 6.6.7 on Page 176. For convenience, the version of this theorem which
is of interest here is listed below.
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Theorem 11.8.1 Suppose ∑
∞
i=0 ai and ∑

∞
j=0 b j both converge absolutely. Then(

∞

∑
i=0

ai

)(
∞

∑
j=0

b j

)
=

∞

∑
n=0

cn

where cn = ∑
n
k=0 akbn−k. Furthermore, ∑

∞
n=0 cn converges absolutely.

Proof: It only remains to verify the last series converges absolutely. Letting pnk equal
1 if k ≤ n and 0 if k > n. Then by Theorem 6.6.4 on Page 175

∞

∑
n=0

|cn| =
∞

∑
n=0

∣∣∣∣∣ n

∑
k=0

akbn−k

∣∣∣∣∣≤ ∞

∑
n=0

n

∑
k=0

|ak| |bn−k|=
∞

∑
n=0

∞

∑
k=0

pnk |ak| |bn−k|

=
∞

∑
k=0

∞

∑
n=0

pnk |ak| |bn−k|=
∞

∑
k=0

∞

∑
n=k

|ak| |bn−k|=
∞

∑
k=0

|ak|
∞

∑
n=0

|bn|< ∞. ■

The above theorem is about multiplying two series. What if you wanted to consider
(∑∞

n=0 an)
pwhere p is a positive integer maybe larger than 2? Is there a similar theorem to

the above?

Definition 11.8.2 Define

∑
k1+···+kp=m

ak1ak2 · · ·akp

as follows. Consider all ordered lists of nonnegative integers k1, · · · ,kp which have the
property that ∑

p
i=1 ki = m. For each such list of integers, form the product, ak1ak2 · · ·akp

and then add all these products.

Note that ∑
n
k=0 akan−k = ∑k1+k2=n ak1ak2 . Therefore, from the above theorem, if ∑ai

converges absolutely, it follows(
∞

∑
i=0

ai

)2

=
∞

∑
n=0

(
∑

k1+k2=n
ak1ak2

)
.

It turns out a similar theorem holds for replacing 2 with p.

Theorem 11.8.3 Suppose ∑
∞
n=0 an converges absolutely. Then if p is a positive in-

teger, (
∞

∑
n=0

an

)p

=
∞

∑
m=0

cmp

where
cmp ≡ ∑

k1+···+kp=m
ak1 · · ·akp .

Proof: First note this is obviously true if p = 1 and is also true if p = 2 from the above
theorem. Now suppose this is true for p and consider (∑∞

n=0 an)
p+1. By the induction
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hypothesis and the above theorem on the Cauchy product,(
∞

∑
n=0

an

)p+1

=

(
∞

∑
n=0

an

)p(
∞

∑
n=0

an

)
=

(
∞

∑
m=0

cmp

)(
∞

∑
n=0

an

)

=
∞

∑
n=0

(
n

∑
k=0

ckpan−k

)
=

∞

∑
n=0

n

∑
k=0

∑
k1+···+kp=k

ak1 · · ·akpan−k

=
∞

∑
n=0

∑
k1+···+kp+1=n

ak1 · · ·akp+1 ■

This theorem implies the following corollary for power series.

Corollary 11.8.4 Let
∞

∑
n=0

an (x−a)n

be a power series having radius of convergence, r > 0. Then if |x−a|< r,(
∞

∑
n=0

an (x−a)n

)p

=
∞

∑
n=0

bnp (x−a)n

where
bnp ≡ ∑

k1+···+kp=n
ak1 · · ·akp .

Proof: Since |x−a|< r, the series, ∑
∞
n=0 an (x−a)n , converges absolutely. Therefore,

the above theorem applies and(
∞

∑
n=0

an (x−a)n

)p

=
∞

∑
n=0

(
∑

k1+···+kp=n
ak1 (x−a)k1 · · ·akp (x−a)kp

)

=
∞

∑
n=0

(
∑

k1+···+kp=n
ak1 · · ·akp

)
(x−a)n .■

With this theorem it is possible to consider the question raised in Example 11.6.3 on
Page 263 about the existence of the power series for tanx. This question is clearly included
in the more general question of when (∑∞

n=0 an (x−a)n)
−1 has a power series.

Lemma 11.8.5 Let f (x) = ∑
∞
n=0 an (x−a)n, a power series having radius of conver-

gence r > 0. Suppose also that f (a) = 1. Then there exists r1 > 0 and {bn} such that for
all |x−a|< r1,

1
f (x) = ∑

∞
n=0 bn (x−a)n .

Proof: By continuity, there exists r1 > 0 such that if |x−a|< r1, then

∞

∑
n=1

|an| |x−a|n < 1.

Now pick such an x. Then

1
f (x)

=
1

1+∑
∞
n=1 an (x−a)n =

1
1+∑

∞
n=0 cn (x−a)n
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where cn = an if n > 0 and c0 = 0. Then∣∣∣∣∣ ∞

∑
n=1

an (x−a)n

∣∣∣∣∣≤ ∞

∑
n=1

|an| |x−a|n < 1 (11.10)

and so from the formula for the sum of a geometric series,

1
f (x)

=
∞

∑
p=0

(
−

∞

∑
n=0

cn (x−a)n

)p

.

By Corollary 11.8.4, this equals
∞

∑
p=0

∞

∑
n=0

bnp (x−a)n (11.11)

where bnp = ∑k1+···+kp=n (−1)p ck1 · · ·ckp . Thus∣∣bnp
∣∣≤ ∑

k1+···+kp=n

∣∣ck1

∣∣ · · · ∣∣ckp

∣∣≡ Bnp

and so by Theorem 11.8.3,

∞

∑
p=0

∞

∑
n=0

∣∣bnp
∣∣ |x−a|n ≤

∞

∑
p=0

∞

∑
n=0

Bnp |x−a|n =
∞

∑
p=0

(
∞

∑
n=0

|cn| |x−a|n
)p

< ∞

by 11.10 and the formula for the sum of a geometric series. Since the series of 11.11
converges absolutely, Theorem 6.6.4 on Page 175 implies the series in 11.11 equals

∞

∑
n=0

(
∞

∑
p=0

bnp

)
(x−a)n

and so, letting ∑
∞
p=0 bnp ≡ bn, this proves the lemma. ■

With this lemma, the following theorem is easy to obtain.

Theorem 11.8.6 Let f (x) = ∑
∞
n=0 an (x−a)n, a power series having radius of con-

vergence r > 0. Suppose also that f (a) ̸= 0. Then there exists r1 > 0 and {bn} such that
for all |x−a|< r1,

1
f (x) = ∑

∞
n=0 bn (x−a)n .

Proof: Let g(x)≡ f (x)/ f (a) so that g(x) satisfies the conditions of the above lemma.
Then by that lemma, there exists r1 > 0 and a sequence, {bn} such that

f (a)
f (x)

=
∞

∑
n=0

bn (x−a)n

for all |x−a|< r1. Then 1
f (x) = ∑

∞
n=0 b̃n (x−a)n where b̃n = bn/ f (a) . ■

There is a very interesting question related to r1 in this theorem. Consider f (x) =
1+ x2. In this case r = ∞ but the power series for 1/ f (x) converges only if |x| < 1. What
happens is this, 1/ f (x) will have a power series that will converge for |x−a|< r1 where r1
is the distance between a and the nearest singularity or zero of f (x) in the complex plane.
In the case of f (x) = 1+x2 this function has a zero at x =±i. This is just another instance
of why the natural setting for the study of power series is the complex plane. To read more
on power series, you should see the book by Apostol [3] or any text on complex variable.
The best way to understand power series is to use methods of complex analysis.
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11.9 Some Historical Observations
As mentioned earlier, one of the ill defined notions in calculus was the infinitesimal, dx.
What is it? No one knew what exactly it was. It wasn’t any positive real number and it
wasn’t 0 either. However, people thought in terms of dy

dx and this was the derivative so they
wished to understand the quotient of these unknown things. Gradually it became clear that
whatever meaning the quotient had, it was closely connected to the methods for finding it
and these methods eventually became the definition of its meaning, being formalized as the
concept of limit. This was done by Bolzano early in 1800’s.

Even though the notion of dx was not very well defined, the notation turned out to be
very useful as in the methods presented above for changing variables in an integral.

The concept of an integral also developed gradually. It was possible to consider most
of the physical applications in terms of an initial value problem for an unknown function
y satisfying y′ (x) = f (x) ,y(0) = y0 and this is essentially what was done in the 1700’s,
but this did not resolve fundamental questions concerning the existence of the integral. Of
course this was impossible without a careful definition of what was meant by the integral
which did not exist at that time. These kinds of questions were not considered very much
in the 1700’s and were first addressed by Cauchy around 1823 who considered what we
call one sided Riemann sums for continuous functions. Since such a definition gives the
integral for continuous functions, Cauchy’s proof of the fundamental theorem of calculus
was the first one which was complete although it is not clear whether he had all the details
regarding uniform continuity, a concept developed later by Weierstrass. It is unsatisfactory
to prove a theorem about something you have not defined precisely and before Cauchy, this
was the state of the fundamental theorem of calculus. Riemann’s improved description of
the integral dates from around 1854 and was completed later by Darboux who proved the
theorem about his integral and the Riemann integral being equivalent.

Newton discovered the binomial theorem for (1+ x)α in 1665. It is certainly a mar-
velous thing, but the importance of this and other power series tended to be over empha-
sized for much of the 1700’s. Power series became much more understandable with the
invention and development of complex analysis. This subject was continually expanded
during the 1800’s starting with Cauchy and continuing with most of the other mathemati-
cians of that century.

What we now refer to as real analysis began early in the 1800’s with the work of
Bolzano. It was an effort to make calculus rigorous by removing intuitive geometric rea-
soning. Later on Weierstrass found nowhere differentiable continuous functions and Peano
found examples of space filling continuous curves. Weierstrass also showed the impor-
tance of uniform convergence and uniform continuity. Eventually calculus was brought to
its present form through his efforts. Of course the entire subject is built on completeness
of R. Dedekind and Cantor constructed R from the rational numbers in 1872 although
Dedekind did it earlier in 1858, but before this time, the mathematicians of that century
used the essential characteristics of R in their development of calculus. Dedekind, Cantor,
and Weierstrass completed the removal of geometry from the foundations of calculus.
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Chapter 12

Polar Coordinates

So far points have been identified in terms of Cartesian coordinates but there are other
ways of specifying points in twodimensions. These other ways involve using a list of two
or three numbers which have a totally different meaning than Cartesian coordinates to spec-
ify a point in two or three dimensional space. In general these lists of numbers which have
a different meaning than Cartesian coordinates are called curvilinear coordinates. Proba-
bly the simplest curvilinear coordinate system is that of polar coordinates. The idea is
suggested in the following picture.

x

y

θ

r

(x,y)
(r,θ)

You see in this picture, the number r identifies the distance of the point from the origin,
(0,0) while θ is the angle shown between the positive x axis and the line from the origin
to the point. This angle will always be given in radians and is in the interval [0,2π). Thus
the given point, indicated by a small dot in the picture, can be described in terms of the
Cartesian coordinates (x,y) or the polar coordinates (r,θ). How are the two coordinates
systems related? From the picture,

x = r cos(θ) , y = r sin(θ) . (12.1)

Example 12.0.1 The polar coordinates of a point in the plane are
(
5, π

6

)
. Find the Carte-

sian or rectangular coordinates of this point.

From 12.1, x = 5cos
(

π

6

)
= 5

2

√
3 and y = 5sin

(
π

6

)
= 5

2 . Thus the Cartesian coordinates
are
( 5

2

√
3, 5

2

)
.

Example 12.0.2 Suppose the Cartesian coordinates of a point are (3,4). Find the polar
coordinates.

271
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Recall that r is the distance form (0,0) and so r = 5 =
√

32 +42. It remains to identify
the angle. Note the point is in the first quadrant. (Both the x and y values are positive.)
Therefore, the angle is something between 0 and π/2 and also 3 = 5cos(θ), and 4 =
5sin(θ). Therefore, dividing yields tan(θ) = 4/3. At this point, use a calculator or a table
of trigonometric functions to find that at least approximately, θ = .927295 radians.

12.1 Graphs in Polar Coordinates
Just as in the case of rectangular coordinates, it is possible to use relations between the
polar coordinates to specify points in the plane. The process of sketching their graphs is
very similar to that used to sketch graphs of functions in rectangular coordinates. I will only
consider the case where the relation between the polar coordinates is of the form, r = f (θ).
To graph such a relation, you can make a table of the form

θ r
θ 1 f (θ 1)
θ 2 f (θ 2)
...

...

and then graph the resulting points and connect them up with a curve. The following
picture illustrates how to begin this process.

θ 1

θ 2 •

•

To obtain the point in the plane which goes with the pair (θ , f (θ)), you draw the ray
through the origin which makes an angle of θ with the positive x axis. Then you move along
this ray a distance of f (θ) to obtain the point. As in the case with rectangular coordinates,
this process is tedious and is best done by a computer algebra system.

Example 12.1.1 Graph the polar equation r = 1+ cosθ .

Using a computer algebra system, here is the graph of this cardioid.

0 1 2

-1

0

1

You can also see just from your knowledge of the trig. functions that the graph should
look something like this. When θ = 0,r = 2 and then as θ increases to π/2, you see
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that cosθ decreases to 0. Thus the line from the origin to the point on the curve should
get shorter as θ goes from 0 to π/2. Then from π/2 to π , cosθ gets negative eventually
equaling −1 at θ = π . Thus r = 0 at this point. Viewing the graph, you see this is exactly
what happens. The above function is called a cardioid.

Here is another example. This is the graph obtained from r = 3+ sin
( 7θ

6

)
.

Example 12.1.2 Graph r = 3+ sin
( 7θ

6

)
for θ ∈ [0,14π].

-4 -2 0 2 4
-4

-2

0

2

4

In polar coordinates people sometimes allow r to be negative. When this happens, it
means that to obtain the point in the plane, you go in the opposite direction along the ray
which starts at the origin and makes an angle of θ with the positive x axis. I do not believe
the fussiness occasioned by this extra generality is justified by any sufficiently interesting
application so no more will be said about this. It is mainly a fun way to obtain pretty
pictures. Here is such an example.

Example 12.1.3 Graph r = 1+2cosθ for θ ∈ [0,2π].

0 1 2 3
-2

0

2

12.2 The Area in Polar Coordinates

How can you find the area of the region determined by 0≤ r ≤ f (θ) for θ ∈ [a,b], assuming
this is a well defined set of points in the plane? See Example 12.1.3 with θ ∈ [0,2π] to see
something which it would be better to avoid.

I have in mind the situation where every ray through the origin having angle θ for
θ ∈ [a,b] , b−a ≤ 2π, intersects the graph of r = f (θ) in exactly one point. To see how to
find the area of such a region, consider the following picture.
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dθ

f (θ)

This is a representation of a small triangle obtained from two rays whose angles differ
by only dθ . What is the area of this triangle, dA? It would be

1
2

sin(dθ) f (θ)2 ≈ 1
2

f (θ)2 dθ = dA

with the approximation getting better as the angle gets smaller. Thus the area should solve
the initial value problem,

dA
dθ

=
1
2

f (θ)2 , A(a) = 0.

Therefore, the total area would be given by the integral

1
2

∫ b

a
f (θ)2 dθ . (12.2)

Example 12.2.1 Find the area of the cardioid, r = 1+ cosθ for θ ∈ [0,2π].

From the graph of the cardioid presented earlier, you can see the region of interest sat-
isfies the conditions above that every ray intersects the graph in only one point. Therefore,
from 12.2 this area is

1
2

∫ 2π

0
(1+ cos(θ))2 dθ =

3
2

π.

Example 12.2.2 Verify the area of a circle of radius a is πa2.

The polar equation is just r = a for θ ∈ [0,2π]. Therefore, the area should be

1
2

∫ 2π

0
a2dθ = πa2.

Example 12.2.3 Find the area of the region inside the cardioid, r = 1+ cosθ and outside
the circle r = 1 for θ ∈

[
−π

2 ,
π

2

]
.

As is usual in such cases, it is a good idea to graph the curves involved to get an idea
what is wanted.

-1 0 1 2

-1

0

1

desired
region
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The area of this region would be the area of the part of the cardioid corresponding to
θ ∈

[
−π

2 ,
π

2

]
minus the area of the part of the circle in the first quadrant. Thus the area is

1
2

∫
π/2

−π/2
(1+ cos(θ))2 dθ − 1

2

∫
π/2

−π/2
1dθ =

1
4

π +2.

This example illustrates the following procedure for finding the area between the graphs
of two curves given in polar coordinates.

Procedure 12.2.4 Suppose that for all θ ∈ [a,b] ,0 < g(θ) < f (θ). To find the
area of the region defined in terms of polar coordinates by g(θ)< r < f (θ), θ ∈ [a,b], you
do the following.

1
2

∫ b

a

(
f (θ)2 −g(θ)2

)
dθ .

12.3 The Acceleration in Polar Coordinates
I assume that by now, the reader has encountered Newton’s laws of motion, especially the
second law which gives the relationship, force equals mass times acceleration. Sometimes
you have information about forces which act not in the direction of the coordinate axes but
in some other direction. When this is the case, it is often useful to express things in terms
of different coordinates which are consistent with these directions. A good example of this
is the force exerted by the sun on a planet. This force is always directed toward the sun and
so the force vector changes as the planet moves. To discuss this, consider the following
simple diagram in which two unit vectors er and eθ are shown.

•
ereθ

θ

(r,θ)

The vector er = (cosθ ,sinθ) and the vector eθ = (−sinθ ,cosθ). Note that eθ ·er =
0. You should convince yourself that the directions of these two perpendicular vectors
correspond to what is shown in the above picture. To help with this, note that er ×eθ =
k if these vectors are considered as eθ = (−sinθ ,cosθ ,0) ,er = (cosθ ,sinθ ,0)and so
(er,eθ ,k) forms a right hand system, so if you see that er points away from the origin,
then it follows that eθ points in the direction shown.

These two vectors also have the following relationship

eθ =
der

dθ
, er =−deθ

dθ
. (12.3)

Now consider the position vector from 0 of a point in the plane, r (t). Then if r (t) ,θ (t)
are its polar coordinates at time t,

r (t) = r (t)er (θ (t))

where r (t) = |r (t)|. Thus r (t) is just the distance from the origin 0 to the point. What are
the velocity and acceleration in terms of er and eθ ? Using the chain rule,

der

dt
=

der

dθ
θ
′ (t) ,

deθ

dt
=

deθ

dθ
θ
′ (t)
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and so from 12.3,
der

dt
= θ

′ (t)eθ ,
deθ

dt
=−θ

′ (t)er (12.4)

Using 12.4 as needed along with the product rule and the chain rule,

r′ (t) = r′ (t)er + r (t)
d
dt

(er (θ (t)))

= r′ (t)er + r (t)θ
′ (t)eθ .

Next consider the acceleration.

r′′ (t) = r′′ (t)er + r′ (t)
der

dt
+ r′ (t)θ

′ (t)eθ + r (t)θ
′′ (t)eθ + r (t)θ

′ (t)
d
dt

(eθ )

= r′′ (t)er +2r′ (t)θ
′ (t)eθ + r (t)θ

′′ (t)eθ + r (t)θ
′ (t)(−er)θ

′ (t)

=
(

r′′ (t)− r (t)θ
′ (t)2

)
er +

(
2r′ (t)θ

′ (t)+ r (t)θ
′′ (t)

)
eθ . (12.5)

This is a very profound formula. Consider the following examples.

Example 12.3.1 Suppose an object of mass m moves at a uniform speed v, around a circle
of radius R. Find the force acting on the object.

By Newton’s second law, the force acting on the object is mr′′. In this case, r (t) = R, a
constant and since the speed is constant, θ

′′ = 0. Therefore, the term in 12.5 corresponding
to eθ equals zero and mr′′ =−Rθ

′ (t)2er. The speed of the object is v and so it moves v/R
radians in unit time. Thus θ

′ (t) = v/R and so

mr′′ =−mR
( v

R

)2
er =−m

v2

R
er.

This is the familiar formula for centripetal force from elementary physics, obtained as a
very special case of 12.5.

Example 12.3.2 A platform rotates at a constant speed in the counter clockwise direction
and an object of mass m moves from the center of the platform toward the edge at constant
speed along a line fixed in the rotating platform. What forces act on this object?

Let v denote the constant speed of the object moving toward the edge of the platform.
Then

r′ (t) = v, r′′ (t) = 0, θ
′′ (t) = 0,

while θ
′ (t) = ω , a positive constant. From 12.5

mr′′ (t) =−mr (t)ω
2er +m2vωeθ .

Thus the object experiences centripetal force from the first term and also a funny force from
the second term which is in the direction of rotation of the platform. You can observe this
by experiment if you like. Go to a playground and have someone spin one of those merry
go rounds while you ride it and move from the center toward the edge. The term 2mvωeθ

is called the Coriolis force.
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12.4 The Fundamental Theorem of Algebra
The fundamental theorem of algebra states that every non constant polynomial having co-
efficients in C has a zero in C. If C is replaced by R, this is not true because of the
example, x2 + 1 = 0. This theorem is a very remarkable result and notwithstanding its ti-
tle, all the most straightforward proofs depend on either analysis or topology. It was first
mostly proved by Gauss in 1797. The first complete proof was given by Argand in 1806. I
will give an informal explanation of this theorem which shows why it is is reasonable to be-
lieve in the fundamental theorem of algebra. This will also introduce the idea of parametric
curves in the plane of which much more will be said later. First is the notion of parametric
curves in the plane.

Definition 12.4.1 For t in some interval, consider functions t → x(t) , t → y(t).
This is called a parametric function or a vector valued function because you could consider
t → (x(t) ,y(t)). Thus (x(t) ,y(t)) yields a point in the plane or vector and as t changes,
this point (vector) might move around yielding a curve in the plane. The real number t is
called the parameter.

The explanation for the fundamental theorem of algebra involves arguing that some
parametric curve must contain 0+ i0.

Theorem 12.4.2 Let p(z) = anzn + an−1zn−1 + · · ·+ a1z+ a0 where each ak is a
complex number and an ̸= 0,n ≥ 1. Then there exists w ∈ C such that p(w) = 0.

Here is the informal explanation. Dividing by the leading coefficient an, there is no loss
of generality in assuming that the polynomial is of the form

p(z) = zn +an−1zn−1 + · · ·+a1z+a0

If a0 = 0, there is nothing to prove because p(0) = 0. Therefore, assume a0 ̸= 0. From
the polar form of a complex number z, it can be written as |z|(cosθ + isinθ). Thus, by
DeMoivre’s theorem,

zn = |z|n (cos(nθ)+ isin(nθ))

It follows that zn is some point on the circle of radius |z|n
Denote by Cr the circle of radius r in the complex plane which is centered at 0. Then

if r is sufficiently large and |z| = r, the term zn is far larger than the rest of the poly-
nomial. It is on the circle of radius |z|n while the other terms are on circles of fixed
multiples of |z|k for k ≤ n− 1. Thus, for r large enough, Ar = {p(z) : z ∈Cr} describes
a closed curve which misses the inside of some circle having 0 as its center. It won’t
be as simple as suggested in the following picture, but it will be a closed curve thanks
to De Moivre’s theorem and the observation that the cosine and sine are periodic. Now
shrink r. Eventually, for r small enough, the non constant terms are negligible and so Ar
is a curve which is contained in some circle centered at a0 which has 0 on the outside.

•0

Ar r large• a0

Ar

r small

Thus it is reasonable to believe that for some r dur-
ing this shrinking process, the set Ar must hit 0. It
follows that p(z) = 0 for some z.

For example, consider the polynomial x3 + x+
1+ i. It has no real zeros. However, you could let
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z= r (cos t + isin t) and insert this into the polynomial. Thus you would want to find a point
where

(r (cos t + isin t))3 + r (cos t + isin t)+1+ i = 0+0i

Expanding this expression on the left to write it in terms of real and imaginary parts, you
get on the left

r3 cos3 t −3r3 cos t sin2 t + r cos t +1+ i
(
3r3 cos2 t sin t − r3 sin3 t + r sin t +1

)
Thus you need to have both the real and imaginary parts equal to 0. In other words, you
need to have

r3 cos3 t −3r3 cos t sin2 t + r cos t +1 = 0

3r3 cos2 t sin t − r3 sin3 t + r sin t +1 = 0

for some value of r and t. First here is a graph of this parametric function of t for t ∈ [0,2π]
on the left, when r = 4. It is drawn by a computer and drawing it simply involves taking
many values of t and connecting the resulting points with a curve just as you learned to
graph in high school. Note how the graph misses the origin 0+ i0. In fact, the closed curve
surrounds a small circle which has the point 0+ i0 on its inside.
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Next is the graph when r = .5. Note how the closed curve is included in a circle which
has 0+ i0 on its outside. As you shrink r you get closed curves. At first, these closed
curves enclose 0+ i0 and later, they exclude 0+ i0. Thus one of them should pass through
this point. In fact, consider the curve which results when r = 1.386 which is the graph on
the right. Note how for this value of r the curve passes through the point 0+ i0. Thus for
some t, 1.3862(cos t + isin t) is a solution of the equation p(z) = 0.

Later I will give a real proof of this important theorem but this informal discussion
shows why it is very reasonable to believe this theorem.

12.5 Polar Graphing in MATLAB
I think it is likely easiest to do these graphs by changing the equation in polar coordinates
to one which is simply a parametric equation. Thus if you have

r = f (θ) ,θ ∈ [a,b]

You would write it parametrically as

x(θ) = f (θ)cos(θ) , y(θ) = f (θ)sin(θ)

and you would graph the parametric curve

θ → (x(θ) ,y(θ))
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Example 12.5.1 Graph the polar equation r = 1+2sin(5θ) ,θ ∈ [0,7π]. In general, it is
much more fun to have MATLAB do the graphing for you.

Here is the syntax for this example. You will see how to modify it to make changes
as desired. Try this and you can change line width and color as desired. To get to a new
line, you press shift enter. To get MATLAB to do the graphing, you press enter. I used t as
the parameter rather than θ because it is more convenient. In the top line, you are defining
values of t which are .01 apart going from 0 to 7π . The reason you have .∗ rather than
simply ∗ is that according to MATLAB, t is a list of numbers and you have to be doing
something to the individual numbers in the list. If you wrote t2 MATLAB would not know
what you meant. It requires a little getting used to. However, if you use sin(t), it knows
what is meant, so it seems to me it is not entirely consistent. Anyway, here is the syntax.

>>t=[0:.01:7*pi];
x=(1+2*sin(5*t)).*cos(t);
y=(1+2*sin(5*t)).*sin(t);
plot(x,y,’LineWidth’,2,’color’,’green’)
axis equal
When you do this, and press enter, you get

-2 0 2

-2

0

2

12.6 Exercises
1. Suppose r = a

1+ε sinθ
where ε ≥ 0. By changing to rectangular coordinates, show that

this is either a parabola, an ellipse or a hyperbola. Determine the values of ε which
correspond to the various cases.

2. In Example 12.1.2 suppose you graphed it for θ ∈ [0,kπ] where k is a positive integer.
What is the smallest value of k such that the graph will start at (3,0) and end at (3,0)?

3. Suppose you were to graph r = 3+ sin
(m

n θ
)

where m,n are integers. Can you give
some description of what the graph will look like for θ ∈ [0,kπ] for k a very large
positive integer? How would things change if you did r = 3+ sin(αθ) where α is
an irrational number?

4. Graph r = 1+ sinθ for θ ∈ [0,2π].

5. Graph r = 2+ sinθ for θ ∈ [0,2π].

6. Graph r = 1+2sinθ for θ ∈ [0,2π].



280 CHAPTER 12. POLAR COORDINATES

7. Graph r = 2+ sin(2θ) for θ ∈ [0,2π].

8. Graph r = 1+ sin(2θ) for θ ∈ [0,2π].

9. Graph r = 1+ sin(3θ) for θ ∈ [0,2π].

10. Graph r = sin(3θ)+2+ cos(3θ) for θ ∈ [0,2π] .

11. Find the area of the bounded region determined by r = 1+ sin(3θ) for θ ∈ [0,2π].

12. Find the area inside r = 1+ sinθ and outside the circle r = 1/2.

13. Find the area inside the circle r = 1/2 and outside the region defined by r = 1+sinθ .



Chapter 13

Algebra and Geometry of Rp

13.1 Rp

The notation, Rp refers to the collection of ordered lists of p numbers. The order matters.
Thus (1,2,3) ̸= (3,1,2).

Definition 13.1.1 Define

Rp ≡
{
(x1, · · · ,xp) : x j ∈ R for j = 1, · · · , p

}
.

(x1, · · · ,xp) = (y1, · · · ,yp) if and only if for all j = 1, · · · , p, x j = y j. When

(x1, · · · ,xp) ∈ Rp,

it is conventional to denote (x1, · · · ,xp) by the single bold face letter x. The numbers x j are
called the coordinates. The set

{(0, · · · ,0, t,0, · · · ,0) : t ∈ R }

for t in the ith slot is called the ith coordinate axis coordinate axis, the xi axis for short.
The point 0≡ (0, · · · ,0) is called the origin. Points in Rp are also called vectors.

Thus (1,2,4) ∈ R3 and (2,1,4) ∈ R3 but (1,2,4) ̸= (2,1,4) because, even though the
same numbers are involved, they don’t match up. In particular, the first entries are not
equal.

Why would anyone be interested in such a thing? First consider the case when p = 1.
Then from the definition, R1 =R. Recall that R is identified with the points of a line. Look
at the number line again. Observe that this amounts to identifying a point on this line with
a real number. In other words a real number determines where you are on this line. Now
suppose p = 2 and consider two lines which intersect each other at right angles as shown
in the following picture.

281
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2

6 • (2,6)

−8

3•
(−8,3)

Notice how you can identify a point shown in the plane with the ordered pair (2,6) .
You go to the right a distance of 2 and then up a distance of 6. Similarly, you can identify
another point in the plane with the ordered pair (−8,3) . Go to the left a distance of 8 and
then up a distance of 3. The reason you go to the left is that there is a − sign on the eight.
From this reasoning, every ordered pair determines a unique point in the plane. Conversely,
taking a point in the plane, you could draw two lines through the point, one vertical and the
other horizontal and determine unique points x1 on the horizontal line in the above picture
and x2 on the vertical line in the above picture, such that the point of interest is identified
with the ordered pair (x1,x2) . In short, points in the plane can be identified with ordered
pairs similar to the way that points on the real line are identified with real numbers. Now
suppose p = 3. As just explained, the first two coordinates determine a point in a plane.
Letting the third component determine how far up or down you go, depending on whether
this number is positive or negative, this determines a point in space. Thus, (1,4,−5) would
mean to determine the point in the plane that goes with (1,4) and then to go below this
plane a distance of 5 to obtain a unique point in space. You see that the ordered triples
correspond to points in space just as the ordered pairs correspond to points in a plane and
single real numbers correspond to points on a line.

You can’t stop here and say that you are only interested in p ≤ 3. What if you were
interested in the motion of two objects? You would need three coordinates to describe
where the first object is and you would need another three coordinates to describe where
the other object is located. Therefore, you would need to be considering R6. If the two
objects moved around, you would need a time coordinate as well. As another example,
consider a hot object which is cooling and suppose you want the temperature of this object.
How many coordinates would be needed? You would need one for the temperature, three
for the position of the point in the object and one more for the time. Thus you would need
to be considering R5. Many other examples can be given. Sometimes p is very large. This
is often the case in applications to business when they are trying to maximize profit subject
to constraints. It also occurs in numerical analysis when people try to solve hard problems
on a computer.

There are other ways to identify points in space with three numbers but the one pre-
sented is the most basic. In this case, the coordinates are known as Cartesian coordinates
after Descartes1 who invented this idea in the first half of the seventeenth century. I will
often not bother to draw a distinction between the point in p dimensional space and its
Cartesian coordinates but there really is such a distinction.

1René Descartes 1596-1650 is often credited with inventing analytic geometry although it seems the ideas were
actually known much earlier. He was interested in many different subjects, physiology, chemistry, and physics
being some of them. He also wrote a large book in which he tried to explain the book of Genesis scientifically.
Descartes ended up dying in Sweden.
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13.2 Algebra in Rp

There are two algebraic operations done with points of Rp. One is addition and the other is
multiplication by numbers, called scalars. Yes, numbers = scalars.

Definition 13.2.1 If x ∈ Rp and a is a number, also called a scalar, then ax ∈ Rp

is defined by
ax= a(x1, · · · ,xp)≡ (ax1, · · · ,axp) . (13.1)

This is known as scalar multiplication. If x,y ∈ Rp then x+y ∈ Rp and is defined by

(x1 + y1, · · · ,xp + yp) (13.2)

An element of Rp x ≡ (x1, · · · ,xp) is called a vector. The above definition is known as
vector addition.

With this definition, the algebraic properties satisfy the conclusions of the following
theorem. The conclusions of this theorem are called the vector space axioms. There are
many other examples.

Theorem 13.2.2 For v,w vectors in Rp and α,β scalars, (real numbers), the fol-
lowing hold.

v+w=w+v, (13.3)

the commutative law of addition,

(v+w)+z = v+(w+z) , (13.4)

the associative law for addition,
v+0= v, (13.5)

the existence of an additive identity

v+(−v) = 0, (13.6)

the existence of an additive inverse, Also

α (v+w) = α v+αw, (13.7)

(α +β ) v = α v+βv, (13.8)

α (βv) = αβ (v) , (13.9)

1v = v. (13.10)

In the above 0= (0, · · · ,0).

You should verify these properties all hold. For example, consider 13.7.

α (v+w) = α (v1 +w1, · · · ,vp +wp) = (α (v1 +w1) , · · · ,α (vp +wp))
= (αv1 +αw1, · · · ,αvp +αwp) = (αv1, · · · ,αvp)+(αw1, · · · ,αwp) = αv+αw.

As usual, subtraction is defined as x−y ≡ x+(−y) .
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13.3 Geometric Meaning Of Vector Addition In R3

It was explained earlier that an element of Rp is an p tuple of numbers and it was also shown
that this can be used to determine a point in three dimensional space in the case where p= 3
and in two dimensional space, in the case where p = 2. This point was specified relative to
some coordinate axes.

Consider the case where p = 3 for now. If you draw an arrow from the point in three
dimensional space determined by (0,0,0) to the point (a,b,c) with its tail sitting at the
point (0,0,0) and its point at the point (a,b,c) , this arrow is called the position vector of
the point determined by u ≡ (a,b,c) . One way to get to this point is to start at (0,0,0)
and move in the direction of the x1 axis to (a,0,0) and then in the direction of the x2 axis
to (a,b,0) and finally in the direction of the x3 axis to (a,b,c) . It is evident that the same
arrow (vector) would result if you began at the point v ≡ (d,e, f ) , moved in the direction
of the x1 axis to (d +a,e, f ) , then in the direction of the x2 axis to (d +a,e+b, f ) , and
finally in the x3 direction to (d +a,e+b, f + c) only this time, the arrow would have its
tail sitting at the point determined by v ≡ (d,e, f ) and its point at (d +a,e+b, f + c) . It
is said to be the same arrow (vector) because it will point in the same direction and have
the same length. It is like you took an actual arrow, the sort of thing you shoot with a bow,
and moved it from one location to another keeping it pointing the same direction. This is
illustrated in the following picture in which v+u is illustrated. Note the parallelogram
determined in the picture by the vectors u and v.

u

v u+v

u

x1

x3

x2

Thus the geometric significance of (d,e, f )+(a,b,c) = (d +a,e+b, f + c) is this. You
start with the position vector of the point (d,e, f ) and at its point, you place the vector
determined by (a,b,c) with its tail at (d,e, f ) . Then the point of this last vector will be
(d +a,e+b, f + c) . This is the geometric significance of vector addition. Also, as shown
in the picture, u + v is the directed diagonal of the parallelogram determined by the two
vectors u and v.

The following example is art.

Example 13.3.1 Here is a picture of two vectors u and v.

u

v

Sketch a picture of u+v,u−v, and u+2v.
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First here is a picture of u+v. You first draw u and then at the point of u you place the
tail of v as shown. Then u+v is the vector which results which is drawn in the following
pretty picture.

u
v

u+v

Next consider u−v. This means u+(−v) . From the above geometric description of
vector addition, −v is the vector which has the same length but which points in the opposite
direction to v. Here is a picture.

u

−v

u+(−v)

Finally consider the vector u+2v. Here is a picture of this one also.

u

2v

u+2v

One can think of the point in Rp identified as (x1, · · · ,xp). One can also write this as(
x1 · · · xp

)
. Usually we have in mind a point when there are commas and a vector

when it is written as a 1× p matrix as just illustrated, but it doesn’t matter much because
the list of numbers with a comma just represents a vector extending from 0 to the given
point. Therefore, I will use either notation interchangably.

13.4 Lines

To begin with consider the case p = 1,2. In the case where p = 1, the only line is just
R1 = R. Therefore, if x1 and x2 are two different points in R, consider

x = x1 + t (x2 − x1)

where t ∈ R and the totality of all such points will give R. You see that you can always
solve the above equation for t, showing that every point on R is of this form. Now consider
the plane. Does a similar formula hold? Let (x1,y1) and (x2,y2) be two different points in
R2 which are contained in a line l. Suppose that x1 ̸= x2. Then if (x,y) is an arbitrary point
on l,
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(x1,y1)

(x2,y2)
(x,y)

Now by similar triangles,

m ≡ y2 − y1

x2 − x1
=

y− y1

x− x1

and so the point slope form of the line, l, is given as

y− y1 = m(x− x1) .

If t is defined by
x = x1 + t (x2 − x1) ,

you obtain this equation along with

y = y1 +mt (x2 − x1) = y1 + t (y2 − y1) .

Therefore,
(x,y) = (x1,y1)+ t (x2 − x1,y2 − y1) .

If x1 = x2, then in place of the point slope form above, x = x1. Since the two given points
are different, y1 ̸= y2 and so you still obtain the above formula for the line. Because of this,
the following is the definition of a line in Rp.

Definition 13.4.1 A line in Rp containing the two different points x1 and x2 is the
collection of points of the form

x= x1 + t
(
x2 −x1)

where t ∈ R. This is known as a parametric equation and the variable t is called the
parameter.

Often t denotes time in applications to Physics. Note this definition agrees with the
usual notion of a line in two dimensions and so this is consistent with earlier concepts.

Lemma 13.4.2 Let a,b ∈ Rp with a ̸= 0. Then x= ta+b, t ∈ R, is a line.

Proof: Let x1 = b and let x2−x1 =a so that x2 ̸=x1. Then ta+b= x1+t
(
x2 −x1

)
and so x= ta+b is a line containing the two different points x1 and x2. ■

Definition 13.4.3 The vector a in the above lemma is called a direction vector for
the line.

Definition 13.4.4 Let p and q be two points in Rp, p ̸= q. The directed line seg-
ment from p to q, denoted by −→pq, is defined to be the collection of points

x= p+ t (q−p) , t ∈ [0,1]



13.4. LINES 287

with the direction corresponding to increasing t. In the definition, when t = 0, the point p is
obtained and as t increases other points on this line segment are obtained until when t = 1,
you get the point q. This is what is meant by saying the direction corresponds to increasing
t.

Think of −→pq as an arrow whose point is on q and whose base is at p as shown in the
following picture.

q

p

This line segment is a part of a line from the above Definition.

Example 13.4.5 Find a parametric equation for the line through the points (1,2,0) and
(2,−4,6) .

Use the definition of a line given above to write

(x,y,z) = (1,2,0)+ t (1,−6,6) , t ∈ R.

The vector (1,−6,6) is obtained by (2,−4,6)− (1,2,0) as indicated above.
The reason for the word, “a”, rather than the word, “the” is there are infinitely many

different parametric equations for the same line. To see this replace t with 3s. Then you
obtain a parametric equation for the same line because the same set of points is obtained.
The difference is they are obtained from different values of the parameter. What happens is
this: The line is a set of points but the parametric description gives more information than
that. It tells how the points are obtained. Obviously, there are many ways to trace out a
given set of points and each of these ways corresponds to a different parametric equation
for the line.

Example 13.4.6 Find a parametric equation for the line which contains the point (1,2,0)
and has direction vector (1,2,1) .

From the above this is just

(x,y,z) = (1,2,0)+ t (1,2,1) , t ∈ R. (13.11)

Sometimes people elect to write a line like the above in the form

x = 1+ t, y = 2+2t, z = t, t ∈ R. (13.12)

This is a set of scalar parametric equations which amounts to the same thing as 13.11.
There is one other form for a line which is sometimes considered useful. It is the so

called symmetric form. Consider the line of 13.12. You can solve for the parameter t to
write

t = x−1, t =
y−2

2
, t = z.

Therefore,

x−1 =
y−2

2
= z.

This is the symmetric form of the line.
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Example 13.4.7 Suppose the symmetric form of a line is

x−2
3

=
y−1

2
= z+3.

Find the line in parametric form.

Let t = x−2
3 , t = y−1

2 and t = z+3. Then solving for x,y,z, you get

x = 3t +2, y = 2t +1, z = t −3, t ∈ R.

Written in terms of vectors this is

(2,1,−3)+ t (3,2,1) = (x,y,z) , t ∈ R.

I don’t understand why anyone would care about the symmetric form of a line if a paramet-
ric description is available. Indeed, in linear algebra, you do row operations to express the
solution not as a symmetric equation but parametrically.

13.5 Distance in Rp

How is distance between two points in Rp defined?

Definition 13.5.1 Let x= (x1, · · · ,xp) and y = (y1, · · · ,yp) be two points in Rp.
Then |x−y| to indicates the distance between these points and is defined as

distance between x and y ≡ |x−y| ≡

(
p

∑
k=1

|xk − yk|2
)1/2

.

This is called the distance formula. Thus |x| ≡ |x−0| . The symbol B(a,r) is defined by

B(a,r)≡ {x ∈ Rp : |x−a|< r} .

This is called an open ball of radius r centered at a. It gives all the points in Rp which are
closer to a than r.

First of all note this is a generalization of the notion of distance in R. There the distance
between two points x and y was given by the absolute value of their difference. Thus |x− y|

is equal to the distance between these two points on R. Now |x− y|=
(
(x− y)2

)1/2
where

the square root is always the positive square root. Thus it is the same formula as the above
definition except there is only one term in the sum. Geometrically, this is the right way
to define distance which is seen from the Pythagorean theorem. Consider the following
picture in the case that p = 2.

(x1,x2) (y1,x2)

(y1,y2)
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There are two points in the plane whose Cartesian coordinates are (x1,x2) and (y1,y2)
respectively. Then the solid line joining these two points is the hypotenuse of a right triangle
which is half of the rectangle shown in dotted lines. What is its length? Note the lengths
of the sides of this triangle are |y1 − x1| and |y2 − x2| . Therefore, the Pythagorean theorem
implies the length of the hypotenuse equals(

|y1 − x1|2 + |y2 − x2|2
)1/2

=
(
(y1 − x1)

2 +(y2 − x2)
2
)1/2

which is just the formula for the distance given above.
Now suppose p = 3 and let (x1,x2,x3) and (y1,y2,y3) be two points in R3. Consider

the following picture in which one of the solid lines joins the two points and a dashed line
joins the points (x1,x2,x3) and (y1,y2,x3) .

•
(x1,y2,y3) •

(y1,y2,y3)

•
(x1,x2,x3)

•
(y1,x2,x3)

• (y1,y2,x3)

By the Pythagorean theorem, the length of the dashed line joining (x1,x2,x3) and
(y1,y2,x3) equals (

(y1 − x1)
2 +(y2 − x2)

2
)1/2

while the length of the line joining (y1,y2,x3) to (y1,y2,y3) is just |y3 − x3| . Therefore,
by the Pythagorean theorem again, the length of the line joining the points (x1,x2,x3) and
(y1,y2,y3) equals {[(

(y1 − x1)
2 +(y2 − x2)

2
)1/2

]2

+(y3 − x3)
2

}1/2

=
(
(y1 − x1)

2 +(y2 − x2)
2 +(y3 − x3)

2
)1/2

,

which is again just the distance formula above.
This completes the argument that the above definition is reasonable. Of course you

cannot continue drawing pictures in ever higher dimensions but there is no problem with
the formula for distance in any number of dimensions. Here is an example.

Example 13.5.2 Find the distance between the points in R4,

a= (1,2,−4,6) , b= (2,3,−1,0)
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Use the distance formula and write

|a−b|2 = (1−2)2 +(2−3)2 +(−4− (−1))2 +(6−0)2 = 47

Therefore, |a−b|=
√

47.
All this amounts to defining the distance between two points as the length of a straight

line joining these two points. However, there is nothing sacred about using straight lines.
One could define the distance to be the length of some other sort of line joining these points.
It won’t be done very much in this book.

Another convention which is usually followed, especially in R2 and R3 is to denote the
first component of a point in R2 by x and the second component by y. In R3 it is customary
to denote the first and second components as just described while the third component is
called z.

Example 13.5.3 Describe the points which are at the same distance between (1,2,3) and
(0,1,2) .

Let (x,y,z) be such a point. Then√
(x−1)2 +(y−2)2 +(z−3)2 =

√
x2 +(y−1)2 +(z−2)2.

Squaring both sides

(x−1)2 +(y−2)2 +(z−3)2 = x2 +(y−1)2 +(z−2)2

and so
x2 −2x+14+ y2 −4y+ z2 −6z = x2 + y2 −2y+5+ z2 −4z

which implies
−2x+14−4y−6z =−2y+5−4z

hence
2x+2y+2z =−9. (13.13)

Since these steps are reversible, the set of points which is at the same distance from the two
given points consists of the points (x,y,z) such that 13.13 holds.

The following lemma is fundamental. It is a form of the Cauchy Schwarz inequality.

Lemma 13.5.4 Let x= (x1, · · · ,xp) and y = (y1, · · · ,yp) be two points in Rp. Then∣∣∣∣∣ p

∑
i=1

xiyi

∣∣∣∣∣≤ |x| |y|=

(
p

∑
i=1

|xi|2
)1/2( p

∑
i=1

|yi|2
)1/2

. (13.14)

Proof: Let θ be either 1 or −1 such that

θ

p

∑
i=1

xiyi =
p

∑
i=1

xi (θyi) =

∣∣∣∣∣ p

∑
i=1

xiyi

∣∣∣∣∣
and consider p(t)≡ ∑

p
i=1 (xi + tθyi)

2 . Then for all t ∈ R,

0 ≤ p(t) =
p

∑
i=1

x2
i +2t

p

∑
i=1

xiθyi + t2
p

∑
i=1

y2
i = |x|2 +2t

p

∑
i=1

xiθyi + t2 |y|2
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If |y| = 0 then 13.14 is obviously true because both sides equal zero. Therefore, assume
|y| ̸= 0 and then p(t) is a polynomial of degree two whose graph opens up. Therefore, it
either has no zeroes, two zeros or one repeated zero. If it has two zeros, the above inequality
must be violated because in this case the graph must dip below the x axis. Therefore, it
either has no zeros or exactly one. From the quadratic formula this happens exactly when

4

(
p

∑
i=1

xiθyi

)2

−4 |x|2 |y|2 ≤ 0

and so

θ

p

∑
i=1

xiyi =

∣∣∣∣∣ p

∑
i=1

xiyi

∣∣∣∣∣≤ |x| |y|

as claimed. This proves the inequality. ■
There are certain properties of the distance which are obvious. Two of them which

follow directly from the definition are

|x−y|= |y−x| ,

|x−y| ≥ 0 and equals 0 only if y = x.

The third fundamental property of distance is known as the triangle inequality. Recall that
in any triangle the sum of the lengths of two sides is always at least as large as the third
side. The following corollary is equivalent to this simple statement.

Corollary 13.5.5 Let x,y be points of Rp. Then

|x+y| ≤ |x|+ |y| .

Proof: Using the Cauchy Schwarz inequality, Lemma 13.5.4,

|x+y|2 ≡
p

∑
i=1

(xi + yi)
2 =

p

∑
i=1

x2
i +2

p

∑
i=1

xiyi +
p

∑
i=1

y2
i

≤ |x|2 +2 |x| |y|+ |y|2 = (|x|+ |y|)2

and so upon taking square roots of both sides,

|x+y| ≤ |x|+ |y| ■

13.6 Geometric Meaning of Scalar Multiplication in R3

As discussed earlier, x = (x1,x2,x3) determines a vector. You draw the line from 0 to
x placing the point of the vector on x. What is the length of this vector? The length of
this vector is defined to equal |x| as in Definition 13.5.1. Thus the length of x equals√

x2
1 + x2

2 + x2
3. When you multiply x by a scalar α, you get (αx1,αx2,αx3) and the length

of this vector is defined as√(
(αx1)

2 +(αx2)
2 +(αx3)

2
)
= |α|

√
x2

1 + x2
2 + x2

3.
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Thus the following holds.
|αx|= |α| |x| .

In other words, multiplication by a scalar magnifies the length of the vector. What about
the direction? You should convince yourself by drawing a picture that if α is negative, it
causes the resulting vector to point in the opposite direction while if α > 0 it preserves the
direction the vector points. One way to see this is to first observe that if α ̸= 1, then x and
αx are both points on the same line going through 0. Note that there is no change in this
when you replace R3 with Rp.

13.7 Exercises
1. Verify all the properties 13.3-13.10.

2. Compute the following

(a) 2
(

1 2 3 −2
)
+6
(

2 1 −2 7
)

(b) −2
(

1 2 −2
)
+6
(

2 1 −2
)

3. Find symmetric equations for the line through the points (2,2,4) and (−2,3,1) .
Dumb idea but do it anyway.

4. Find symmetric equations for the line through the points (1,2,4) and (−2,1,1) .
Dumb idea but do it anyway.

5. Symmetric equations for a line are given. Find parametric equations of the line. This
goes the right direction.

(a) x+1
3 = 2y+3

2 = z+7

(b) 2x−1
3 = 2y+3

6 = z−7

6. The first point given is a point contained in the line. The second point given is a
direction vector for the line. Find parametric equations for the line, determined by
this information.

(a) (1,2,1) ,(2,0,3)

(b) (1,0,1) ,(1,1,3)

(c) (1,2,0) ,(1,1,0)

7. Parametric equations for a line are given. Determine a direction vector for this line.

(a) x = 1+2t,y = 3− t,z = 5+3t

(b) x = 1+ t,y = 3+3t,z = 5− t

8. A line contains the given two points. Find parametric equations for this line. Identify
the direction vector.

(a) (0,1,0) ,(2,1,2)

(b) (0,1,1) ,(2,5,0)
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9. Describe in words how to get to the points described by the ordered pairs.

(a) (1,2)

(b) (−2,−2)

10. Does it make sense to write
(

1 2
)
+
(

2 3 1
)
? Explain.

11. Describe in words how to get to the point in R3 denoted by the ordered triples.

(a) (1,2,0)

(b) (−2,−2,1)

(c) (−2,3,−2)

12. You are given two points in R3,(4,5,−4) and (2,3,0) . Show the distance from the
point (3,4,−2) to the first of these points is the same as the distance from this point
to the second of the original pair of points. Note that 3 = 4+2

2 ,4 = 5+3
2 . Obtain a

theorem which will be valid for general pairs of points (x,y,z) and (x1,y1,z1) and
prove your theorem using the distance formula.

13. A sphere is the set of all points which are at a given distance from a single given
point. Find an equation for the sphere which is the set of all points that are at a
distance of 4 from the point (1,2,3) in R3.

14. A parabola is the set of all points (x,y) in the plane such that the distance from the
point (x,y) to a given point (x0,y0) equals the distance from (x,y) to a given line.
The point (x0,y0) is called the focus and the line is called the directrix. Find the
equation of the parabola which results from the line y = l and (x0,y0) a given focus
with y0 < l. Repeat for y0 > l.

15. Suppose the distance between (x,y) and (x′,y′) were defined to equal the larger of
the two numbers |x− x′| and |y− y′| . Draw a picture of the sphere centered at the
point (0,0) if this notion of distance is used.

16. Repeat the same problem except this time let the distance between the two points be
|x− x′|+ |y− y′| .

17. If (x1,y1,z1) and (x2,y2,z2) are two points such that |(xi,yi,zi)|= 1 for i = 1,2, show
that in terms of the usual distance,

∣∣( x1+x2
2 , y1+y2

2 , z1+z2
2

)∣∣< 1. What would happen if
you used the way of measuring distance given in Problem 15 (|(x,y,z)|= maximum
of |z| , |x| , |y| .)?

18. Give a simple description using the distance formula of the set of points which are at
an equal distance between the two points (x1,y1,z1) and (x2,y2,z2) .

19. Suppose you are given two points (−a,0) and (a,0) in R2 and a number r > 2a. The
set of points described by{

(x,y) ∈ R2 : |(x,y)− (−a,0)| + |(x,y)− (a,0)|= r}

is known as an ellipse. The two given points are known as the focus points of the

ellipse. Find α and β such that this is in the form
( x

α

)2
+
(

y
β

)2
= 1. This is a nice

exercise in messy algebra.
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20. Suppose you are given two points (−a,0) and (a,0) in R2 and a number r < 2a. The
set of points described by{

(x,y) ∈ R2 : |(x,y)− (−a,0)| −|(x,y)− (a,0)|= r}

is known as hyperbola. The two given points are known as the focus points of the

hyperbola. Simplify this to the form
( x

α

)2 −
(

y
β

)2
= 1. This is a nice exercise in

messy algebra.

21. Let (x1,y1) and (x2,y2) be two points in R2. Give a simple description using the
distance formula of the perpendicular bisector of the line segment joining these two
points. Thus you want all points (x,y) such that |(x,y)− (x1,y1)|= |(x,y)− (x2,y2)| .

22. Show that |αx| =|α||x| whenever x ∈ Rp for any positive integer p.



Chapter 14

Vector Products

14.1 The Dot Product
There are two ways of multiplying vectors which are of great importance in applications.
The first of these is called the dot product, also called the scalar product and sometimes
the inner product.

Definition 14.1.1 Let a,b be two vectors in Rp define a ·b as

a ·b≡
p

∑
k=1

akbk.

With this definition, there are several important properties satisfied by the dot product.
In the statement of these properties, α and β will denote scalars and a,b,c will denote
vectors.

Proposition 14.1.2 The dot product satisfies the following properties.

a ·b= b ·a (14.1)

a ·a≥ 0 and equals zero if and only if a= 0 (14.2)

(αa+βb) · c= α (a ·c)+β (b ·c) (14.3)

c · (αa+βb) = α (c ·a)+β (c ·b) (14.4)

|a|2 = a ·a (14.5)

You should verify these properties. Also be sure you understand that 14.4 follows from
the first three and is therefore redundant. It is listed here for the sake of convenience.

Example 14.1.3 Find (1,2,0,−1) · (0,1,2,3) .

This equals 0+2+0+−3 =−1.

Example 14.1.4 Find the magnitude of a= (2,1,4,2) . That is, find |a| .

295



296 CHAPTER 14. VECTOR PRODUCTS

This is
√
(2,1,4,2) · (2,1,4,2) = 5.

The dot product satisfies the CauchySchwarz inequality. It has already been proved
but here is another proof. This proof will be based only on the above axioms for the dot
product.

Theorem 14.1.5 The dot product satisfies the inequality

|a ·b| ≤ |a| |b| . (14.6)

Furthermore equality is obtained if and only if one of a or b is a scalar multiple of the
other.

Proof: First note that if b= 0, both sides of 14.6 equal zero and so the inequality holds
in this case. Indeed,

a ·0 = a·(0+0) = a ·0+a ·0

so a ·0= 0. Therefore, it will be assumed in what follows that b ̸= 0.
Define a function of t ∈ R

f (t) = (a+ tb) · (a+ tb) .

Then by 14.2, f (t)≥ 0 for all t ∈ R. Also from 14.3,14.4,14.1, and 14.5

f (t) = a · (a+ tb)+ tb · (a+ tb) = a ·a+ t (a ·b)+ tb ·a+ t2b ·b

= |a|2 +2t (a ·b)+ |b|2 t2.

Then solve f ′ (t) = 0 for t. This gives t = −(a·b)
|b|2

. Plug this value of t into the formula for

f (t). Then

0 ≤ |a|2 +2

(
−(a ·b)
|b|2

)
(a ·b)+ |b|2

(
−(a ·b)
|b|2

)2

= |a|2 − 2(a ·b)2∣∣b2∣∣ +
(a ·b)2

|b|2
= |a|2 − (a ·b)2

|b|2
= f

(
−(a ·b)
|b|2

)
(14.7)

which shows
(a ·b)2 ≤ |a|2 |b|2 , |(a ·b)| ≤ |a| |b| .

From properties of the dot product, equality holds in 14.6 whenever one of the vectors
is a scalar multiple of the other. It only remains to verify this is the only way equality can
occur. If either vector equals zero, then one is a multiple of the other. If equality holds, in
the inequality, then f (t) = 0 from 14.7. Therefore, for t the point where minimum of f is
achieved, (a+ tb) · (a+ tb) = 0 and so a=−tb. ■

You should note that the entire argument was based only on the properties of the dot
product listed in 14.1 - 14.5. This means that whenever something satisfies these axioms,
the Cauchy Schwartz inequality holds. There are many other instances of these properties
besides vectors in Rp.

The Cauchy Schwartz inequality allows a proof of the triangle inequality for distances
in Rp in much the same way as the triangle inequality for the absolute value.
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Theorem 14.1.6 (Triangle inequality) For a,b ∈ Rp

|a+b| ≤ |a|+ |b| (14.8)

and equality holds if and only if one of the vectors is a nonnegative scalar multiple of the
other. Also

||a|− |b|| ≤ |a−b| (14.9)

Proof: By properties of the dot product and the Cauchy Schwarz inequality,

|a+b|2 = (a+b) · (a+b) = (a ·a)+(a ·b)+(b ·a)+(b ·b)

= |a|2 +2(a ·b)+ |b|2 ≤ |a|2 +2 |a ·b|+ |b|2

≤ |a|2 +2 |a| |b|+ |b|2 = (|a|+ |b|)2 .

Taking square roots of both sides you obtain 14.8.
It remains to consider when equality occurs. If either vector equals zero, then that vec-

tor equals zero times the other vector and the claim about when equality occurs is verified.
Therefore, it can be assumed both vectors are nonzero. To get equality in the second in-
equality above, Theorem 14.1.5 implies one of the vectors must be a multiple of the other.
Say b= αa. If α < 0 then equality cannot occur in the first inequality because in this case

(a ·b) = α |a|2 < 0 < |α| |a|2 = |a ·b|

Therefore, α ≥ 0.
To get the other form of the triangle inequality, a= a−b+b so

|a|= |a−b+b| ≤ |a−b|+ |b| .

Therefore,
|a|− |b| ≤ |a−b| (14.10)

Similarly,
|b|− |a| ≤ |b−a|= |a−b| . (14.11)

It follows from 14.10 and 14.11 that 14.9 holds. This is because ||a|− |b|| equals the left
side of either 14.10 or 14.11 and either way, ||a|− |b|| ≤ |a−b| . ■

14.2 Geometric Significance of the Dot Product

14.2.1 The Angle Between Two Vectors
Given two vectors a and b, the included angle is the angle between these two vectors which
is less than or equal to 180 degrees. The dot product can be used to determine the included
angle between two vectors. To see how to do this, consider the following picture.

b

a

a−b

θ
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By the law of cosines,

|a−b|2 = |a|2 + |b|2 −2 |a| |b|cosθ .

Also from the properties of the dot product,

|a−b|2 = (a−b) · (a−b) = |a|2 + |b|2 −2a ·b

and so comparing the above two formulas,

a ·b= |a| |b|cosθ . (14.12)

In words, the dot product of two vectors equals the product of the magnitude of the two vec-
tors multiplied by the cosine of the included angle. Note this gives a geometric description
of the dot product which does not depend explicitly on the coordinates of the vectors.

Example 14.2.1 Find the angle between the vectors 2i+j−k and 3i+4j+k.

The dot product of these two vectors equals 6+4−1 = 9 and the norms are
√

4+1+1 =
√

6

and
√

9+16+1 =
√

26. Therefore, from 14.12 the cosine of the included angle equals

cosθ =
9√

26
√

6
= .72058

Now the cosine is known, the angle can be determines by solving the equation cosθ = .
72058. This will involve using a calculator or a table of trigonometric functions. The an-
swer is θ = .76616 radians or in terms of degrees, θ = .76616× 360

2π
= 43.898◦. Recall

how this last computation is done. Set up a proportion x
.76616 = 360

2π
because 360◦ corre-

sponds to 2π radians. However, in calculus, you should get used to thinking in terms of
radians and not degrees. This is because all the important calculus formulas are defined in
terms of radians.

Example 14.2.2 Let u,v be two vectors whose magnitudes are equal to 3 and 4 respec-
tively and such that if they are placed in standard position with their tails at the origin,
the angle between u and the positive x axis equals 30◦ and the angle between v and the
positive x axis is -30◦. Find u ·v.

From the geometric description of the dot product in 14.12

u ·v = 3×4× cos(60◦) = 3×4×1/2 = 6.

Observation 14.2.3 Two vectors are said to be perpendicular if the included angle is
π/2 radians (90◦). You can tell if two nonzero vectors are perpendicular by simply taking
their dot product. If the answer is zero, this means they are perpendicular because cosθ =
0.

Example 14.2.4 Determine whether the two vectors 2i+j−k and 1i+3j+5k are per-
pendicular.
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When you take this dot product you get 2+ 3− 5 = 0 and so these two are indeed
perpendicular.

Definition 14.2.5 When two lines intersect, the angle between the two lines is the
smaller of the two angles determined.

Example 14.2.6 Find the angle between the two lines, (1,2,0)+ t (1,2,3) and (0,4,−3)+
t (−1,2,−3) .

These two lines intersect, when t = 0 in the first and t = −1 in the second. It is only
a matter of finding the angle between the direction vectors. One angle determined is given
by

cosθ =
−6
14

=
−3
7

. (14.13)

We don’t want this angle because it is obtuse. The angle desired is the acute angle given by

cosθ =
3
7
.

It is obtained by using replacing one of the direction vectors with −1 times it.

14.2.2 Work and Projections
Our first application will be to the concept of work. The physical concept of work does
not in any way correspond to the notion of work employed in ordinary conversation. For
example, if you were to slide a 150 pound weight off a table which is three feet high and
shuffle along the floor for 50 yards, sweating profusely and exerting all your strength to
keep the weight from falling on your feet, keeping the height always three feet and then
deposit this weight on another three foot high table, the physical concept of work would
indicate that the force exerted by your arms did no work during this project even though the
muscles in your hands and arms would likely be very tired. The reason for such an unusual
definition is that even though your arms exerted considerable force on the weight, enough
to keep it from falling, the direction of motion was at right angles to the force they exerted.
The only part of a force which does work in the sense of physics is the component of the
force in the direction of motion (This is made more precise below.). The work is defined
to be the magnitude of the component of this force times the distance over which it acts in
the case where this component of force points in the direction of motion and (−1) times
the magnitude of this component times the distance in case the force tends to impede the
motion. Thus the work done by a force on an object as the object moves from one point
to another is a measure of the extent to which the force contributes to the motion. This
is illustrated in the following picture in the case where the given force contributes to the
motion.

F

F ||

F⊥
p2

p1

θ
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In this picture the force, F is applied to an object which moves on the straight line from
p1 to p2. There are two vectors shown, F || and F⊥ and the picture is intended to indicate
that when you add these two vectors you get F while F || acts in the direction of motion
and F⊥ acts perpendicular to the direction of motion. Only F || contributes to the work
done by F on the object as it moves from p1 to p2. F || is called the component of the
force in the direction of motion. From trigonometry, you see the magnitude of F || should
equal |F | |cosθ | . Thus, since F || points in the direction of the vector from p1 to p2, the
total work done should equal

|F |
∣∣−−→p1p2

∣∣cosθ = |F | |p2 −p1|cosθ

If the included angle had been obtuse, then the work done by the force, F on the object
would have been negative because in this case, the force tends to impede the motion from
p1 to p2 but in this case, cosθ would also be negative and so it is still the case that the work
done would be given by the above formula. Thus from the geometric description of the dot
product given above, the work equals

|F | |p2 −p1|cosθ = F ·(p2−p1) .

This explains the following definition.

Definition 14.2.7 Let F be a force acting on an object which moves from the point
p1 to the point p2. Then the work done on the object by the given force equals F ·(p2 −p1) .

The concept of writing a given vector F in terms of two vectors, one which is parallel
to a given vector D and the other which is perpendicular can also be explained with no
reliance on trigonometry, completely in terms of the algebraic properties of the dot product.
As before, this is mathematically more significant than any approach involving geometry
or trigonometry because it extends to more interesting situations. This is done next.

Theorem 14.2.8 Let F and D be nonzero vectors. Then there exist unique vectors
F || and F⊥ such that

F = F ||+F⊥ (14.14)

where F || is a scalar multiple of D, also referred to as

projD (F ) ,

and F⊥ ·D = 0. The vector projD (F ) is called the projection of F onto D.

Proof: Suppose 14.14 and F || = αD. Taking the dot product of both sides with D and
using F⊥ ·D = 0, this yields

F ·D = α |D|2

which requires α =F ·D/ |D|2 . Thus there can be no more than one vector F ||. It follows
F⊥ must equal F −F ||. This verifies there can be no more than one choice for both F ||
and F⊥.

Now let

F || ≡
F ·D
|D|2

D
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and let

F⊥ = F −F || = F−F ·D
|D|2

D

Then F || = α D where α = F ·D
|D|2

. It only remains to verify F⊥ ·D = 0. But

F⊥ ·D = F ·D−F ·D
|D|2

D ·D = F ·D−F ·D = 0. ■

Example 14.2.9 Let F = 2 i+ 7j − 3k Newtons. Find the work done by this force in
moving from the point (1,2,3) to the point (−9,−3,4) along the straight line segment
joining these points where distances are measured in meters.

According to the definition, this work is

(2 i+7j−3k) · (−10i−5j+k) =−20+(−35)+(−3) =−58 Newton meters.

Note that if the force had been given in pounds and the distance had been given in feet,
the units on the work would have been foot pounds. In general, work has units equal to
units of a force times units of a length. Instead of writing Newton meter, people write joule
because a joule is by definition a Newton meter. That word is pronounced “jewel” and it is
the unit of work in the metric system of units. Also be sure you observe that the work done
by the force can be negative as in the above example. In fact, work can be either positive,
negative, or zero. You just have to do the computations to find out.

Example 14.2.10 Find proju (v) if u= 2i+3j−4k and v = i−2j+k.

From the above discussion in Theorem 14.2.8, this is just

1
4+9+16

(i−2j+k) · (2i+3j−4k)(2i+3j−4k)

=
−8
29

(2i+3j−4k) =−16
29

i− 24
29

j+
32
29

k.

Example 14.2.11 Suppose a, and b are vectors and b⊥ = b−proja (b) . What is the mag-
nitude of b⊥ in terms of the included angle?

|b⊥|2 = (b−proja (b)) · (b−proja (b)) =

(
b−b ·a

|a|2
a

)
·

(
b−b ·a

|a|2
a

)

= |b|2 −2
(b ·a)2

|a|2
+

(
b ·a
|a|2

)2

|a|2 = |b|2
(

1− (b ·a)2

|a|2 |b|2

)
= |b|2

(
1− cos2

θ
)
= |b|2 sin2 (θ)

where θ is the included angle between a and b which is less than π radians. Therefore,
taking square roots, |b⊥|= |b|sinθ .
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14.3 Exercises
1. Find (1,2,3,4) · (2,0,1,3) .

2. Use formula 14.12 to verify the Cauchy Schwarz inequality and to show that equality
occurs if and only if one of the vectors is a scalar multiple of the other.

3. For u,v vectors in R3, define the product u∗v ≡ u1v1 + 2u2v2 + 3u3v3. Show the
axioms for a dot product all hold for this funny product. Prove the following in-
equality |u∗v| ≤ (u∗u)1/2 (v ∗v)1/2 . Hint: Do not try to do this with methods
from trigonometry.

4. Find the angle between the vectors 3i−j−k and i+4j+2k.

5. Find proju (v) where v = (1,0,−2) and u= (1,2,3) .

6. Find proju (v) where v = (1,2,−2,1) and u= (1,2,3,0) .

7. Does it make sense to speak of proj0 (v)?

8. If F is a force and D is a vector, show projD (F ) = (|F |cosθ)u where u is the unit
vector in the direction of D, u=D/ |D| and θ is the included angle between the
two vectors F and D. |F |cosθ is sometimes called the component of the force F
in the direction, D.

9. A boy drags a sled for 100 feet along the ground by pulling on a rope which is 20
degrees from the horizontal with a force of 40 pounds. How much work does this
force do?

10. A girl drags a sled for 200 feet along the ground by pulling on a rope which is 30
degrees from the horizontal with a force of 20 pounds. How much work does this
force do?

11. How much work in Newton meters does it take to slide a crate 20 meters along a
loading dock by pulling on it with a 200 Newton force at an angle of 30◦ from the
horizontal?

12. An object moves 10 meters in the direction of j. There are two forces acting on this
object F 1 = i+ j+k, and F 2 = −5i+ 2 j− 6k. Find the total work done on the
object by the two forces. Hint: You can take the work done by the resultant of the
two forces or you can add the work done by each force. Why?

13. An object moves 10 meters in the direction of j+ i. There are two forces acting on
this object F 1 = i+j+2k, and F 2 = 5i+2j−6k. Find the total work done on the
object by the two forces. Hint: You can take the work done by the resultant of the
two forces or you can add the work done by each force. Why?

14. If a,b, and c are vectors. Show that (b+c)⊥ = b⊥+c⊥ where b⊥ = b−proja (b) .

15. Show that (a ·b) = 1
4

[
|a+b|2 −|a−b|2

]
.

16. Prove from the axioms of the dot product the parallelogram identity which asserts
that |a+b|2 + |a−b|2 = 2 |a|2 +2 |b|2 .
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17. Suppose f ,g are two continuous functions defined on [0,1] . Define

( f ·g) =
∫ 1

0
f (x)g(x)dx.

Show this dot product satisfies conditions 14.1 - 14.5. Explain why the Cauchy
Schwarz inequality continues to hold in this context and state the Cauchy Schwarz
inequality in terms of integrals.

14.4 The Cross Product
The cross product is the other way of multiplying two vectors in R3. It is very different
from the dot product in many ways. First the geometric meaning is discussed and then
a description in terms of coordinates is given. Both descriptions of the cross product are
important. The geometric description is essential in order to understand the applications
to physics and geometry while the coordinate description is the only way to practically
compute the cross product.

Definition 14.4.1 Three vectors a,b,c form a right handed system if when you
extend the fingers of your right hand along the vector a and close them in the direction of
b, the thumb points roughly in the direction of c.

For an example of a right handed system of vectors, see the following picture.

a

b

c

In this picture the vector c points upwards from the plane determined by the other
two vectors. You should consider how a right hand system would differ from a left hand
system. Try using your left hand and you will see that the vector c would need to point in
the opposite direction as it would for a right hand system.

From now on, the vectors i,j,k will always form a right handed system. To repeat,
if you extend the fingers of our right hand along i and close them in the direction j, the
thumb points in the direction of k.

k

i

j

The following is the geometric description of the cross
product. It gives both the direction and the magnitude and
therefore specifies the vector.

Definition 14.4.2 Let a and b be two vectors in R3.
Then a×b is defined by the following two rules.

1. |a×b|= |a| |b|sinθ where θ is the included angle.
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2. a×b ·a= 0, a×b ·b= 0, and a,b,a×b forms a right hand system.

Note that |a×b| is the area of the parallelogram spanned by a and b.

b

aθ

|bsin(θ)

The cross product satisfies the following properties.

a×b=−(b×a) , a×a= 0, (14.15)

For α a scalar,
(αa)×b= α (a×b) = a×(αb) , (14.16)

For a,b, and c vectors, one obtains the distributive laws,

a×(b+c) = a×b+a×c, (14.17)

(b+c)×a= b×a+c×a. (14.18)

Formula 14.15 follows immediately from the definition. The vectors a×b and b×a
have the same magnitude, |a| |b|sinθ , and an application of the right hand rule shows they
have opposite direction. Formula 14.16 is also fairly clear. If α is a nonnegative scalar, the
direction of (αa)×b is the same as the direction of a×b,α (a×b) and a×(αb) while
the magnitude is just α times the magnitude of a×b which is the same as the magnitude
of α (a×b) and a×(αb) . Using this yields equality in 14.16. In the case where α < 0,
everything works the same way except the vectors are all pointing in the opposite direction
and you must multiply by |α| when comparing their magnitudes. The distributive laws are
much harder to establish but the second follows from the first quite easily. Thus, assuming
the first, and using 14.15,

(b+c)×a=−a×(b+c) =−(a×b+a×c) = b×a+c×a.

A proof of the distributive law is given later.
Now from the definition of the cross product,

i×j = k, j× i=−k
k× i= j, i×k=−j
j×k= i, k×j =−i

With this information, the following gives the coordinate description of the cross product.

Proposition 14.4.3 Let a= a1i+a2j+a3k and b= b1i+b2j+b3k be two vectors.
Then

a×b= (a2b3 −a3b2) i+ (a3b1 −a1b3)j+ (a1b2 −a2b1)k. (14.19)
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Proof: From the above table and the properties of the cross product listed,

(a1i+a2j+a3k)× (b1i+b2j+b3k) =

a1b2i×j+a1b3i×k+a2b1j× i+a2b3j×k+a3b1k× i+a3b2k×j

= a1b2k−a1b3j−a2b1k+a2b3i+a3b1j−a3b2i

= (a2b3 −a3b2) i+ (a3b1 −a1b3)j+ (a1b2 −a2b1)k (14.20)

■
It is probably impossible for most people to remember 14.19. Fortunately, there is a

somewhat easier way to remember it.

a×b=

∣∣∣∣∣∣
i j k

a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ (14.21)

where you formally expand the determinant along the top row. For those who have not seen
determinants, here is a short description. All you need here is how to evaluate 2× 2 and
3×3 determinants. ∣∣∣∣ x y

z w

∣∣∣∣= xw− yz

and ∣∣∣∣∣∣
a b c
x y z
u v w

∣∣∣∣∣∣= a
∣∣∣∣ y z

v w

∣∣∣∣−b
∣∣∣∣ x z

u w

∣∣∣∣+ c
∣∣∣∣ x y

u v

∣∣∣∣ .
Here is the rule: You look at an entry in the top row and cross out the row and column
which contain that entry. If the entry is in the ith column, you multiply (−1)1+i times the
determinant of the 2× 2 which remains. This is the cofactor. You take the element in the
top row times this cofactor and add all such terms. The rectangular array enclosed by the
vertical lines is called a matrix and a lot more can be said about these, but this is enough
for our purposes here.

Example 14.4.4 Find (i−j+2k)× (3i−2j+k) .

Use 14.21 to compute this.∣∣∣∣∣∣
i j k
1 −1 2
3 −2 1

∣∣∣∣∣∣=
∣∣∣∣ −1 2
−2 1

∣∣∣∣ i− ∣∣∣∣ 1 2
3 1

∣∣∣∣j+ ∣∣∣∣ 1 −1
3 −2

∣∣∣∣k = 3i+5j+k.

Example 14.4.5 Find the area of the parallelogram determined by the vectors

(i−j+2k) , (3i−2j+k) .

These are the same two vectors in Example 14.4.4.

From Example 14.4.4 and the geometric description of the cross product, the area is just
the norm of the vector obtained in Example 14.4.4. Thus the area is

√
9+25+1 =

√
35.

Example 14.4.6 Find the area of the triangle determined by (1,2,3) ,(0,2,5) , and (5,1,2) .
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This triangle is obtained by connecting the three points with lines. Picking (1,2,3) as
a starting point, there are two displacement vectors (−1,0,2) and (4,−1,−1) such that the
given vector added to these displacement vectors gives the other two vectors. The area of
the triangle is half the area of the parallelogram determined by (−1,0,2) and (4,−1,−1) .
Thus (−1,0,2)× (4,−1,−1) = (2,7,1) and so the area of the triangle is 1

2

√
4+49+1 =

3
2

√
6.

Observation 14.4.7 In general, if you have three points in R3,P,Q,R the area of the
triangle is given by

1
2
|(Q−P )× (R−P )| .

P

Q

R

14.4.1 The Box Product
Definition 14.4.8 A parallelepiped determined by the three vectors a,b, and c con-
sists of

{ra+ sb+ tc : r,s, t ∈ [0,1]} .

That is, if you pick three numbers, r,s, and t each in [0,1] and form ra+ sb+ tc, then the
collection of all such points is what is meant by the parallelepiped determined by these
three vectors.

The following is a picture of such a thing.

a
b

c

a×b

θ

You notice the area of the base of the parallelepiped, the parallelogram determined by
the vectors a and b has area equal to |a×b| while the altitude of the parallelepiped is
|c|cosθ where θ is the angle shown in the picture between c and a×b. Therefore, the
volume of this parallelepiped is the area of the base times the altitude which is just

|a×b| |c|cosθ = a×b ·c.

This expression is known as the box product and is sometimes written as [a,b,c] . You
should consider what happens if you interchange the b with the c or the a with the c. You
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can see geometrically from drawing pictures that this merely introduces a minus sign. In
any case the box product of three vectors always equals either the volume of the paral-
lelepiped determined by the three vectors or else minus this volume.

Example 14.4.9 Find the volume of the parallelepiped determined by the vectors i+2j−
5k,i+3j−6k,3i+2j+3k.

According to the above discussion, pick any two of these, take the cross product and
then take the dot product of this with the third of these vectors. The result will be either the
desired volume or minus the desired volume.

(i+2j−5k)× (i+3j−6k) =

∣∣∣∣∣∣
i j k
1 2 −5
1 3 −6

∣∣∣∣∣∣= 3i+j+k

Now take the dot product of this vector with the third which yields

(3i+j+k) · (3i+2j+3k) = 9+2+3 = 14.

This shows the volume of this parallelepiped is 14 cubic units.
There is a fundamental observation which comes directly from the geometric definitions

of the cross product and the dot product.

Lemma 14.4.10 Let a,b, and c be vectors. Then (a×b) ·c= a· (b×c) .

Proof: This follows from observing that either (a×b) ·c and a·(b×c) both give the
volume of the parallelepiped or they both give −1 times the volume. ■

14.5 Proof of the Distributive Law
Let x be a vector. From the above observation,

x ·a×(b+c) = (x×a) · (b+c) = (x×a) ·b+(x×a) ·c
= x ·a×b+x ·a×c= x·(a×b+a×c) .

Therefore,
x· [a×(b+c)− (a×b+a×c)] = 0

for all x. In particular, this holds for x= a×(b+c)− (a×b+a×c) showing that

a×(b+c) = a×b+a×c

and this proves the distributive law for the cross product.

Observation 14.5.1 Suppose you have three vectors, u= (a,b,c) ,v = (d,e, f ) , and
w = (g,h, i) . Then u ·v×w is given by the following.

u ·v×w = (a,b,c) ·

∣∣∣∣∣∣
i j k
d e f
g h i

∣∣∣∣∣∣= a
∣∣∣∣ e f

h i

∣∣∣∣−b
∣∣∣∣ d f

g i

∣∣∣∣+ c
∣∣∣∣ d e

g h

∣∣∣∣
= det

 a b c
d e f
g h i

 .
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The message is that to take the box product, you can simply take the determinant of the
matrix which results by letting the rows be the rectangular components of the given vectors
in the order in which they occur in the box product.

14.5.1 Torque
Imagine you are using a wrench to loosen a nut. The idea is to turn the nut by applying
a force to the end of the wrench. If you push or pull the wrench directly toward or away
from the nut, it should be obvious from experience that no progress will be made in turning
the nut. The important thing is the component of force perpendicular to the wrench. It is
this component of force which will cause the nut to turn. For example see the following
picture.

F

F

R

F⊥ θ

θ

In the picture a force, F is applied at the end of a
wrench represented by the position vector R and the angle
between these two is θ . Then the tendency to turn will be
|R| |F⊥|= |R| |F |sinθ , which you recognize as the mag-
nitude of the cross product of R and F . If there were just
one force acting at one point whose position vector is R,
perhaps this would be sufficient, but what if there are nu-
merous forces acting at many different points with neither

the position vectors nor the force vectors in the same plane; what then? To keep track of
this sort of thing, define for each R and F, the torque vector

τ ≡R×F .

This is also called the moment of the force, F . That way, if there are several forces acting
at several points the total torque can be obtained by simply adding up the torques associated
with the different forces and positions.

Example 14.5.2 Suppose R1 = 2i− j+3k,R2 = i+2 j− 6k meters and at the points
determined by these vectors there are forces, F 1 = i−j+2k and F 2 = i−5j+k Newtons
respectively. Find the total torque about the origin produced by these forces acting at the
given points.

It is necessary to take R1 ×F 1 +R2 ×F 2. Thus the total torque equals∣∣∣∣∣∣
i j k
2 −1 3
1 −1 2

∣∣∣∣∣∣+
∣∣∣∣∣∣
i j k
1 2 −6
1 −5 1

∣∣∣∣∣∣=−27i−8j−8k Newton meters

Example 14.5.3 Find if possible a single force vector F which if applied at the point
i+j+k will produce the same torque as the above two forces acting at the given points.

This is fairly routine. The problem is to find F = F1i+F2j+F3k which produces the
above torque vector. Therefore,∣∣∣∣∣∣

i j k
1 1 1
F1 F2 F3

∣∣∣∣∣∣=−27i−8j−8k
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which reduces to (F3 −F2) i+ (F1 −F3) j+ (F2 −F1) k= −27i− 8j− 8k. This require-
ment amounts to solving the system of three equations in three unknowns, F1,F2, and F3,

F3 −F2 =−27, F1 −F3 =−8, F2 −F1 =−8

However, there is no solution to these three equations. (Why?) Therefore no single force
acting at the point i+j+k will produce the given torque.

14.5.2 Center of Mass
The mass of an object is a measure of how much stuff there is in the object. An object has
mass equal to one kilogram, a unit of mass in the metric system, if it would exactly balance
a known one kilogram object when placed on a balance. The known object is one kilogram
by definition. The mass of an object does not depend on where the balance is used. It
would be one kilogram on the moon as well as on the earth. The weight of an object is
something else. It is the force exerted on the object by gravity and has magnitude gm
where g is a constant called the acceleration of gravity. Thus the weight of a one kilogram
object would be different on the moon which has much less gravity, smaller g, than on the
earth. An important idea is that of the center of mass. This is the point at which an object
will balance no matter how it is turned.

Definition 14.5.4 Let an object consist of p point masses m1, · · · ,mp with the po-
sition of the kth of these at Rk. The center of mass of this object R0 is the point satisfying

p

∑
k=1

(Rk −R0)×gmku= 0

for all unit vectors u.

The above definition indicates that no matter how the object is suspended, the total
torque on it due to gravity is such that no rotation occurs. Using the properties of the cross
product (

p

∑
k=1

Rkgmk −R0

p

∑
k=1

gmk

)
×u= 0 (14.22)

for any choice of unit vector u. You should verify that if a×u= 0 for all u, then it must
be the case that a= 0. Then the above formula requires that

p

∑
k=1

Rkgmk −R0

p

∑
k=1

gmk = 0.

dividing by g, and then by ∑
p
k=1 mk,

R0 =
∑

p
k=1Rkmk

∑
p
k=1 mk

. (14.23)

This is the formula for the center of mass of a collection of point masses. To consider
the center of mass of a solid consisting of continuously distributed masses, you need the
methods of multi-variable calculus.
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Example 14.5.5 Let m1 = 5,m2 = 6, and m3 = 3 where the masses are in kilograms. Sup-
pose m1 is located at 2i+ 3j + k, m2 is located at i− 3j + 2k and m3 is located at
2i−j+3k. Find the center of mass of these three masses.

Using 14.23

R0 =
5(2i+3j+k)+6(i−3j+2k)+3(2i−j+3k)

5+6+3
=

11
7
i− 3

7
j+

13
7
k

14.5.3 Angular Velocity

Definition 14.5.6 In a rotating body, a vector Ω is called an angular velocity vec-
tor if the velocity of a point having position vector u relative to the body is given by Ω×u.

The existence of an angular velocity vector is the key to understanding motion in a
moving system of coordinates. It is used to explain the motion on the surface of the ro-
tating earth. For example, have you ever wondered why low pressure areas rotate counter
clockwise in the Northern hemisphere but clockwise in the Southern hemisphere? To quan-
tify these things, you will need the concept of an angular velocity vector. Here is a simple
example. Think of a coordinate system fixed in the rotating body. Thus if you were riding
on the rotating body, you would observe this coordinate system as fixed.

Example 14.5.7 A wheel rotates counter clockwise about the vector i+j+k at 60 rev-
olutions per minute. This means that if the thumb of your right hand were to point in the
direction of i+j+k your fingers of this hand would wrap in the direction of rotation.
Find the angular velocity vector for this wheel. Assume the unit of distance is meters and
the unit of time is minutes.

Let ω = 60× 2π = 120π. This is the number of radians per minute corresponding to
60 revolutions per minute. Then the angular velocity vector is 120π√

3
(i+j+k) . Note this

gives what you would expect in the case the position vector to the point is perpendicular to
i+j+k and at a distance of r. This is because of the geometric description of the cross
product. The magnitude of the vector is r120π meters per minute and corresponds to the
speed and an exercise with the right hand shows the direction is correct also. However, if
this body is rigid, this will work for every other point in it, even those for which the position
vector is not perpendicular to the given vector.

Example 14.5.8 A wheel rotates counter clockwise about the vector i+j+k at 60 rev-
olutions per minute exactly as in Example 14.5.7. Let {u1,u2,u3} denote an orthogonal
right handed system attached to the rotating wheel in which u3 = 1√

3
(i+j+k) . Thus

u1 and u2 depend on time but, u1 ×u2 = u3. Find the velocity of the point of the wheel
located at the point 2u1 +3u2 −u3. Note this point is not fixed in space. It is moving.

Since {u1,u2,u3} is a right handed system like i,j,k, everything applies to this sys-
tem in the same way as with i,j,k. Thus the cross product is given by

(au1 +bu2 + cu3)× (du1 + eu2 + fu3) =

∣∣∣∣∣∣
u1 u2 u3
a b c
d e f

∣∣∣∣∣∣
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Therefore, in terms of the given vectors ui, the angular velocity vector is 120πu3. The
velocity of the given point is∣∣∣∣∣∣

u1 u2 u3
0 0 120π

2 3 −1

∣∣∣∣∣∣=−360πu1 +240πu2

in meters per minute. Note how this gives the answer in terms of these vectors which are
fixed in the body, not in space. Since ui depends on t, this shows the answer in this case
does also. Of course this is right. Just think of what is going on with the wheel rotating.
Those vectors which are fixed in the wheel are moving in space relative to a stationary
observer. The velocity of a point in the wheel should be constantly changing. However, its
speed will not change. The speed will be the magnitude of the velocity and this is√

(−360πu1 +240πu2) · (−360πu1 +240πu2)

which from the properties of the dot product equals√
(−360π)2 +(240π)2 = 120

√
13π

because the ui are given to be orthogonal.

14.6 Vector Identities and Notation
To begin with consider u× (v×w) and it is desired to simplify this expression. It turns
out this expression comes up in many different contexts. Let u= (u1,u2,u3) and let v and
w be defined similarly.

v×w =

∣∣∣∣∣∣
i j k
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣= (v2w3 − v3w2) i+ (w1v3 − v1w3)j+ (v1w2 − v2w1)k

Next consider u×(v×w) which is given by

u×(v×w) =

∣∣∣∣∣∣
i j k

u1 u2 u3
(v2w3 − v3w2) (w1v3 − v1w3) (v1w2 − v2w1)

∣∣∣∣∣∣ .
When you multiply this out, you get

i(v1u2w2 +u3v1w3 −w1u2v2 −u3w1v3)+j (v2u1w1 + v2w3u3 −w2u1v1 −u3w2v3)

+k (u1w1v3 + v3w2u2 −u1v1w3 − v2w3u2)

and if you are clever, you see right away that

(iv1 +jv2 +kv3)(u1w1 +u2w2 +u3w3)− (iw1 +jw2 +kw3)(u1v1 +u2v2 +u3v3) .

Thus
u×(v×w) = v (u ·w)−w (u ·v) . (14.24)
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A related formula is

(u×v)×w = − [w×(u×v)] =− [u(w ·v)−v (w ·u)]
= v (w ·u)−u(w ·v) . (14.25)

This derivation is simply wretched and it does nothing for other identities which may arise
in applications. Actually, the above two formulas, 14.24 and 14.25 are sufficient for most
applications if you are creative in using them, but there is another way. This other way
allows you to discover such vector identities as the above without any creativity or any
cleverness. Therefore, it is far superior to the above nasty and tedious computation. It is a
vector identity discovering machine and it is this which is the main topic in what follows. I
cannot understand why it is not routinely presented in calculus texts. The engineers I have
known seem to know all about it.

There are two special symbols, δ i j and ε i jk which are very useful in dealing with vector
identities. To begin with, here is the definition of these symbols.

Definition 14.6.1 The symbol δ i j, called the Kroneker delta symbol is defined as
follows.

δ i j ≡
{

1 if i = j
0 if i ̸= j .

With the Kroneker symbol i and j can equal any integer in {1,2, · · · ,n} for any n ∈ N.

Definition 14.6.2 For i, j, and k integers in the set, {1,2,3} , ε i jk is defined as
follows.

ε i jk ≡

 1 if (i, j,k) = (1,2,3) ,(2,3,1) , or (3,1,2)
−1 if (i, j,k) = (2,1,3) ,(1,3,2) , or (3,2,1)
0 if there are any repeated integers

.

The subscripts i jk and i j in the above are called indices. A single one is called an index.
This symbol ε i jk is also called the permutation symbol.

The way to think of ε i jk is that ε123 = 1 and if you switch any two of the numbers in the
list i, j,k, it changes the sign. Thus ε i jk =−ε jik and ε i jk =−εk ji etc. You should check that
this rule reduces to the above definition. For example, it immediately implies that if there
is a repeated index, the answer is zero. This follows because ε ii j =−ε ii j and so ε ii j = 0.

It is useful to use the Einstein summation convention when dealing with these symbols.
Simply stated, the convention is that you sum over the repeated index. Thus aibi means
∑i aibi. Also, δ i jx j means ∑ j δ i jx j = xi. When you use this convention, there is one very
important thing to never forget. It is this: Never have an index be repeated more than once.
Thus aibi is all right but aiibi is not. The reason for this is that you end up getting confused
about what is meant. If you want to write ∑i aibici it is best to simply use the summation
notation. There is a very important reduction identity connecting these two symbols.

Lemma 14.6.3 The following holds.

ε i jkε irs = (δ jrδ ks −δ krδ js) .

Proof: If { j,k} ̸= {r,s} then every term in the sum on the left must have either ε i jk
or ε irs contains a repeated index. Therefore, the left side equals zero. The right side also
equals zero in this case. To see this, note that if the two sets of indices are not equal, then
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there is one of the indices in one of the sets which is not in the other set. For example, it
could be that j is not equal to either r or s. Then the right side equals zero.

Therefore, it can be assumed { j,k} = {r,s} . If i = r and j = s for s ̸= r, then there
is exactly one term in the sum on the left and it equals 1. The right also reduces to 1
in this case. If i = s and j = r, there is exactly one term in the sum on the left which is
nonzero and it must equal −1. The right side also reduces to −1 in this case. If there is
a repeated index in { j,k} , then every term in the sum on the left equals zero. The right
also reduces to zero in this case because then j = k = r = s and so the right side becomes
(1)(1)− (−1)(−1) = 0. ■

Proposition 14.6.4 Let u,v be vectors in Rp where the Cartesian coordinates of u are
(u1, · · · ,up) and the Cartesian coordinates of v are (v1, · · · ,vp). Then u ·v = uivi. If u,v
are vectors in R3, then

(u×v)i = ε i jku jvk.

Also, δ ikak = ai.

Proof: The first claim is obvious from the definition of the dot product. The second is
verified by simply checking it works. For example,

u×v ≡

∣∣∣∣∣∣
i j k

u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣
and so

(u×v)1 = (u2v3 −u3v2) .

From the above formula in the proposition,

ε1 jku jvk ≡ u2v3 −u3v2,

the same thing. The cases for (u×v)2 and (u×v)3 are verified similarly. The last claim
follows directly from the definition. ■

With this notation, you can easily discover vector identities and simplify expressions
which involve the cross product.

Example 14.6.5 Discover a formula which simplifies (u×v)×w.

From the above reduction formula,

((u×v)×w)i = ε i jk (u×v) j wk = ε i jkε jrsurvswk

= −ε jikε jrsurvswk =−(δ irδ ks −δ isδ kr)urvswk

= −(uivkwk −ukviwk) = u ·wvi −v ·wui

= ((u ·w)v− (v ·w)u)i .

Since this holds for all i, it follows that

(u×v)×w = (u ·w)v− (v ·w)u.
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14.7 Planes

This section concerns something called a level surface of a function of many variables. It
is a little outside the goals of this book but it seems a shame not to consider it because it is
a nice illustration of the geometric significance of the dot product. To find the equation of a
plane, you need two things, a point contained in the plane and a vector normal to the plane.
Let p0 = (x0,y0,z0) denote the position vector of a point in the plane, let p= (x,y,z) be the
position vector of an arbitrary point in the plane, and let n denote a vector normal to the
plane. This means that

n·(p−p0) = 0

whenever p is the position vector of a point in the plane. The following picture illustrates
the geometry of this idea.

p0
p

n

Expressed equivalently, the plane is just the set of all points p such that the vector
p−p0 is perpendicular to the given normal vector n.

Example 14.7.1 Find the equation of the plane with normal vector n= (1,2,3) contain-
ing the point (2,−1,5) .

From the above, the equation of this plane is just

(1,2,3) · (x−2,y+1,z−3) = x−9+2y+3z = 0

Example 14.7.2 2x+4y−5z = 11 is the equation of a plane. Find the normal vector and
a point on this plane.

You can write this in the form 2
(
x− 11

2

)
+ 4(y−0)+ (−5)(z−0) = 0. Therefore, a

normal vector to the plane is 2i+4j−5k and a point in this plane is
( 11

2 ,0,0
)
. Of course

there are many other points in the plane.

Definition 14.7.3 Suppose two planes intersect. The angle between the planes is
defined to be the angle which is less than π/2 between normal vectors to the respective
planes.

Example 14.7.4 Find the angle between the two planes x+2y−z = 6 and 3x+2y−z = 7.
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The two normal vectors are (1,2,−1) and (3,2,−1) . Therefore, the cosine of the angle
desired is

cosθ =
(1,2,−1) · (3,2,−1)√

12 +22 +(−1)2
√

32 +22 +(−1)2
= .87287

Now use a calculator or table to find what the angle is. cosθ = .87287, Solution is :
{θ = .50974} . This value is in radians.

Sometimes you need to find the equation of a plane which contains three points. Con-
sider the following picture.

(a0,b0,c0)

(a1,b1,c1)

(a2,b2,c2)

a

b

You have plenty of points but you need a normal. This can be obtained by taking a×b
where a= (a1 −a0,b1 −b0,c1 − c0) and b= (a2 −a0,b2 −b0,c2 − c0) .

Example 14.7.5 Find the equation of the plane which contains the three points

(1,2,1) ,(3,−1,2) ,and (4,2,1) .

You just need to get a normal vector to this plane. This can be done by taking the cross
products of the two vectors

(3,−1,2)− (1,2,1) and (4,2,1)− (1,2,1)

Thus a normal vector is (2,−3,1)×(3,0,0)= (0,3,9) . Therefore, the equation of the plane
is

0(x−1)+3(y−2)+9(z−1) = 0

or 3y+ 9z = 15 which is the same as y+ 3z = 5. When you have what you think is the
plane containing the three points, you ought to check it by seeing if it really does contain
the three points.

Proposition 14.7.6 If (a,b,c) ̸= (0,0,0) , then ax+ by+ cz = d is the equation of a
plane with normal vector ai+bj+ ck. Conversely, any plane can be written in this form.

Proof: One of a,b,c is nonzero. Suppose for example that c ̸= 0. Then the equation
can be written as

a(x−0)+b(y−0)+ c
(

z− d
c

)
= 0

Therefore,
(
0,0, d

c

)
is a point on the plane and a normal vector is ai+bj+ck. The converse

follows from the above discussion involving the point and a normal vector. ■

Example 14.7.7 Find the equation of the plane containing the points (1,2,3) and the line
(0,1,1)+ t (2,1,2) = (x,y,z).
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There are several ways to do this. One is to find three points and use the above pro-
cedures. Let t = 0 and then let t = 1 to get two points on the line. This yields the three
points (1,2,3) ,(0,1,1) , and (2,2,3) . Then a normal vector is obtained by fixing a point
and taking the cross product of the differences of the other two points with that one. Thus
in this case, fixing (0,1,1) , a normal vector is

(1,1,2)× (2,1,2) = (0,2,−1)

Therefore, an equation for the plane is

0(x−0)+2(y−1)+(−1)(x−3) = 0

Simplifying this yields
2y+1− x = 0

Example 14.7.8 Find the equation of the plane which contains the two lines, given by the
following parametric expressions in which t ∈ R.

(2t,1+ t,1+2t) = (x,y,z) , (2t +2,1,3+2t) = (x,y,z)

Note first that you don’t know there even is such a plane. However, if there is, you could
find it by obtaining three points, two on one line and one on another and then using any of
the above procedures for finding the plane. From the first line, two points are (0,1,1) and
(2,2,3) while a third point can be obtained from second line, (2,1,3) . You need a normal
vector and then use any of these points. To get a normal vector, form (2,0,2)× (2,1,2) =
(−2,0,2) . Therefore, the plane is −2x+0(y−1)+2(z−1) = 0. This reduces to z−x = 1.
If there is a plane, this is it. Now you can simply verify that both of the lines are really in
this plane. From the first, (1+2t)−2t = 1 and the second, (3+2t)− (2t +2) = 1 so both
lines lie in the plane.

One way to understand how a plane looks is to connect the points where it intercepts
the x,y, and z axes. This allows you to visualize the plane somewhat and is a good way to
sketch the plane. Not surprisingly these points are called intercepts.

Example 14.7.9 Sketch the plane having intercepts (2,0,0) ,(0,3,0), and (0,0,4) .

x

y

z

You see how connecting the intercepts gives a fairly good geometric description of the
plane. These lines which connect the intercepts are also called the traces of the plane. Thus
the line which joins (0,3,0) to (0,0,4) is the intersection of the plane with the yz plane. It
is the trace on the yz plane.

Example 14.7.10 Identify the intercepts of the plane 3x−4y+5z = 11.
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The easy way to do this is to divide both sides by 11. Thus x
(11/3) +

y
(−11/4) +

z
(11/5) = 1.

The intercepts are (11/3,0,0) ,(0,−11/4,0) and (0,0,11/5) . You can see this by letting
both y and z equal to zero to find the point on the x axis which is intersected by the plane.
The other axes are handled similarly.

14.8 Exercises
1. Show that if a×u= 0 for all unit vectors u, then a= 0.

2. If you only assume 14.22 holds for u= i,j,k, show that this implies 14.22 holds
for all unit vectors u.

3. Let m1 = 5,m2 = 1, and m3 = 4 where the masses are in kilograms and the distance
is in meters. Suppose m1 is located at 2i−3j+k, m2 is located at i−3j+6k and
m3 is located at 2i+j+3k. Find the center of mass of these three masses.

4. Let m1 = 2,m2 = 3, and m3 = 1 where the masses are in kilograms and the distance
is in meters. Suppose m1 is located at 2i−j+k, m2 is located at i−2j+k and m3
is located at 4i+j+3k. Find the center of mass of these three masses.

5. Find the angular velocity vector of a rigid body which rotates counter clockwise
about the vector i−2j+k at 40 revolutions per minute. Assume distance is mea-
sured in meters.

6. Let {u1,u2,u3} be a right handed system with u3 pointing in the direction of
i−2j+k and u1 and u2 being fixed with the body which is rotating at 40 revo-
lutions per minute. This is also an orthonormal system meaning ui ·u j = δ i j. As-
suming all distances are in meters, find the constant speed of the point of the body
located at 3u1 +u2 −u3 in meters per minute.

7. Find the area of the triangle determined by the three points (1,2,3) ,(4,2,0) and
(−3,2,1) .

8. Find the area of the triangle determined by the three points (1,2,3) ,(2,3,4) and
(0,1,2) . Did something interesting happen here? What does it mean geometrically?

9. Find the area of the parallelogram determined by the vectors (1,2,3) and (3,−2,1) .

10. Find the area of the parallelogram determined by the vectors (1,−2,2) and (3,1,1) .

11. Find the volume of the parallelepiped determined by the vectors i−7j−5k,i−2j−
6k,3i+2j+3k.

12. Find the volume of the parallelepiped determined by the vectors i+j−5k,i+5j−
6k,3i+j+3k.

13. Find the volume of the parallelepiped determined by the vectors i+6j+5k,i+5j−
6k,3i+j+k.

14. Suppose a,b, and c are three vectors whose components are all integers. Can you
conclude the volume of the parallelepiped determined from these three vectors will
always be an integer?
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15. What does it mean geometrically if the box product of three vectors gives zero?

16. It is desired to find an equation of a plane parallel to the two vectors a and b contain-
ing the point 0. Using Problem 15, show an equation for this plane is∣∣∣∣∣∣

x y z
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣= 0

That is, the set of all (x,y,z) such that

x
∣∣∣∣ a2 a3

b2 b3

∣∣∣∣− y
∣∣∣∣ a1 a3

b1 b3

∣∣∣∣+ z
∣∣∣∣ a1 a2

b1 b2

∣∣∣∣= 0

17. Using the notion of the box product yielding either plus or minus the volume of the
parallelepiped determined by the given three vectors, show that

(a×b) ·c= a· (b×c)

In other words, the dot and the cross can be switched as long as the order of the
vectors remains the same. Hint: There are two ways to do this, by the coordinate
description of the dot and cross product and by geometric reasoning.

18. Is a×(b×c) = (a×b)×c? What is the meaning of a×b×c? Explain. Hint: Try
(i×j)×j.

19. Verify directly that the coordinate description of the cross product a×b has the
property that it is perpendicular to both a and b. Then show by direct computation
that this coordinate description satisfies

|a×b|2 = |a|2 |b|2 − (a ·b)2 = |a|2 |b|2
(
1− cos2 (θ)

)
where θ is the angle included between the two vectors. Explain why |a×b| has the
correct magnitude. All that is missing is the material about the right hand rule. Verify
directly that the right thing happens with regards to the vectors i,j,k. Next verify
that the distributive law holds for the coordinate description of the cross product.
This gives another way to approach the cross product. First define it in terms of
coordinates and then get the geometric properties from this.

20. Discover a vector identity for u×(v×w) .

21. Discover a vector identity for (u×v) · (z×w) .

22. Discover a vector identity for (u×v)× (z×w) in terms of box products.

23. Simplify (u×v) · (v×w)× (w×z) .

24. Simplify |u×v|2 +(u ·v)2 −|u|2 |v|2 .

25. Prove that ε i jkε i jr = 2δ kr.

26. If A is a 3× 3 matrix such that A =
(
u v w

)
where these are the columns of

the matrix A. Show that det(A) = ε i jkuiv jwk.
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27. If A is a 3×3 matrix, show εrps det(A) = ε i jkAriAp jAsk.

28. Suppose A is a 3×3 matrix and det(A) ̸= 0. Show using 27 and 25 that

(
A−1)

ks =
1

2det(A)
εrpsε i jkAp jAri.

29. When you have a rotating rigid body with angular velocity vector Ω then the velocity,
u′ is given by u′ = Ω×u. It turns out that all the usual calculus rules such as the
product rule hold. Also, u′′ is the acceleration. Show using the product rule that for
Ω a constant vector

u′′ = Ω× (Ω×u) .

It turns out this is the centripetal acceleration. Note how it involves cross products.

30. Find the planes which go through the following collections of three points. In case
the plane is not well defined, explain why.

(a) (1,2,0) ,(2,−1,1) ,(3,1,1)

(b) (3,1,0) ,(2,1,1) ,(−3,1,−1)

(c) (2,1,1) ,(−2,3,1) ,(0,4,2)

(d) (1,0,1) ,(2,0,1) ,(0,1,1)

31. A point is given along with a line. Find the equation for the plane which contains the
line as well as the point.

(a) (1,2,1) ,(1,−1,1)+ t (1,0,1)

(b) (2,1,−1) ,(1,1,1)+ t (2,−1,1)

(c) (−1,2,3) ,(−1,1,1)+ t (2,1,1)

(d) (2,0,1) ,(2,1,1)+ t (−1,1,1)
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Chapter 15

Sequences, Compactness, and
Continuity

This chapter is on open, closed, and compact sets in Rp. The reason this is done is to show
fundamental results about continuous functions which will also be defined a little later.

15.1 Sequences of Vectors
Recall how a sequence was a function from a set {m,m+1, · · ·} to R. This was the case
discussed earlier anyway. It is no different if the function has values in Rp. A vector
valued sequence is just a function from {m,m+1, · · ·} with values in Rp. Convergence of
sequences is defined exactly as before. Note that saying |x−y| is small is exactly the same
as saying that |xi − yi| is small for each i. This is easily seen by observing that

max{|xi − yi| : i ≤ p} ≤ |x−y|=

√
p

∑
i=1

|xi − yi|2

≤

√
p

∑
i=1

max
{
|xi − yi|2 : i ≤ p

}
=
√

pmax{|xi − yi| : i ≤ p} (15.1)

Definition 15.1.1 limn→∞xn = x means: For every ε > 0 there is nε such that if
n ≥ nε , then |xn −x| < ε . From the description of |·| given earlier, this says the same as
limn→∞ xn

i = xi for each i = 1,2, · · · , p where xn ≡
(
xn

1, · · · ,xn
p
)

and x≡ (x1, · · · ,xp) .

As just explained, there isn’t a lot new here. Convergence of a sequence of vectors is
equivalent to consideration of convergence of the components of the sequence.

Also similar is the concept of a Cauchy sequence.

Definition 15.1.2 {xk} is a Cauchy sequence if and only if the following holds.
For every ε > 0, there exists nε such that if k, l ≥ nε , then |xk −xl |< ε .

As explained above, a sequence {xk} is Cauchy if and only if the sequences of compo-
nents of {xk} are Cauchy sequences. The following theorem follows from this.

321
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Theorem 15.1.3 A sequence
{
xk
}

converges if and only if it is a Cauchy sequence.

Proof: Let xk =
(
xk

1, · · · ,xk
p
)
. Then from 15.1,

{
xk
}

is Cauchy if and only if
{

xk
i
}∞

k=1
is Cauchy for each i ≤ p if and only if

{
xk

i
}∞

k=1 converges to some xi for each i ≤ p if and
only if

{
xk
}

converges to x≡ (x1, · · · ,xp). See Theorem 3.7.3. ■
Also important is the following theorem.

Theorem 15.1.4 The set of terms in a Cauchy sequence in Rp is bounded in the
sense that for all n, |xn|< M for some M < ∞.

Proof: Let ε = 1 in the definition of a Cauchy sequence and let n > n1. Then from the
definition, |xn−xn1 | < 1. It follows that for all n > n1, |xn| < 1+ |xn1 | .Therefore, for all
n, |xn| ≤ 1+ |xn1 |+∑

n1
k=1 |xk| ■

Note that a sequence in Rp is bounded if and only if the kth components are bounded,
this by 15.1.

15.2 Open and Closed Sets
Open sets are those sets S such that if x ∈ S, then so is y whenever y is sufficiently close to
x. Closed sets are those sets S such that if xn → x and each xn ∈ S, then also x ∈ S. What
follows is just a more precise statement of this.

Eventually, one must consider functions which are defined on subsets of Rp and their
properties. The next definition will end up being quite important. It describe a type of
subset of Rp with the property that if x is in this set, then so is y whenever y is close
enough to x.

Definition 15.2.1 Recall for x,y ∈ Rp, |x−y| =
(

∑
p
i=1 |xi − yi|2

)1/2
. Also let

B(x,r)≡ {y ∈ Rp : |x−y|< r} . Let U ⊆ Rp. U is an open set if whenever x ∈U, there
exists r > 0 such that B(x,r) ⊆ U. More generally, if U is any subset of Rp, x ∈ U is an
interior point of U if there exists r > 0 such that x ∈ B(x,r)⊆U. In other words U is an
open set exactly when every point of U is an interior point of U.

If there is something called an open set, surely there should be something called a
closed set and here is the definition of one.

Definition 15.2.2 A subset, C, of Rp is called a closed set if Rp \C is an open
set. They symbol Rp \C denotes everything in Rp which is not in C. It is also called the
complement of C. The symbol SC is a short way of writing Rp \S.

To illustrate this definition, consider the following picture.

x U
B(x,r)
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You see in this picture how the edges are dotted. This is because an open set, can not in-
clude the edges or the set would fail to be open. For example, consider what would happen
if you picked a point out on the edge of U in the above picture. Every open ball centered
at that point would have in it some points which are outside U . Therefore, such a point
would violate the above definition. You also see the edges of B(x,r) dotted suggesting that
B(x,r) ought to be an open set. This is intuitively clear but does require a proof. This will
be done in the next theorem and will give examples of open sets. Also, you can see that
if x is close to the edge of U , you might have to take r to be very small. open sets do not
have their skins while closed sets do. Here is a picture of a closed set, C.

B(x,r)
xC

Note that x /∈C and since Rp \C is open, there exists a ball, B(x,r) contained entirely
in Rp \C. If you look at Rp \C, what would be its skin? It can’t be in Rp \C and so it must
be in C. This is a rough heuristic explanation of what is going on with these definitions.
Also note that Rp and /0 are both open and closed. Here is why. If x ∈ /0, then there must
be a ball centered at x which is also contained in /0. This must be considered to be true
because there is nothing in /0 so there can be no example to show it false1. Therefore, from
the definition, it follows /0 is open. It is also closed because if x /∈ /0, then B(x,1) is also
contained in Rp \ /0 =Rp. Therefore, /0 is both open and closed. From this, it follows Rp is
also both open and closed.

Theorem 15.2.3 Let x ∈ Rp and let r ≥ 0. Then B(x,r) is an open set. Also,
D(x,r) ≡ {y ∈ Rp : |y−x| ≤ r} is a closed set. In particular, every closed interval in R
is a closed set.

Proof: Suppose y ∈ B(x,r). It is necessary to show there exists r1 > 0 such that
B(y,r1)⊆ B(x,r). Define r1 ≡ r−|x−y|. Then if |z−y|< r1, it follows from the above
triangle inequality that

|z−x| = |z−y+y−x| ≤ |z−y|+ |y−x|
< r1 + |y−x|= r−|x−y|+ |y−x|= r.

1To a mathematician, the statement: Whenever a pig is born with wings it can fly must be taken as true. We
do not consider biological or aerodynamic considerations in such statements. There is no such thing as a winged
pig and therefore, all winged pigs must be superb flyers since there can be no example of one which is not. On
the other hand we would also consider the statement: Whenever a pig is born with wings it cannot possibly fly,
as equally true. The point is, you can say anything you want about the elements of the empty set and no one can
gainsay your statement. Therefore, such statements are considered as true by default. You may say this is a very
strange way of thinking about truth and ultimately this is because mathematics is not about truth. It is more about
consistency and logic.
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Note that if r = 0 then B(x,r) = /0, the empty set. This is because if y ∈ Rp, |x−y| ≥ 0
and so y /∈ B(x,0). Since /0 has no points in it, it must be open because every point in it,
(There are none.) satisfies the desired property of being an interior point.

Now suppose y /∈ D(x,r). Then |x−y| > r and defining δ ≡ |x−y| − r, it follows
that if z ∈ B(y,δ ), then by the triangle inequality,

|x−z| ≥ |x−y|− |y−z|> |x−y|−δ

= |x−y|− (|x−y|− r) = r

and this shows that B(y,δ )⊆Rp \D(x,r). Since y was an arbitrary point in Rp \D(x,r),
it follows Rp \D(x,r) is an open set which shows, from the definition, that D(x,r) is a
closed set as claimed. Now [a,b] = D

( a+b
2 , b−a

2

)
. ■

A picture which is descriptive of the conclusion of the above theorem which also im-
plies the manner of proof is the following.

yx

r
r1

B(x,r)

yx

r
r1

D(x,r)

The next theorem includes the main ideas for a set to be closed. It says that closed is to
retain all limits of sequences which are contained in A.

Theorem 15.2.4 A nonempty set A is closed if and only if whenever xk ∈ A and
limk→∞xk = x, it follows that x ∈ A. In other words, the set is closed if and only if every
convergent sequence of points of A converges to a point of A.

Proof: Suppose A is closed and suppose limk→∞xk = x. Does it follow that x ∈ A? If
not, then since A is closed, its complement is open and so there is a ball B(x,r) contained
in AC. However, this contradicts the assertion that x is the limit of the sequence. Indeed,
xk must be in B(x,r) for all k sufficiently large.

Conversely, suppose A retains all limits of convergent sequences. Is A closed? In other
words, is its complement AC open? Suppose x ∈ AC. Is B(x,r) ⊆ AC for small enough
positive r? If not, then B

(
x, 1

k

)
contains a point of A called xk for each k = 1,2, · · · . Thus

x is a limit of the sequence {xk} and so x ∈ A after all. Hence AC must indeed be open
and so, by definition, A is closed. ■

15.3 Cartesian Products
Recall R2 consists of ordered pairs (x,y) such that x ∈ R and y ∈ R. R2 is also written as
R×R. In general, the following definition holds.

Definition 15.3.1 The Cartesian product of two sets A×B, means

{(a,b) : a ∈ A, b ∈ B} .
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If you have n sets A1,A2, · · · ,An

n

∏
i=1

Ai = {(x1,x2, · · · ,xn) : each xi ∈ Ai} .

Now suppose A ⊆ Rm and B ⊆ Rp. Then if (x,y) ∈ A× B, x= (x1, · · · ,xm), and
y = (y1, · · · ,yp), the following identification will be made.

(x,y) = (x1, · · · ,xm,y1, · · · ,yp) ∈ Rp+m.

Similarly, starting with something in Rp+m, you can write it in the form (x,y) where
x ∈ Rm and y ∈ Rp. The following theorem has to do with the Cartesian product of two
closed sets or two open sets. Also here is an important definition.

Definition 15.3.2 A set, A ⊆Rp is said to be bounded if there exist finite intervals,
[ai,bi] such that A ⊆ ∏

p
i=1 [ai,bi] .

Theorem 15.3.3 Let U be an open set in Rm and let V be an open set in Rp. Then
U ×V is an open set in Rp+m. If C is a closed set in Rm and H is a closed set in Rp, then
C×H is a closed set in Rp+m. If C and H are bounded, then so is C×H.

Proof: Let (x,y)∈U ×V . Since U is open, there exists r1 > 0 such that B(x,r1)⊆U .
Similarly, there exists r2 > 0 such that B(y,r2)⊆V . Now

B((x,y) ,δ )≡

{
(s,t) ∈ Rp+m :

m

∑
k=1

|xk − sk|2 +
p

∑
j=1

∣∣y j − t j
∣∣2 < δ

2

}

Therefore, if δ ≡ min(r1,r2) and (s,t) ∈ B((x,y) ,δ ), then it follows that s ∈ B(x,r1)⊆
U and that t ∈ B(y,r2)⊆V which shows that B((x,y) ,δ )⊆U ×V . Hence U ×V is open
as claimed.

Next suppose (x,y) /∈ C ×H. It is necessary to show there exists δ > 0 such that
B((x,y) ,δ )⊆ Rp+m \ (C×H). Either x /∈C or y /∈ H since otherwise (x,y) would be a
point of C×H. Suppose therefore, that x /∈C. Since C is closed, there exists r > 0 such that
B(x,r)⊆Rm\C. Consider B((x,y) ,r). If (s,t)∈B((x,y) ,r) , it follows that s∈B(x,r)
which is contained in Rm \C. Therefore, B((x,y) ,r)⊆Rp+m \ (C×H) showing C×H is
closed. A similar argument holds if y /∈ H.

If C is bounded, there exist [ai,bi] such that C ⊆ ∏
m
i=1 [ai,bi] and if H is bounded,

H ⊆ ∏
m+p
i=m+1 [ai,bi] for intervals [am+1,bm+1] , · · · , [am+p,bm+p]. Therefore,

C×H ⊆ ∏
m+p
i=1 [ai,bi]. ■

15.4 Sequential Compactness
The concept of sequential compactness is also the same as before. I will show here that, as
before, the sequentially compact sets are closed and bounded.

Definition 15.4.1 A set K in Rp is sequentially compact if every sequence in K has
a subsequence which converges to a point in K.
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Theorem 15.4.2 Let K be a nonempty subset of Rp. Then K is sequentially compact
if and only if it is closed and bounded.

Proof: Suppose first that K is closed and bounded. Then by definition, K ⊆ ∏
p
i=1 [ai,bi]

for a suitable product of closed and bounded intervals. Let the sequence be
{
xk
}∞

k=1 ,x
k =(

xk
1, · · · ,xk

p
)
. Then it follows from the definition of the Cartesian product that for each

i,xk
i ∈ [ai,bi] for all k. Then

{
xk

1
}∞

k=1 has a convergent subsequence, denoted by xk1
1 such

that limk1→∞ xk1
1 = x1. Now

{
xk1

2

}
has a convergent subsequence denoted as

{
xk2

2

}∞

k2=1
converging to x2 ∈ [a2,b2]. Recall that if a sequence of real numbers converges, then so does
every subsequence. It follows that limk2→∞ xk2

1 = x1. Continue taking subsequences such
that limkr→∞ xkr

j = x j ∈ [a j,b j] for each j ≤ r. Therefore, limkp→∞ xkp
i = xi for each i ≤ p

and this shows that limkp→∞xkp = x where x= (x1, · · · ,xp) ∈ ∏
p
i=1 [ai,bi]. However, K is

closed and so x ∈ K. This shows that a closed and bounded nonempty set is sequentially
compact.

Conversely, suppose a set K is sequentially compact. Then the set must be bounded
since otherwise one could obtain a sequence of points {xn}∞

n=1 with |xn| > n. Thus ev-
ery subsequence is unbounded so no subsequence can be a Cauchy sequence and so no
subsequence can converge. If the set is not closed, then by Theorem 15.2.4 above, there
would be a point x /∈ K and a sequence of points of K {xk}∞

k=1 which converges to x. But
now this sequence must have a convergent subsequence converging to a point of K. This is
impossible because all subsequences must converge to x which is not in K. Therefore, K
must also be closed. ■

15.5 Vector Valued Functions

Vector valued functions have values in Rp where p is an integer at least as large as 1. Here
are some examples.

Example 15.5.1 A rocket is launched from the rotating earth. You could define a function
having values in R3 as (r (t) ,θ (t) ,φ (t)) where r (t) is the distance of the center of mass
of the rocket from the center of the earth, θ (t) is the longitude, and φ (t) is the latitude of
the rocket.

Example 15.5.2 Let f (x,y)=
(
sinxy,y3 + x,x4

)
. Then f is a function defined on R2 which

has values in R3. For example, f (1,2) = (sin2,9,16).

As usual, D(f) denotes the domain of the function f which is written in bold face be-
cause it will possibly have values in Rp. When D(f) is not specified, it will be understood
that the domain of f consists of those things for which f makes sense.

Example 15.5.3 Let f (x,y,z) =
(

x+y
z ,

√
1− x2,y

)
. Then D(f) would consist of the set of

all (x,y,z) such that |x| ≤ 1 and z ̸= 0.

There are many ways to make new functions from old ones.
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Definition 15.5.4 Let f ,g be functions with values in Rp. Let a,b be points of R
(scalars). Then af +bg is the name of a function whose domain is D(f)∩D(g) which is
defined as (af +bg)(x) = af (x)+bg (x) . Also, f ·g or (f ,g) is the name of a function
whose domain is D(f)∩D(g) which is defined as (f ,g)(x) ≡ f ·g (x) ≡ f (x) ·g (x) .
If f and g have values in R3, define a new function f ×g by f ×g (t) ≡ f (t)× g (t) .
If f : D(f) → X and g : X → Y , then g ◦ f is the name of a function whose domain is
{x ∈ D(f) : f (x) ∈ D(g)} which is defined as g ◦f (x) ≡ g (f (x)) . This is called the
composition of the two functions.

You should note that f (x) is not a function. It is the value of the function at the point
x. The name of the function is f . Nevertheless, people often write f (x) to denote a
function and it does not cause too many problems in beginning courses. When this is done,
the variable, x should be considered as a generic variable which is allowed to be anything
in D(f). I will use this slightly sloppy abuse of notation whenever convenient.

Example 15.5.5 Let f (t)≡ (t,1+ t,2) and g (t)≡
(
t2, t, t

)
. Then f ·g is the name of the

function satisfying f ·g (t) = f (t) ·g (t) = t3 + t + t2 +2t = t3 + t2 +3t.

Note that in this case it was assumed the domains of the functions consisted of all of R
because this was the set on which the two both made sense. Also note that f and g map R
into R3 but f ·g maps R into R.

Example 15.5.6 Suppose f (t) =
(
2t,1+ t2

)
and g : R2 → R is given by g(x,y) ≡ x+ y.

Then g◦f : R→ R and g◦f (t) = g(f (t)) = g
(
2t,1+ t2

)
= 1+2t + t2.

15.6 Continuous Functions
What was done in one variable calculus for scalar functions is generalized here to include
the case of a vector valued function of possibly many variables. This part of the book is on
functions of a single variable. However, it is no harder to consider the limit and continuity
in terms of a function of many variables and it seems a good idea to go ahead and do it.

Definition 15.6.1 A function f : D(f) ⊆ Rp → Rq is continuous at x ∈ D(f) if
for each ε > 0 there exists δ > 0 such that whenever y ∈ D(f) and |y−x|< δ it follows
that |f (x)−f (y)|< ε. f is continuous if it is continuous at every point of D(f).

Note the total similarity to the scalar valued case. Also one obtains a similar description
in terms of convergent sequences.

Definition 15.6.2 limn→∞xn = x means: For every ε > 0 there is nε such that if
n ≥ nε , then |xn −x| < ε . From the description of |·| given earlier, this says the same as
limn→∞ xi

n = xi for each i = 1,2, · · · , p where xn ≡
(
x1

n, · · · ,x
p
n
)

and x≡
(
x1, · · · ,xp

)
.

A repeat of the earlier theorem for functions of one variable yields the following equiv-
alent description of continuity. All you have to do is make things bold face and repeat the
earlier argument.

Proposition 15.6.3 f : D(f) → Rq is continuous at x ∈ D(f) means that whenever
xn → x with xn ∈ D(f) , it follows that f (xn)→ f (x).
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Proof: ⇒ Suppose f is continuous at x and xn → x. Given ε > 0, let δ correspond to
ε in the definition of continuity. Then for all n large enough, |xn −x|< δ and so for all n
large enough, |f (x)−f (xn)|< ε . Thus f (xn)→ f (x) by definition.

⇐ Suppose the condition of taking convergent sequences to convergent sequences at
x. If f is not continuous, then there exists ε > 0 such that for any δ > 0 there will be a xδ

such that although |xδ −x| < δ , |f (xδ )−f (x)| ≥ ε . Now let xn equal the exceptional
point corresponding to δ = 1/n.n ∈ N. Then xn → x but f (xn) fails to converge to f (x)
which is a contradiction. Thus, it can’t happen that the function fails to be continuous at x.
■

In the following important proposition, ∥·∥ will be a norm on Rp. It could be the usual
one |·| being the square root of the sum of the squares or it could be ∥·∥

∞
given by ∥x∥

∞
=

max{|xi| : i ≤ p} or any other norm. The notion is completely general. However, go ahead
and restrict to |·| if this is causing confusion.

Proposition 15.6.4 Let S be a nonempty set and let

dist(x,S)≡ inf{∥x−s∥ : s ∈ S}

Then x→ dist(x,S) is continuous. In fact, |dist(x,S)−dist(y,S)| ≤ ∥x−y∥ .

Proof: Say dist(x,S)−dist(y,S)> 0. Then pick s ∈ S such that
∥y−s∥− ε < dist(y,S) . Then

|dist(x,S)−dist(y,S)|= dist(x,S)−dist(y,S)≤ dist(x,S)−∥y−s∥+ ε

≤ ∥x−s∥−∥y−s∥+ ε ≤ ∥x−y∥+∥y−s∥−∥y−s∥+ ε

= ∥x−y∥+ ε

Since ε is arbitrary, this shows the inequality and proves continuity. ■

15.7 Sufficient Conditions for Continuity
The next theorem is a fundamental result which allows less worry about the ε δ definition
of continuity.

Theorem 15.7.1 The following assertions are valid.

1. The function af+bg is continuous at x whenever f , g are continuous at x∈D(f)∩
D(g) and a,b ∈ R.

2. If f is continuous at x, f (x) ∈ D(g)⊆Rp, and g is continuous at f (x) ,then g ◦f
is continuous at x.

3. If f = ( f1, · · · , fq) : D(f) → Rq, then f is continuous if and only if each fk is a
continuous real valued function.

4. The function f : Rp → R, given by f (x) = |x| is continuous.

5. The map πk (x)≡ xk is continuous.

6. Every function x→ xα1
1 xα2

2 · · ·xα p
p for α i an integer is continuous.
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7. If f,g are each continuous at x, then f ·g is also continuous at x.

This is proved just like the corresponding theorem for functions of a single variable. For
example the first claim says that (af +bg)(y) is close to (af +bg)(x) when y is close to
x provided the same can be said about f and g. For the second claim, if y is close to x,
f (x) is close to f (y) and so by continuity of g at f (x), g (f (y)) is close to g (f (x)).
To see the third claim is likely, note that closeness in Rp is the same as closeness in each
coordinate. The fourth claim is immediate from the triangle inequality. Alternatively, use
Proposition 15.6.3 to reduce to notions of convergent sequences and then Definition 15.6.2
to reduce completely to one variable considerations and apply earlier theorems on limits
and continuity.

For functions defined on Rp, there is a notion of polynomial just as there is for functions
defined on R.

Definition 15.7.2 Let α be an p dimensional multi-index. This means

α = (α1, · · · ,α p)

where each α i is a natural number or zero. Also, let

|α| ≡
p

∑
i=1

|α i|

The symbol xα means
xα ≡ xα1

1 xα2
2 · · ·xα p

3 .

An p dimensional polynomial of degree m is a function of the form

p(x) = ∑
|α|≤m

dαx
α.

where the dα are real numbers.

The above Theorem 15.7.1 implies that polynomials are all continuous. Also, rational
functions, being quotients of polynomials are also continuous at every point where the
denominator is not zero. This follows from the theorems on sequences presented earlier
and the above.

15.8 Limits of a Function of Many Variables
As in the case of scalar valued functions of one variable, a concept closely related to con-
tinuity is that of the limit of a function. The notion of limit of a function makes sense at
points x, which are limit points of D(f) and this concept is defined next.

Definition 15.8.1 Let A ⊆ Rm be a set. A point x, is a limit point of A if B(x,r)
contains infinitely many points of A for every r > 0.

Definition 15.8.2 Let f : D(f)⊆Rp →Rq be a function and let x be a limit point
of D(f). Then

lim
y→x

f (y) =L
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if and only if the following condition holds. For all ε > 0 there exists δ > 0 such that if

0 < |y−x|< δ , and y ∈ D(f)

then,
|L−f (y)|< ε.

Theorem 15.8.3 If limy→xf (y) =L and limy→xf (y) =L1, then L=L1.

Proof: Let ε > 0 be given. There exists δ > 0 such that if 0 < |y−x| < δ and y ∈
D(f), then

|f (y)−L|< ε, |f (y)−L1|< ε.

Pick such a y. There exists one because x is a limit point of D(f). Then

|L−L1| ≤ |L−f (y)|+ |f (y)−L1|< ε + ε = 2ε.

Since ε > 0 was arbitrary, this shows L=L1. ■
One can define what it means for limy→x f (x) =±∞ just as for sequences.

Definition 15.8.4 If f (x)∈R, limy→x f (x) =∞ if for every number l, there exists
δ > 0 such that whenever 0 < |y−x|< δ and y ∈ D(f), then f (x)> l. limy→x f (x) =
−∞ if for every number l, there exists δ > 0 such that whenever 0 < |y−x| < δ and
y ∈ D(f), then f (x)< l.

As before, it is useful to reduce to a statement about sequences.

Proposition 15.8.5 Let x be a limit point of D(f) . Then limy→xf (y) =L if and only
if whenever xn → x for each xn ̸= x, the xn distinct points, it follows that f (xn)→L.

Proof: ⇒ Let xn → x where no xn equals x. Let ε > 0 be given. By assumption,
| f (y)−L| < ε whenever 0 < |y−x| < δ for some δ . However, for all n large enough,
0 < |xn −x|< δ and so |f (xn)−L|< ε. Hence f (xn)→L.

⇐ Suppose the condition on the sequences holds. If the condition for the limit does
not hold, then there exists ε > 0 such that no matter how small δ , there will be 0 <
|y−x|< δ ,y ∈ D(f) , and yet |f (y)−L| ≥ ε . Now let δ 1 = 1. There exists x1 ̸= x with
x1 ∈ B(x,δ 1)∩D(f) and |f (x1)−L| ≥ ε. Let δ 2 ≡ min

( 1
2 ,

1
2 |x−x1|

)
. Now pick x2 ∈

B(x,δ 2) ,x2 ̸= x such that |f (x2)−L| ≥ ε. Let δ 3 ≡ min
(

1
23 ,

1
2 |x−x1| , 1

2 |x−x2|
)

and pick x3 ∈ B(x,δ 3) with |f (x3)−L| ≥ ε,x3 ̸= x. Continue this way to gener-
ate a sequence of distinct points {xn} , none equal to x which converges to x. Then
L= limn→∞f (xn) because of the condition on limits of the sequence so eventually

|L−f (xn)|< ε,

contrary to the construction of the xn. ■
The following theorem is just like the one variable version calculus.

Theorem 15.8.6 Suppose f : D(f)→ Rq. Then for x a limit point of D(f),

lim
y→x

f (y) =L (15.2)
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if and only if
lim
y→x

fk (y) = Lk (15.3)

where f (y)≡ ( f1 (y) , · · · , fp (y)) and L≡ (L1, · · · ,Lp). Suppose

lim
y→x

f (y) =L, lim
y→x

g (y) =K

where K,L ∈ Rq. Then if a, b ∈ R,

lim
y→x

(af (y)+bg (y)) = aL+bK, (15.4)

lim
y→x

f ·g (y) =L ·K (15.5)

In the case where q = 3 and limy→xf (y) =L and limy→xg (y) =K, then

lim
y→x

f (y)×g (y) =L×K. (15.6)

If g is scalar valued with limy→x g(y) = K ̸= 0,

lim
y→x

f (y)g(y) =LK. (15.7)

Also, if h is a continuous function defined near L, then

lim
y→x

h◦f (y) = h(L) . (15.8)

Suppose limy→xf (y)=L. If |f (y)−b| ≤ r for all y sufficiently close to x, then |L−b| ≤
r also.

Proof: All of these claims follow from consideration of components and the properties
of limits of sequences and Proposition 15.8.5. As an example, consider the last claim.
Let xn → x where the xn are distinct and none equal to x. Then f (xn) → L and so by
continuity of h at L,h(f (xn))→ h(L).

The relation between continuity and limits is as follows.

Theorem 15.8.7 For f : D(f) → Rq and x ∈ D(f) a limit point of D(f), f is
continuous at x if and only if

lim
y→x

f (y) = f (x) .

Proof: First suppose f is continuous at x a limit point of D(f). Then for every ε > 0
there exists δ > 0 such that if |y−x| < δ and y ∈ D(f), then |f (x)−f (y)| < ε . In
particular, this holds if 0 < |x−y| < δ and this is just the definition of the limit. Hence
f (x) = limy→xf (y).

Next suppose x is a limit point of D(f) and limy→xf (y) = f (x). This means
that if ε > 0 there exists δ > 0 such that for 0 < |x−y| < δ and y ∈ D(f), it follows
|f (y)−f (x)|< ε . However, if y = x, then |f (y)−f (x)|= |f (x)−f (x)|= 0 and so
whenever y ∈ D(f) and |x−y|< δ , it follows |f (x)−f (y)|< ε , showing f is contin-
uous at x. ■

Example 15.8.8 Find lim(x,y)→(3,1)

(
x2−9
x−3 ,y

)
.
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It is clear that lim(x,y)→(3,1)
x2−9
x−3 = 6 and lim(x,y)→(3,1) y= 1. Therefore, this limit equals

(6,1).

Example 15.8.9 Find lim(x,y)→(0,0)
xy

x2+y2 .

First of all, observe the domain of the function is R2 \{(0,0)}, every point in R2 except
the origin. Therefore, (0,0) is a limit point of the domain of the function so it might make
sense to take a limit. However, just as in the case of a function of one variable, the limit may
not exist. In fact, this is the case here. To see this, take points on the line y = 0. At these
points, the value of the function equals 0. Now consider points on the line y = x where the
value of the function equals 1/2. Since, arbitrarily close to (0,0), there are points where
the function equals 1/2 and points where the function has the value 0, it follows there can
be no limit. Just take ε = 1/10 for example. You cannot be within 1/10 of 1/2 and also
within 1/10 of 0 at the same time.

Note it is necessary to rely on the definition of the limit much more than in the case of
a function of one variable and there are no easy ways to do limit problems for functions of
more than one variable. It is what it is and you will not deal with these concepts without
suffering and anguish.

15.9 Vector Fields
Some people find it useful to try and draw pictures to illustrate a vector valued function.
This can be a very useful idea in the case where the function takes points in D ⊆ R2 and
delivers a vector in R2. For many points (x,y) ∈ D, you draw an arrow of the appropriate
length and direction with its tail at (x,y). The picture of all these arrows can give you an
understanding of what is happening. For example if the vector valued function gives the
velocity of a fluid at the point (x,y), the picture of these arrows can give an idea of the
motion of the fluid. When they are long the fluid is moving fast, when they are short, the
fluid is moving slowly. The direction of these arrows is an indication of the direction of
motion. The only sensible way to produce such a picture is with a computer. Otherwise,
it becomes a worthless exercise in busy work. Furthermore, it is of limited usefulness in
three dimensions because in three dimensions such pictures are too cluttered to convey
much insight.

Example 15.9.1 Draw a picture of the vector field (−x,y) which gives the velocity of a
fluid flowing in two dimensions.

-1 0 1
-1

0

1

You can see how the arrows indicate the motion of this fluid.
Here is another such example. This one is much more complicated.
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Example 15.9.2 Draw a picture of the vector field (ycos(x)+1,xsin(y)−1) for the ve-
locity of a fluid flowing in two dimensions.

-5 0 5
-5

0

5

Note how they reveal both the direction and the magnitude of the vectors. However, if
you try to draw these by hand, you will mainly waste time.

15.10 MATLAB and Vector Fields
As mentioned, you should use a computer algebra system to graph vector fields. Here is an
example of how to do this in MATLAB. Remember that to go to a new line, you press shift
enter and to get it to do something, you press enter.

>>[a,b]=meshgrid(-1.5:.2:1.5,-1.5:.2:1.5);
u=b+a.ˆ2.*b; v=-(b+2*a)+a.ˆ3; r=(u.*u+v.*v+.1).ˆ(1/2);
figure
quiver(a,b,u./r,v./r,’autoscalefactor’,.5)

The .2 in the top line tells how close the vectors should be. This one graphs the vector
field

(
y+ x2y,−(y+2x)+ x3

)
. If you leave off the division by r you will see the relative

size of the vectors. I have divided by r to expose only the direction. I have found that if
I don’t do this, the arrows get so small, I can’t see them well. Of course, this is useful
because it indicates a point of stagnation.

15.11 Exercises
1. Here are some vector valued functions.

f (x,y) = (x,y) , g (x,y) = (−(y−1) ,x) , h(x,y) = (x,−y) .

Now here are the graphs of some vector fields. Match the function with the vector
field.

-2 0 2
-2

0

2

-2 0 2
-2

0

2

-2 0 2
-2

0

2

2. Find D(f) for f (x,y,z,w) =
(

xy
zw ,
√

6− x2y2
)

.
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3. Find D(f) for f (x,y,z) =
(

1
1+x2−y2 ,

√
4− (x2 + y2 + z2)

)
.

4. For f (x,y,z) = (x,y,xy) ,h(x,y,z) =
(
y2,−x,z

)
and

g (x,y,z) =
(

1
x
,yz,x2 −1

)
, compute the following.

(a) f ×g

(b) g×f

(c) f ·g

(d) f ×g ·h
(e) f×(g×h)

(f) (f ×g) · (g×h)

5. Let f (x,y,z) = (y,z,x) and g (x,y,z) =
(
x2 + y,z,x

)
. Find g ◦f (x,y,z).

6. Let f (x,y,z) = (x,z,yz) and g (x,y,z) =
(
x,y,x2 −1

)
. Find g ◦f (x,y,z).

7. For f,g,h vector valued functions and k, l scalar valued functions, which of the
following make sense?

(a) f ×g×h

(b) (k×g)×h

(c) (f ·g)×h

(d) (f ×g) ·h
(e) l g· k
(f) f×(g+h)

8. The Lotka Volterra system of differential equations, proposed in 1925 and 1926 by
Lotka and Volterra respectively, is intended to model the interaction of predators and
prey. An example of this situation is that of wolves and moose living on Isle Royal
in the middle of Lake Superior. In these equations x is the number of prey and y is
the number of predators. The equations are

x′ (t) = x(t)(a−by(t)) , y′ (t) =−y(t)(c−dx(t))

Written in terms of vectors,(
x′,y′

)
= (x(a−by) ,−y(c−dx))

The parameters a,b,c,d depend on the problem. The differential equations are
saying that at a point (x,y), the population vector (x,y) moves in the direction of
(x(a−by) ,−y(c−dx)). Here is the graph of the vector field which determines the
Lotka Volterra system in the case where all the parameters equal 1 which is graphed
near the point (1,1). What conclusions seem to be true based on the graph of this
vector field? What happens if you start with a population vector near the point (1,1)?
Remember these vectors in the plane determine the directions of motion of the pop-
ulation vector.
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0 1 2 3
0

1

2

3

How did I know to graph the vector field near (1,1)?

15.12 Extreme Value Theorem, Uniform Continuity

Definition 15.12.1 A function f having values in Rp for x ∈ D is said to be
bounded if the set of values of f is a bounded set, meaning that if

f (x) =
(

f1 (x) · · · fp (x)
)
,

then each f j (x) for x ∈ D is a bounded set in R.

Here is a proof of the extreme value theorem.

Theorem 15.12.2 Let C be closed and bounded and let f : C → R be continuous.
Then f achieves its maximum and its minimum on C. This means there exist x1,x2 ∈ C
such that for all x ∈C,

f (x1)≤ f (x)≤ f (x2) .

Proof: Let M = sup{ f (x) : x ∈C}. Then there exists xn such that f (xn) ↑ M. Then
by compactness, there is a subsequence

{
xnk

}
such that xnk → x ∈ C. It follows from

continuity that f (x) = limk→∞ f
(
xnk

)
=M. The case for the minimum value is completely

similar. Note that this shows that f is bounded. ■
As in the case of a function of one variable, there is a concept of uniform continuity.

Definition 15.12.3 A function f : D(f)→ Rq is uniformly continuous if for every
ε > 0 there exists δ > 0 such that whenever x,y are points of D(f) such that |x−y|< δ ,
it follows |f (x)−f (y)|< ε .

Theorem 15.12.4 Let f : K → Rq be continuous at every point of K where K is a
closed and bounded (sequentially compact) set in Rp. Then f is uniformly continuous.

Proof: Suppose not. Then there exists ε > 0 and sequences
{
x j
}

and
{
y j
}

of points in
K such that

∣∣x j −y j
∣∣< 1

j but
∣∣f (x j)−f

(
y j
)∣∣≥ ε . Then by Theorem 15.4.2 on Page 326

which says K is sequentially compact, there is a subsequence
{
xnk

}
of
{
x j
}

which con-
verges to a point x ∈ K. Then since

∣∣xnk −ynk

∣∣ < 1
k , it follows that

{
ynk

}
also converges

to x. Therefore,

ε ≤ lim
k→∞

∣∣f (xnk

)
−f

(
ynk

)∣∣= |f (x)−f (x)|= 0,

a contradiction. Therefore, f is uniformly continuous as claimed. ■
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15.13 Convergence of Functions
There are two kinds of convergence for a sequence of functions described in the next defi-
nition, pointwise convergence and uniform convergence. Of the two, uniform convergence
is far better and tends to be the kind of thing encountered in complex analysis. Pointwise
convergence is more often encounted in real analysis and necessitates much more difficult
theorems. Note that in so far as distance and open and closed and compact sets are con-
cerned R2 = C. Thus there would be no loss of generality in the following definition if C
were replaced with R.

Definition 15.13.1 Let S ⊆ Cp and let fn : S → Cq for n = 1,2, · · · . Then {fn} is
said to converge pointwise to f on S if for all x ∈ S,

fn (x)→ f (x)

for each x. The sequence is said to converge uniformly to f on S if

lim
n→∞

(
sup
x∈S

|fn (x)−f (x)|
)
= 0

supx∈S |fn (x)−f (x)| is denoted as∥fn −f∥
∞

or just ∥fn −f∥ for short. ∥·∥ is called
the uniform norm.

To illustrate the difference in the two types of convergence, here is a standard example
shown earlier. .

Example 15.13.2 Let

f (x)≡
{

0 if x ∈ [0,1)
1 if x = 1

Also let fn (x) ≡ xn for x ∈ [0,1] . Then fn converges pointwise to f on [0,1] but does not
converge uniformly to f on [0,1].

Note how the target function is not continuous although each function in the sequence
is. The next theorem shows that this kind of loss of continuity never occurs when you have
uniform convergence. The theorem holds generally when S ⊆ X a normed linear space and
f,fn have values in Y another normed linear space. You should fill in the details to be sure
you understand this. You simply replace |·| with ∥·∥ for an appropriate norm.

Theorem 15.13.3 Let fn : S →Cq be continuous and let fn converge uniformly to
f on S. Then if fn is continuous at x ∈ S, it follows that f is also continuous at x.

Proof: Let ε > 0 be given. Let N be such that if n ≥ N, then

sup
y∈S

|fn (y)−f (y)| ≡ ||fn −f ||
∞
<

ε

3

Pick such an n. Then by continuity of fn at x, there exists δ > 0 such that if |y−x|< δ ,
then |fn (y)−fn (x)|< ε

3 . Then if |y−x|< δ ,y ∈ S, then

|f (x)−f (y)| ≤ |f (x)−fn (x)|+ |fn (x)−fn (y)|+ |fn (y)−f (y)|

<
ε

3
+

ε

3
+

ε

3
= ε

Thus f is continuous at x as claimed. ■
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15.14 Fundamental Theorem of Algebra
Recall from the chapter on prerequisite material the basic properties of complex numbers,
complex absolute value and so forth. See Definition 1.13.3 and the following material after
this definition. If you have a sequence of complex numbers {zk} where zk = xk + iyk then to

say that |zk| is bounded is to say that
√

x2
k + y2

k is bounded. In other words, the ordered pairs

(xk,yk) are in a bounded subset of R2. Also to say that limk→∞ |zk − z|= 0 is the definition
of what you mean by limk→∞ zk = z and it is the same as saying that limk→∞ (xk,yk) = (x,y)
where z = x+ iy. Thus, if you have a bounded sequence of complex numbers {zk} , you
must have {xk} and {yk} both be a bounded sequence in R and so {xk} is contained in some
interval [a,b] and {yk} is contained in some interval [c,d]. Thus such a bounded sequence
must have a subsequence, still denoted as zk such that xk → x ∈ [a,b] and yk → y ∈ [c,d].
This yields the following simple observation sometimes called the Weierstrass Bolzano
theorem.

Theorem 15.14.1 Let {zk} be a sequence of complex numbers such that |zk| is a
bounded sequence of real numbers. Then there exists a subsequence

{
znk

}
and a complex

number z such that limk→∞ znk = z. Sets of the form K ≡ {z ∈ C : |z| ≤ r} are sequentially
compact.

Proof: It only remains to verify the last assertion. Letting {zk} ⊆ K, the above discus-
sion shows that there exists z and a subsequence

{
znk

}
such that znk → z. It only remains

to verify that z ∈ K. However, this is clear from the triangle inequality. Indeed,

|z| ≤ |z− zk|+ |zk| ≤ |z− zk|+ r

Hence,
|z| ≤ lim

k→∞

∣∣z− znk

∣∣+ r = r.■

Lemma 15.14.2 Every polynomial p(z) having complex coefficients is continuous. That
is, if zk → z, then p(zk)→ p(z).

Proof: Recall that if zk = xk + iyk,z = x+ iy, the convergence of zk to z is equivalent to
convergence of xk to x and convergence of yk to y. Also,

zn = (x+ iy)n =
n

∑
j=1

(
n
k

)
(i)k xn−kyk

Thus breaking into real and imaginary parts,

p(z) = Re p(z)+ i Im p(z)

and each of Re p(z) and Im p(z) are polynomials in x and y as defined in Definition 15.7.2.
Therefore, these are each continuous functions of (x,y) by Theorem 15.7.1 and as

xk → x,yk → y

it follows that Re p(zk)→ Re p(z) , Im p(zk)→ Im p(z). ■

Theorem 15.14.3 Let p(z) be a polynomial of degree n ≥ 1 having complex coef-
ficients. Then there exists z0 such that p(z0) = 0, a zero of the polynomial.
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Proof: Suppose the nonconstant polynomial

p(z) = a0 +a1z+ · · ·+anzn,an ̸= 0,

has no zero in C. By the triangle inequality,

|p(z)| ≥ |an| |z|n −
∣∣a0 +a1z+ · · ·+an−1zn−1∣∣

≥ |an| |z|n −
(
|a0|+ |a1| |z|+ · · ·+ |an−1| |z|n−1

)
Now the term |an| |z|n dominates all the other terms which have |z| raised to a lower power
and so lim|z|→∞ |p(z)|= ∞. Now let

0 ≤ λ ≡ inf{|p(z)| : z ∈ C}

Then since lim|z|→∞ |p(z)| = ∞, it follows that there exists r > 0 such that if |z| > r, then
|p(z)| ≥ 1+λ . It follows that

λ = inf{|p(z)| : |z| ≤ r}

Since K ≡ {z : |z| ≤ r} is sequentially compact, it follows that, letting {zk} ⊆ K with
|p(zk)| ≤ λ +1/k, there is a subsequence still denoted as {zk} such that limk→∞ zk = z0 ∈K.
Then |p(z0)|= λ and so λ > 0. Thus,

|p(z0)|= min
z∈K

|p(z)|= min
z∈C

|p(z)|> 0

Then let q(z) = p(z+z0)
p(z0)

. This is also a polynomial which has no zeros and the minimum

of |q(z)| is 1 and occurs at z = 0. Since q(0) = 1, it follows q(z) = 1+akzk + r (z) where
r (z) consists of higher order terms. Here ak is the first coefficient of q(z) which is nonzero.
Choose a sequence, zn → 0, such that akzk

n < 0. For example, let −akzk
n = (1/n). Then

|q(zn)|=
∣∣∣1+akzk + r (z)

∣∣∣≤ 1−1/n+ |r (zn)|= 1+akzk
n + |r (zn)|< 1

for all n large enough because |r (zn)| is small compared with
∣∣akzk

n
∣∣ since it involves higher

order terms. This is a contradiction. Thus there must be a zero for the original polynomial
p(z). ■

15.15 Exercises
1. Let f (t) =

(
t, t2 +1, t

t+1

)
and let g (t) =

(
t +1,1, t

t2+1

)
. Find f ·g.

2. Let f,g be given in the previous problem. Find f ×g.

3. Let f (t) =
(
t, t2, t3

)
,g (t) =

(
1, t2, t2

)
, and h(t) = (sin t, t,1). Find the time rate of

change of the box product of the vectors f,g, and h.

4. Let f (t) = (t,sin t). Show f is continuous at every point t.

5. Suppose |f (x)−f (y)| ≤ K |x−y| where K is a constant. Show that f is every-
where continuous. Functions satisfying such an inequality are called Lipschitz func-
tions.
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6. Suppose |f (x)−f (y)| ≤ K |x−y|α where K is a constant and α ∈ (0,1). Show
that f is everywhere continuous. Functions like this are called Holder continuous.

7. Suppose f : R3 → R is given by f (x) = 3x1x2 +2x2
3. Use Theorem 15.7.1 to verify

that f is continuous. Hint: You should first verify that the function πk : R3 → R
given by πk (x) = xk is a continuous function.

8. Show that if f : Rq → R is a polynomial then it is continuous.

9. State and prove a theorem about continuity of quotients of continuous functions.

10. Let

f (x,y)≡

{
2x2−y2

x2+y2 if (x,y) ̸= (0,0)
0 if (x,y) = (0,0)

.

Find lim(x,y)→(0,0) f (x,y) if it exists. If it does not exist, tell why it does not exist.
Hint: Consider along the line y = x and along the line y = 0.

11. Find the following limits if possible

(a) lim(x,y)→(0,0)
x2−y2

x2+y2 .

(b) lim(x,y)→(0,0)
x(x2−y2)
(x2+y2)

(c) lim(x,y)→(0,0)
(x2−y4)

2

(x2+y4)
2 . Hint: Consider along y = 0 and along x = y2.

(d) lim(x,y)→(0,0) xsin
(

1
x2+y2

)
.

(e) lim(x,y)→(1,2)
−2yx2+8yx+34y+3y3−18y2+6x2−13x−20−xy2−x3

−y2+4y−5−x2+2x . Hint: Write in the vari-
ables

(s, t) = (x−1,y−2) .

12. Suppose limx→0 f (x,0) = 0 = limy→0 f (0,y). Does it follow that

lim
(x,y)→(0,0)

f (x,y) = 0?

Prove or give counter example.

13. f : D ⊆ Rp → Rq is Lipschitz continuous or just Lipschitz for short if there exists a
constant K such that

|f (x)−f (y)| ≤ K |x−y|

for all x,y ∈D. Show every Lipschitz function is uniformly continuous which means
that given ε > 0 there exists δ > 0 independent of x such that if |x−y| < δ , then
|f (x)−f (y)|< ε .

14. If f is uniformly continuous, does it follow that |f | is also uniformly continuous?
If |f | is uniformly continuous does it follow that f is uniformly continuous? An-
swer the same questions with “uniformly continuous” replaced with “continuous”.
Explain why.
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15. Let f be defined on the positive integers. Thus D( f ) = N. Show that f is auto-
matically continuous at every point of D( f ). Is it also uniformly continuous? What
does this mean about the concept of continuous functions being those which can be
graphed without taking the pencil off the paper?

16. Let

f (x,y) =

(
x2 − y4

)2

(x2 + y4)2 if (x,y) ̸= (0,0)

Show limt→0 f (tx, ty) = 1 for any choice of (x,y). Using Problem 11c, what does
this tell you about limits existing just because the limit along any line exists.

17. Let f (x,y,z) = x2y+ sin(xyz). Does f achieve a maximum on the set{
(x,y,z) : x2 + y2 +2z2 ≤ 8

}
?

Explain why.

18. Suppose x is defined to be a limit point of a set A if and only if for all r > 0, B(x,r)
contains a point of A different than x. Show this is equivalent to the above definition
of limit point.

19. Give an example of an infinite set of points in R3 which has no limit points. Show
that if D(f) equals this set, then f is continuous. Show that more generally, if f is
any function for which D(f) has no limit points, then f is continuous.

20. Let {xk}n
k=1 be any finite set of points in Rp. Show this set has no limit points.

21. Suppose S is any set of points such that every pair of points is at least as far apart as
1. Show S has no limit points.

22. Find limx→0
sin(|x|)
|x| and prove your answer from the definition of limit.

23. Suppose g is a continuous vector valued function of one variable defined on [0,∞).
Prove

lim
x→x0

g (|x|) = g (|x0|) .

24. Let U = {(x,y,z) such that z > 0}. Determine whether U is open, closed or neither.

25. Let U = {(x,y,z) such that z ≥ 0} . Determine whether U is open, closed or neither.

26. Let U =
{
(x,y,z) such that

√
x2 + y2 + z2 < 1

}
. Tell whether U is open, closed or

neither.

27. Let U =
{
(x,y,z) such that

√
x2 + y2 + z2 ≤ 1

}
. Tell whether U is open, closed or

neither.

28. Show carefully that Rp is both open and closed.

29. Show that every non empty open set in Rp is the union of open balls contained in it.

30. Show the intersection of any two open sets is an open set.
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31. Closed sets were defined to be those sets which are complements of open sets. Show
that a set is closed if and only if it contains all its limit points.

32. Prove the extreme value theorem, a continuous function achieves its maximum and
minimum on any closed and bounded set C. Hint: Suppose λ = sup{ f (x) : x ∈C}.
Then there exists {xn} ⊆ C such that f (xn)→ λ . Now select a convergent subse-
quence. Do the same for the minimum.

33. If C is a collection of open sets such that ∪C ⊇ H a closed and bounded set. A
Lebesgue number δ is one which has the property that if x ∈ H, then B(x,δ ) is
contained in some set of C . Show that there exists a Lebesgue number. Hint:If there
is no Lebesgue number, then for each n ∈ N, 1/n is not a Lebesgue number. Hence
there exists xn ∈ H such that B(xn,1/n) is not contained in a single set of C . Extract
a convergent subsequence, still denoted as xn → x. Then B(x,δ ) is contained in a
single set of C . Isn’t it the case that B(xn,1/n) is contained in B(x,δ ) for all n large
enough? Isn’t this a contradiction?

34. Let C be a closed and bounded set and suppose f : C → Rm is continuous. Show
that f must also be uniformly continuous. This means: For every ε > 0 there exists
δ > 0 such that whenever x,y ∈ C and |x−y| < δ , it follows |f (x)−f (y)| < ε .
It is in the chapter but go over it again. This is a good time to review the definition
of continuity so you will see the difference. Hint: Suppose it is not so. Then there
exists ε > 0 and {xk} and {yk} such that |xk −yk|< 1

k but |f (xk)−f (yk)| ≥ ε .

35. A set K is compact means that if C is a set of open sets such that ∪C ⊇ K, then there
exists a finite subset {U1, · · · ,Un} ⊆C such that ∪n

i=1Ui ⊇ K. Show every closed and
bounded set K in Rp is compact. (Open covers admit finite sub covers.) Next show
that if a set in Rp is compact, then it must be closed and bounded. This is called the
Heine Borel theorem. Hint: To show closed and bounded is compact, you might use
the technique of chopping into small pieces of the above Problem 33. You could also
do something like the following. Let δ be a Lebesgue number for the open cover C of
K. Now consider B(x1,δ ). If it covers K you are done. Otherwise, pick x2 not in it.
Consider B(x2,δ ) . If these two balls cover K, then you are done. Otherwise pick x3
not covered. Continue this way. Argue the the sequential compactness of K requires
this process to stop in finitely many steps. If a set K is compact, then it obviously
must be bounded. Otherwise, you could consider the open cover {B(x,n)}∞

n=1. It
the set K is not closed, then there is a point not in K called x and a sequence of
points {xk} of K converging to x. Explain why Fm ≡ ∪∞

k=mxk is closed. Consider
the increasing sequence of open sets FC

m .

36. Suppose S is a nonempty set in Rp. Define

dist(x,S)≡ inf{|x−y| : y ∈ S} .

Show that
|dist(x,S)−dist(y,S)| ≤ |x−y| .

Hint: Suppose dist(x,S) < dist(y,S). If these are equal there is nothing to show.
Explain why there exists z ∈ S such that |x−z|< dist(x,S)+ ε . Now explain why

|dist(x,S)−dist(y,S)|= dist(y,S)−dist(x,S)≤ |y−z|− (|x−z|− ε)

Now use the triangle inequality and observe that ε is arbitrary.
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37. Suppose H is a closed set and H ⊆ U ⊆ Rp, an open set. Show there exists a con-
tinuous function defined on Rp, f such that f (Rp) ⊆ [0,1], f (x) = 0 if x /∈ U and
f (x) = 1 if x ∈ H. Hint: Try something like

dist
(
x,UC

)
dist(x,UC)+dist(x,H)

,

where UC ≡ Rp \U , a closed set. You need to explain why the denominator is never
equal to zero. The rest is supplied by Problem 36. This is a special case of a major
theorem called Urysohn’s lemma.



Chapter 16

Space Curves

A vector valued function of one variable t traces out a curve in space. Given values of t
result in various points. The resulting set of points is called a space curve. The function
used to describe this set of points is called a parametrization. The curve itself is called a
parametric curve.

16.1 Using MATLAB to Graph Space Curves

It is useful and fun to graph parametric curves if you use something like MATLAB to do
the hard work. I will show you the syntax with an example.

Example 16.1.1 Graph the space curve which has parametrization

x = t cos(t) ,y = t sin(t) ,z = t, t ∈ [0,24]

Here is the way you do it in MATLAB.
>> t=[0:.01:24];
x=t.*cos(t);
y=t.*sin(t);
z=tˆ2;
plot3(x,y,z,’LineWidth’,2,’color’,’red’)
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16.2 The Derivative and Integral
The following definition is on the derivative and integral of a vector valued function of one
variable.

Definition 16.2.1 The derivative of a function f ′ (t), is defined as the following
limit whenever the limit exists. If the limit does not exist, then neither does f ′ (t).

lim
h→0

f (t +h)−f (t)
h

≡ f ′ (t)

As before,

f ′ (t) = lim
s→t

f (s)−f (t)
s− t

.

The function of h on the left is called the difference quotient just as it was for a scalar
valued function. If f (t) = ( f1 (t) , · · · , fp (t)) and

∫ b
a fi (t) dt exists for each i = 1, · · · , p,

then
∫ b

a f (t) dt is defined as the vector(∫ b

a
f1 (t) dt, · · · ,

∫ b

a
fp (t) dt

)
.

This is what is meant by saying f is Riemann integrable.

Here is a simple proposition which is useful to have.

Proposition 16.2.2 Let a ≤ b, f = ( f1, · · · , fn) is vector valued and each fi is contin-
uous, then ∣∣∣∣∫ b

a
f (t)dt

∣∣∣∣≤√
n
∫ b

a
|f (t)|dt.

Proof: This follows from the following computation.∣∣∣∣∫ b

a
f (t)dt

∣∣∣∣≡ ∣∣∣∣(∫ b

a
f1 (t)dt, · · · ,

∫ b

a
fn (t)dt

)∣∣∣∣
=

(
n

∑
i=1

∣∣∣∣∫ b

a
fi (t)dt

∣∣∣∣2
)1/2

≤

(
n

∑
i=1

(∫ b

a
| fi (t)|dt

)2
)1/2

≤

(
nmax

i

(∫ b

a
| fi (t)|dt

)2
)1/2

=
√

nmax
i

(∫ b

a
| fi (t)|dt

)
≤

√
n
∫ b

a
|f (t)|dt ■

As in the case of a scalar valued function, differentiability implies continuity but not
the other way around.

Theorem 16.2.3 If f ′ (t) exists, then f is continuous at t.
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Proof: Suppose ε > 0 is given and choose δ 1 > 0 such that if |h|< δ 1,∣∣∣∣f (t +h)−f (t)
h

−f ′ (t)
∣∣∣∣< 1.

then for such h, the triangle inequality implies |f (t +h)−f (t)| < |h|+
∣∣f ′ (t)

∣∣ |h| . Now

letting δ < min
(

δ 1,
ε

1+|f ′(x)|

)
it follows if |h| < δ , then |f (t +h)−f (t)| < ε. Letting

y = h+ t, this shows that if |y− t|< δ , |f (y)−f (t)|< ε which proves f is continuous at
t. ■

As in the scalar case, there is a fundamental theorem of calculus.

Theorem 16.2.4 If f ∈ R([a,b]) and if f is continuous at t ∈ (a,b), then

d
dt

(∫ t

a
f (s) ds

)
= f (t) .

Proof: Say f (t) = ( f1 (t) , · · · , fp (t)). Then it follows

1
h

∫ t+h

a
f (s) ds− 1

h

∫ t

a
f (s) ds =

(
1
h

∫ t+h

t
f1 (s) ds, · · · , 1

h

∫ t+h

t
fp (s) ds

)
and limh→0

1
h
∫ t+h

t fi (s) ds = fi (t) for each i = 1, · · · , p from the fundamental theorem of
calculus for scalar valued functions. Therefore,

lim
h→0

1
h

∫ t+h

a
f (s) ds− 1

h

∫ t

a
f (s) ds = ( f1 (t) , · · · , fp (t)) = f (t) .■

Example 16.2.5 Let f (x) = c where c is a constant. Find f ′ (x).

The difference quotient,

f (x+h)−f (x)
h

=
c−c

h
= 0

Therefore,

lim
h→0

f (x+h)−f (x)
h

= lim
h→0

0= 0

Example 16.2.6 Let f (t) = (at,bt) where a,b are constants. Find f ′ (t).

From the above discussion this derivative is just the vector valued functions whose
components consist of the derivatives of the components of f . Thus f ′ (t) = (a,b).

16.2.1 Geometric and Physical Significance of the Derivative

Suppose r is a vector valued function of a parameter t not necessarily time and consider
the following picture of the points traced out by r.
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r(t)
r(t +h)

In this picture there are unit vectors in the direction of the vector from r (t) to r (t +h).
You can see that it is reasonable to suppose these unit vectors, if they converge, converge
to a unit vector T which is tangent to the curve at the point r (t). Now each of these unit
vectors is of the form

r (t +h)−r (t)
|r (t +h)−r (t)|

≡ T h.

Thus T h → T, a unit tangent vector to the curve at the point r (t). Therefore,

r′ (t) ≡ lim
h→0

r (t +h)−r (t)
h

= lim
h→0

|r (t +h)−r (t)|
h

r (t +h)−r (t)
|r (t +h)−r (t)|

= lim
h→0

|r (t +h)−r (t)|
h

T h =
∣∣r′ (t)∣∣T.

In the case that t is time, the expression |r (t +h)−r (t)| is a good approximation for
the distance traveled by the object on the time interval [t, t +h]. The real distance would be
the length of the curve joining the two points but if h is very small, this is essentially equal
to |r (t +h)−r (t)| as suggested by the picture below.

r(t)

r(t +h)

Therefore, |r(t+h)−r(t)|
h gives for small h, the approximate distance travelled on the time

interval [t, t +h] divided by the length of time h. Therefore, this expression is really the
average speed of the object on this small time interval and so the limit as h → 0, deserves
to be called the instantaneous speed of the object. Thus |r′ (t)|T represents the speed times
a unit direction vector T which defines the direction in which the object is moving. Thus
r′ (t) is the velocity of the object. This is the physical significance of the derivative when
t is time. In general, r′(t) and T (t) are vectors tangent to the curve which point in the
direction of motion.

How do you go about computing r′ (t)? Letting r (t) = (r1 (t) , · · · ,rq (t)), the expres-
sion

r (t0 +h)−r (t0)
h

(16.1)
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is equal to (
r1 (t0 +h)− r1 (t0)

h
, · · · ,

rq (t0 +h)− rq (t0)
h

)
.

Then as h converges to 0, 16.1 converges to v ≡ (v1, · · · ,vq) where vk = r′k (t). This is
because of Theorem 15.8.6 on Page 330, which says that the term in 16.1 gets close to
a vector v if and only if all the coordinate functions of the term in 16.1 get close to the
corresponding coordinate functions of v.

In the case where t is time, this simply says the velocity vector equals the vector whose
components are the derivatives of the components of the displacement vector r (t).

Example 16.2.7 Let r (t) =
(
sin t, t2, t +1

)
for t ∈ [0,5]. Find a tangent line to the curve

parameterized by r at the point r (2).

From the above discussion, a direction vector has the same direction as r′ (2). There-
fore, it suffices to simply use r′ (2) as a direction vector for the line. r′ (2) = (cos2,4,1).
Therefore, a parametric equation for the tangent line is

(sin2,4,3)+ t (cos2,4,1) = (x,y,z) .

Example 16.2.8 Let r (t) =
(
sin t, t2, t +1

)
for t ∈ [0,5]. Find the velocity vector when

t = 1.

From the above discussion, this is simply r′ (1) = (cos1,2,1).

16.2.2 Differentiation Rules
There are rules which relate the derivative to the various operations done with vectors such
as the dot product, the cross product, vector addition, and scalar multiplication.

Theorem 16.2.9 Let a,b∈R and suppose f ′ (t) and g′ (t) exist. Then the following
formulas are valid.

(af +bg)′ (t) = af ′ (t)+bg′ (t) . (16.2)

(f ·g)′ (t) = f ′ (t) ·g (t)+f (t) ·g′ (t) (16.3)

If f,g have values in R3, then

(f ×g)′ (t) = f (t)×g′ (t)+f ′ (t)×g (t) (16.4)

The formulas, 16.3, and 16.4 are referred to as the product rule.

Proof: The first formula is left for you to prove. Consider the second, 16.3.

lim
h→0

f ·g (t +h)−fg (t)
h

= lim
h→0

f (t +h) ·g (t +h)−f (t +h) ·g (t)
h

+
f (t +h) ·g (t)−f (t) ·g (t)

h

= lim
h→0

(
f (t +h) · (g (t +h)−g (t))

h
+

(f (t +h)−f (t))
h

·g (t)
)

= lim
h→0

n

∑
k=1

fk (t +h)
(gk (t +h)−gk (t))

h
+

n

∑
k=1

( fk (t +h)− fk (t))
h

gk (t)

=
n

∑
k=1

fk (t)g′k (t)+
n

∑
k=1

f ′k (t)gk (t) = f ′ (t) ·g (t)+f (t) ·g′ (t) .
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Formula 16.4 is left as an exercise which follows from the product rule and the definition
of the cross product. ■

Example 16.2.10 Let r (t) =
(
t2,sin t,cos t

)
and let

p(t) = (t, ln(t +1) ,2t) .

Find (r (t)×p(t))′.

From 16.4 this equals

(2t,cos t,−sin t)× (t, ln(t +1) ,2t)+
(
t2,sin t,cos t

)
×
(

1,
1

t +1
,2
)

Example 16.2.11 Let r (t) =
(
t2,sin t,cos t

)
Find

∫
π

0 r (t) dt.

This equals
(∫

π

0 t2 dt,
∫

π

0 sin t dt,
∫

π

0 cos t dt
)
=
( 1

3 π3,2,0
)
.

Example 16.2.12 An object has position

r (t) =
(

t3,
t

1+1
,
√

t2 +2
)

kilometers where t is given in hours. Find the velocity of the object in kilometers per hour
when t = 1.

Recall the velocity at time t was r′ (t). Therefore, find r′ (t) and plug in t = 1 to find
the velocity.

r′ (t) =

(
3t2,

1(1+ t)− t

(1+ t)2 ,
1
2
(
t2 +2

)−1/2
2t

)
=

(
3t2,

1

(1+ t)2 ,
1√

(t2 +2)
t

)
When t = 1, the velocity is

r′ (1) =
(

3,
1
4
,

1√
3

)
kilometers per hour.

Obviously, this can be continued. That is, you can consider the possibility of taking the
derivative of the derivative and then the derivative of that and so forth. The main thing to
consider about this is the notation, and it is exactly like it was in the case of a scalar valued
function presented earlier. Thus r′′ (t) denotes the second derivative.

When you are given a vector valued function of one variable, sometimes it is possible
to give a simple description of the curve which results. Usually it is not possible to do this!

Example 16.2.13 Describe the curve which results from the vector valued function r (t) =
(cos2t,sin2t, t) where t ∈ R.

The first two components indicate that for r (t)= (x(t) ,y(t) ,z(t)), the pair, (x(t) ,y(t))
traces out a circle. While it is doing so, z(t) is moving at a steady rate in the positive
direction. Therefore, the curve which results is a cork screw shaped thing called a helix.

As an application of the theorems for differentiating curves, here is an interesting ap-
plication. It is also a situation where the curve can be identified as something familiar.
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Example 16.2.14 Sound waves have the angle of incidence equal to the angle of reflection.
Suppose you are in a large room and you make a sound. The sound waves spread out and
you would expect your sound to be inaudible very far away. But what if the room were
shaped so that the sound is reflected off the wall toward a single point, possibly far away
from you? Then you might have the interesting phenomenon of someone far away hearing
what you said quite clearly. How should the room be designed?

Suppose you are located at the point P 0 and the point where your sound is to be
reflected is P 1. Consider a plane which contains the two points and let r (t) denote a
parametrization of the intersection of this plane with the walls of the room. Then the con-
dition that the angle of reflection equals the angle of incidence reduces to saying the angle
between P 0 − r (t) and −r′ (t) equals the angle between P 1 − r (t) and r′ (t). Draw a
picture to see this. Therefore,

(P 0 −r (t)) · (−r′ (t))
|P 0 −r (t)| |r′ (t)|

=
(P 1 −r (t)) · (r′ (t))
|P 1 −r (t)| |r′ (t)|

.

This reduces to
(r (t)−P 0) · (−r′ (t))

|r (t)−P 0|
=

(r (t)−P 1) · (r′ (t))
|r (t)−P 1|

(16.5)

Now
(r (t)−P 1) · (r′ (t))

|r (t)−P 1|
=

d
dt

|r (t)−P 1|

and a similar formula holds for P 1 replaced with P 0. This is because

|r (t)−P 1|=
√

(r (t)−P 1) · (r (t)−P 1)

and so using the chain rule and product rule,

d
dt

|r (t)−P 1| =
1
2
((r (t)−P 1) · (r (t)−P 1))

−1/2 2
(
(r (t)−P 1) ·r′ (t)

)
=

(r (t)−P 1) · (r′ (t))
|r (t)−P 1|

.

Therefore, from 16.5,

d
dt

(|r (t)−P 1|)+
d
dt

(|r (t)−P 0|) = 0

showing that |r (t)−P 1|+ |r (t)−P 0|=C for some constant C.This implies the curve of
intersection of the plane with the room is an ellipse having P 0 and P 1 as the foci.

16.2.3 Leibniz’s Notation

Leibniz’s notation also generalizes routinely. For example, dy
dt = y′ (t) with other similar

notations holding.
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16.3 Arc Length and Orientations

The application of the integral considered here is the concept of the length of a curve.

Definition 16.3.1 C is a smooth curve in Rn if there exists an interval [a,b] ⊆ R
and functions xi : [a,b]→ R such that the following conditions hold

1. xi is continuous on [a,b].

2. x′i exists and is continuous and bounded on [a,b], with x′i (a) defined as the derivative
from the right,

lim
h→0+

xi (a+h)− xi (a)
h

,

and x′i (b) defined similarly as the derivative from the left.

3. For p(t)≡ (x1 (t) , · · · ,xn (t)), t → p(t) is one to one on (a,b).

4. |p′ (t)| ≡
(

∑
n
i=1 |x′i (t)|

2
)1/2

̸= 0 for all t ∈ [a,b].

5. C = ∪{(x1 (t) , · · · ,xn (t)) : t ∈ [a,b]}.

The functions xi (t), defined above are giving the coordinates of a point in Rn and the
list of these functions is called a parametrization for the smooth curve. Note the natural
direction of the interval also gives a direction for moving along the curve. Such a direction
is called an orientation. The integral is used to define what is meant by the length of such a
smooth curve. Consider such a smooth curve having parametrization (x1, · · · ,xn). Forming
a partition of [a,b], a = t0 < · · · < tm = b and letting pi = (x1 (ti) , · · · ,xn (ti)), you could
consider the polygon formed by lines from p0 to p1 and from p1 to p2 and from p3 to p4
etc. to be an approximation to the curve C. The following picture illustrates what is meant
by this.

p0

p1

p2

p3

Now consider what happens when the partition is refined by including more points.
You can see from the following picture that the polygonal approximation would appear to
be even better and that as more points are added in the partition, the sum of the lengths
of the line segments seems to get close to something which deserves to be defined as the
length of the curve C.

p0

p1

p2

p3
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Thus the length of the curve is approximately equal to

m

∑
k=1

|p(tk)−p(tk−1)|

Since the functions in the parametrization are differentiable, this is approximately

m

∑
k=1

∣∣p′ (tk−1)
∣∣(tk − tk−1)

which is seen to be a Riemannn sum for the integral
∫ b

a |p′ (t)| dt and it is this integral
which is defined as the length of the curve.

Definition 16.3.2 Let p(t), t ∈ [a,b] be a parametrization for a smooth curve. Then
the length of this curve is defined as

∫ b
a |p′ (t)|dt.

Would the same length be obtained if another parametrization were used? This is a very
important question because the length of the curve should depend only on the curve itself
and not on the method used to trace out the curve. The answer to this question is that the
length of the curve does not depend on parametrization. The proof is somewhat technical
so is given later.

Does the definition of length given above correspond to the usual definition of length
in the case when the curve is a line segment? It is easy to see that it does so by considering
two points in Rn p and q. A parametrization for the line segment joining these two points
is

fi (t)≡ t pi +(1− t)qi, t ∈ [0,1] .

Using the definition of length of a smooth curve just given, the length according to this
definition is ∫ 1

0

(
n

∑
i=1

(pi −qi)
2

)1/2

dt = |p−q| .

Thus this new definition which is valid for smooth curves which may not be straight line
segments gives the usual length for straight line segments.

The proof that curve length is well defined for a smooth curve contains a result which
deserves to be stated as a corollary. It is proved in Lemma 16.4.6 on Page 355 but the proof
is mathematically fairly difficult so it is presented later. See also Theorem 16.4.7 for the
proof that length does not depend on parametrization.

Corollary 16.3.3 Let C be a smooth curve and let f : [a,b]→C and g : [c,d]→C be
two parameterizations satisfying 1 - 5. Then g−1 ◦f is either strictly increasing or strictly
decreasing.

Definition 16.3.4 If g−1 ◦f is increasing, then f and g are said to be equivalent
parameterizations and this is written as f ∼ g. It is also said that the two parameteriza-
tions give the same orientation for the curve when f ∼ g. The symbol ∼ is for the word
“similar”.
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When the parameterizations are equivalent, they preserve the direction of motion along
the curve, and this also shows there are exactly two orientations of the curve since either
g−1 ◦f is increasing or it is decreasing. This is not hard to believe. In simple language, the
message is that there are exactly two directions of motion along a curve. The difficulty is
in proving this is actually the case.

Lemma 16.3.5 The following hold for ∼.

f ∼ f ; (16.6)

If f ∼ g then g ∼ f ; (16.7)

If f ∼ g and g ∼ h, then f ∼ h. (16.8)

Proof: Formula 16.6 is obvious because f−1 ◦f (t) = t so it is clearly an increasing
function. If f ∼ g then f−1 ◦g is increasing. Now g−1 ◦f must also be increasing because
it is the inverse of f−1 ◦g. This verifies 16.7. To see 16.8, f−1◦h=

(
f−1 ◦g

)
◦
(
g−1 ◦h

)
and so since both of these functions are increasing, it follows f−1 ◦h is also increasing. ■

The symbol ∼ is called an equivalence relation. If C is such a smooth curve just de-
scribed, and if f : [a,b]→C is a parametrization of C, consider g (t)≡ f ((a+b)− t), also
a parametrization of C. Now by Corollary 16.3.3, if h is a parametrization, then if f−1 ◦h
is not increasing, it must be the case that g−1 ◦h is increasing. Consequently, either h∼ g
or h∼ f. These parameterizations, h, which satisfy h∼ f are called the equivalence class
determined by f and those h which are similar to g are called the equivalence class de-
termined by g. These two classes are called orientations of C. They give the direction of
motion on C. You see that going from f to g corresponds to tracing out the curve in the
opposite direction.

Sometimes people wonder why it is required, in the definition of a smooth curve that
p′ (t) ̸= 0. Imagine t is time and p(t) gives the location of a point in space. If p′ (t)
is allowed to equal zero, the point can stop and change directions abruptly, producing a
pointy place in C. Here is an example.

Example 16.3.6 Graph the curve
(
t3, t2

)
for t ∈ [−1,1].

In this case, t = x1/3 and so y = x2/3. Thus the graph of this curve looks like the picture
below. Note the pointy place. Such a curve should not be considered smooth.

So what is the thing to remember from all this? First, there are certain conditions which
must be satisfied for a curve to be smooth. These are listed above. Next, if you have any
curve, there are two directions you can move over this curve, each called an orientation.
This is illustrated in the following picture.
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p

q

p

q

Either you move from p to q or you move from q to p.

Definition 16.3.7 A curve C is piecewise smooth if there exist points on this curve
p0,p1, · · · ,pn such that, denoting Cpk−1pk the part of the curve joining pk−1 and pk, it
follows Cpk−1pk is a smooth curve and ∪n

k=1Cpk−1pk = C. In other words, it is piecewise
smooth if it consists of a finite number of smooth curves linked together.

Note that Example 16.3.6 is an example of a piecewise smooth curve although it is not
smooth.

16.4 Arc Length and Parametrizations∗

Recall that if p(t) : t ∈ [a,b] was a parametrization of a smooth curve C, the length of
C is defined as

∫ b
a |p′ (t)| dt. If some other parametrization were used to trace out C, would

the same answer be obtained? To answer this question in a satisfactory manner requires
some hard calculus.

16.4.1 Hard Calculus
Recall Theorem 4.0.8 about continuity and convergent sequences. It said roughly that a
function f is continuous if and only if it takes convergent sequences to convergent se-
quences.

This next lemma was proved earlier as an application of the intermediate value theorem.
I am stating it here again for convenience.

Lemma 16.4.1 Let φ : [a,b] → R be a continuous function and suppose φ is 1− 1 on
(a,b). Then φ is either strictly increasing or strictly decreasing on [a,b]. Furthermore,
φ
−1 is continuous.

Corollary 16.4.2 Let f : (a,b)→ R be one to one and continuous. Then f (a,b) is an
open interval (c,d) and f−1 : (c,d)→ (a,b) is continuous.

Proof: Since f is either strictly increasing or strictly decreasing, it follows that f (a,b)
is an open interval (c,d). Assume f is decreasing. Now let x ∈ (a,b). Why is f−1 is
continuous at f (x)? Let ε > 0 be given. Let ε > η > 0 and (x−η ,x+η) ⊆ (a,b). Then
f (x) ∈ ( f (x+η) , f (x−η)). Let

δ = min( f (x)− f (x+η) , f (x−η)− f (x)) .
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Then if | f (z)− f (x)|< δ , it follows

z ≡ f−1 ( f (z)) ∈ (x−η ,x+η)⊆ (x− ε,x+ ε)

which implies ∣∣ f−1 ( f (z))− x
∣∣= ∣∣ f−1 ( f (z))− f−1 ( f (x))

∣∣< ε.

This proves the theorem in the case where f is strictly decreasing. The case where f is
increasing is similar. ■

Theorem 16.4.3 Let f : [a,b]→ R be continuous and one to one. Suppose f ′ (x1)

exists for some x1 ∈ [a,b] and f ′ (x1) ̸= 0. Then
(

f−1
)′
( f (x1)) exists and is given by the

formula
(

f−1
)′
( f (x1)) =

1
f ′(x1)

.

Proof: By Lemma 16.4.1 f is either strictly increasing or strictly decreasing and f−1 is
continuous on [a,b]. Therefore there exists η > 0 such that if 0 < | f (x1)− f (x)|< η , then

0 < |x1 − x|=
∣∣ f−1 ( f (x1))− f−1 ( f (x))

∣∣< δ

where δ is small enough that for 0 < |x1 − x|< δ ,∣∣∣∣ x− x1

f (x)− f (x1)
− 1

f ′ (x1)

∣∣∣∣< ε.

It follows that if 0 < | f (x1)− f (x)|< η ,∣∣∣∣ f−1 ( f (x))− f−1 ( f (x1))

f (x)− f (x1)
− 1

f ′ (x1)

∣∣∣∣= ∣∣∣∣ x− x1

f (x)− f (x1)
− 1

f ′ (x1)

∣∣∣∣< ε

Therefore, since ε > 0 is arbitrary,

lim
y→ f (x1)

f−1 (y)− f−1 ( f (x1))

y− f (x1)
=

1
f ′ (x1)

. ■

The following obvious corollary comes from the above by not bothering with end
points.

Corollary 16.4.4 Let f : (a,b) → R be continuous and one to one. Suppose f ′ (x1)

exists for some x1 ∈ (a,b) and f ′ (x1) ̸= 0. Then
(

f−1
)′
( f (x1)) exists and is given by the

formula
(

f−1
)′
( f (x1)) =

1
f ′(x1)

.

Proof: From the definition of the derivative and continuity of f−1,

lim
f (x)→ f (x1)

f−1 ( f (x))− f−1 ( f (x1))

f (x)− f (x1)
= lim

x→x1

x− x1

f (x)− f (x1)
=

1
f ′ (x1)

. ■
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16.4.2 Independence of Parametrization

Theorem 16.4.5 Let φ : [a,b] → [c,d] be one to one and suppose φ
′ exists and is

continuous on [a,b]. Then if f is a continuous function defined on [c,d]∫ d

c
f (s) ds =

∫ b

a
f (φ (t))

∣∣φ ′ (t)
∣∣ dt

Proof: Let F ′ (s) = f (s). (For example, let F (s) =
∫ s

a f (r) dr.) Then the first integral
equals F (d)−F (c) by the fundamental theorem of calculus. Since φ is one to one, it
follows from Lemma 16.4.1 above that φ is either strictly increasing or strictly decreasing.
Suppose φ is strictly decreasing. Then φ (a) = d and φ (b) = c. Therefore, φ

′ ≤ 0 and the
second integral equals

−
∫ b

a
f (φ (t))φ

′ (t) dt =
∫ a

b

d
dt

(F (φ (t))) dt = F (φ (a))−F (φ (b)) = F (d)−F (c) .

The case when φ is increasing is similar but easier. ■

Lemma 16.4.6 Let f : [a,b]→C, g : [c,d]→C be parameterizations of a smooth curve
which satisfy conditions 1 - 5. Then ϕ(t) ≡ g−1 ◦f (t) is 1− 1 on (a,b), continuous on
[a,b], and either strictly increasing or strictly decreasing on [a,b].

Proof: It is obvious φ is 1− 1 on (a,b) from the conditions f and g satisfy. It only
remains to verify continuity on [a,b] because then the final claim follows from Lemma
16.4.1. If φ is not continuous on [a,b], then there exists a sequence, {tn} ⊆ [a,b] such
that tn → t but φ (tn) fails to converge to φ (t). Therefore, for some ε > 0, there exists a
subsequence, still denoted by n such that |φ (tn)−φ (t)| ≥ ε . By sequential compactness
of [c,d], there is a further subsequence, still denoted by n, such that {φ (tn)} converges to a
point s, of [c,d] which is not equal to φ (t). Thus g−1 ◦f (tn)→ s while tn → t. Therefore,
the continuity of f and g imply f (tn)→ g (s) and f (tn)→ f (t). Thus, g (s) = f (t), so
s = g−1 ◦f (t) = φ (t), a contradiction. Therefore, φ is continuous as claimed. ■

Theorem 16.4.7 The length of a smooth curve is not dependent on which paramet-
rization is used.

Proof: Let C be the curve and suppose f : [a,b] → C and g : [c,d] → C both satisfy
conditions 1 - 5. Is it true that

∫ b
a

∣∣f ′ (t)
∣∣ dt =

∫ d
c |g′ (s)| ds?

Let φ (t)≡ g−1◦f (t) for t ∈ [a,b]. I want to show that φ is C1 on an interval of the form
[a+δ ,b−δ ]. By the above lemma, φ is either strictly increasing or strictly decreasing on
[a,b]. Suppose for the sake of simplicity that it is strictly increasing. The decreasing case
is handled similarly.

Let s0 ∈ φ ([a+δ ,b−δ ])⊂ (c,d). Then by assumption 4 for smooth curves, g′i (s0) ̸= 0
for some i. By continuity of g′i, it follows g′i (s) ̸= 0 for all s ∈ I where I is an open interval
contained in [c,d] which contains s0. It follows from the mean value theorem that on this
interval gi is either strictly increasing or strictly decreasing. Therefore, J ≡ gi (I) is also an
open interval and you can define a differentiable function hi : J → I by

hi (gi (s)) = s.
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This implies that for s ∈ I,

h′i (gi (s)) =
1

g′i (s)
. (16.9)

Now letting s = φ (t) for s ∈ I, it follows t ∈ J1, an open interval. Also, for s and t related
this way, f (t) = g (s) and so in particular, for s ∈ I, gi (s) = fi (t) . Consequently,

s = hi (gi (s)) = hi ( fi (t)) = φ (t)

and so, for t ∈ J1,

φ
′ (t) = h′i ( fi (t)) f ′i (t) = h′i (gi (s)) f ′i (t) =

f ′i (t)
g′i (φ (t))

(16.10)

which shows that φ
′ exists and is continuous on J1, an open interval containing φ

−1 (s0).
Since s0 is arbitrary, this shows φ

′ exists on [a+δ ,b−δ ] and is continuous there.
Now f (t) = g◦

(
g−1 ◦f

)
(t) = g (φ (t)), and it was just shown that φ

′ is a continuous
function on [a−δ ,b+δ ]. It follows from the chain rule applied to the components that
f ′ (t) = g′ (φ (t))φ

′ (t) and so, by Theorem 16.4.5,

∫
φ(b−δ )

φ(a+δ )

∣∣g′ (s)∣∣ds =
∫ b−δ

a+δ

∣∣g′ (φ (t))
∣∣ ∣∣φ ′ (t)

∣∣dt =
∫ b−δ

a+δ

∣∣f ′ (t)
∣∣dt.

Now using the continuity of φ ,g′, and f ′ on [a,b] and letting δ → 0+ in the above, yields∫ d

c

∣∣g′ (s)∣∣ds =
∫ b

a

∣∣f ′ (t)
∣∣dt. ■

16.5 Exercises
1. Find the following limits if possible

(a) limx→0+

(
|x|
x ,sinx/x,cosx

)
(b) limx→0+

(
x
|x| ,secx,ex

)
(c) limx→4

(
x2−16
x+4 ,x+7, tan4x

5x

)
(d) limx→∞

(
x

1+x2 ,
x2

1+x2 ,
sinx2

x

)
2. Find

lim
x→2

(
x2 −4
x+2

,x2 +2x−1,
x2 −4
x−2

)
.

3. Prove from the definition that limx→a ( 3
√

x,x+1) = ( 3
√

a,a+1) for all a ∈ R. Hint:
You might want to use the formula for the difference of two cubes,

a3 −b3 = (a−b)
(
a2 +ab+b2) .
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4. Let
r (t) =

(
4+ t2,

√
t2 +1t3, t3

)
describe the position of an object in R3 as a function of t where t is measured in
seconds and r (t) is measured in meters. Is the velocity of this object ever equal to
zero? If so, find the value of t at which this occurs and the point in R3 at which the
velocity is zero.

5. Let r (t) =
(
sin2t, t2,2t +1

)
for t ∈ [0,4]. Find a tangent line to the curve parame-

terized by r at the point r (2).

6. Let r (t)=
(
t,sin t2, t +1

)
for t ∈ [0,5]. Find a tangent line to the curve parameterized

by r at the point r (2).

7. Let r (t) =
(
sin t, t2,cos

(
t2
))

for t ∈ [0,5]. Find a tangent line to the curve parame-
terized by r at the point r (2).

8. Let r (t) =
(
sin t,cos

(
t2
)
, t +1

)
for t ∈ [0,5]. Find the velocity when t = 3.

9. Let r (t) =
(
sin t, t2, t +1

)
for t ∈ [0,5]. Find the velocity when t = 3.

10. Let r (t) =
(
t, ln

(
t2 +1

)
, t +1

)
for t ∈ [0,5]. Find the velocity when t = 3.

11. Suppose an object has position r (t) ∈ R3 where r is differentiable and suppose also
that |r (t)|= c where c is a constant.

(a) Show first that this condition does not require r (t) to be a constant. Hint: You
can do this either mathematically or by giving a physical example.

(b) Show that you can conclude that r′ (t) ·r (t) = 0. That is, the velocity is always
perpendicular to the displacement.

12. Prove 16.4 from the component description of the cross product.

13. Prove 16.4 from the formula (f ×g)i = ε i jk f jgk.

14. Prove 16.4 directly from the definition of the derivative without considering compo-
nents.

15. A Bezier curve in Rp is a vector valued function of the form

y (t) =
n

∑
k=0

(
n
k

)
xk (1− t)n−k tk

where here the
(n

k

)
are the binomial coefficients and xk are n+1 points in Rn. Show

that y (0) = x0, y (1) = xn, and find y′ (0) and y′ (1). Recall that
(n

0

)
=
(n

n

)
= 1 and( n

n−1

)
=
(n

1

)
= n. Curves of this sort are important in various computer programs.

16. Suppose r (t), s(t), and p(t) are three differentiable functions of t which have values
in R3. Find a formula for (r (t)×s(t) ·p(t))′.

17. If F ′ (t) = f (t) for all t ∈ (a,b) and F is continuous on [a,b], show that
∫ b

a f (t) dt =
F (b)−F (a).
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18. If r′ (t) = 0 for all t ∈ (a,b), show that there exists a constant vector c such that
r (t) = c for all t ∈ (a,b).

19. Let r (t) =
(

ln(t) , t2

2 ,
√

2t
)

for t ∈ [1,2]. Find the length of this curve.

20. Let r (t) =
( 2

3 t3/2, t, t
)

for t ∈ [0,1]. Find the length of this curve.

21. Let r (t) = (t,cos(3t) ,sin(3t)) for t ∈ [0,1]. Find the length of this curve.

22. Recall p′ (t) = limh→0
p(t+h)−p(t)

h . Show that this is equivalent to saying either of the
following.

p(t +h)−p(t) = p′ (t)h+o(h)

p(t)−p(s) = p′ (s)(t − s)+o(t − s)

where limh→0
o(h)

h = 0.

23. Recall that the length of a curve is approximated by the length of a polygonal curve
∑

m
k=1 |p(tk)−p(tk−1)| where a = t0 < · · ·< tm = b. Letting the norm of the partition

P = {t0, · · · , tm} be small enough, argue that from differentiability,

m

∑
k=1

∣∣p′ (tk−1)
∣∣(tk − tk−1)− ε (b−a)

m

∑
k=1

|p(tk)−p(tk−1)| ≤
m

∑
k=1

∣∣p′ (tk−1)
∣∣(tk − tk−1)+ ε (b−a)

Explain why if you let ∥Pk∥→ 0,

lim sup
k→∞

(
∑

tk∈Pk

|p(tk)−p(tk−1)|−
∫ b

a

∣∣p′ (t)
∣∣dt

)

− lim inf
k→∞

(
∑

tk∈Pk

|p(tk)−p(tk−1)|−
∫ b

a

∣∣p′ (t)
∣∣dt

)
≤ 2ε (b−a)

Now explain why limk→∞ ∑tk∈Pk
|p(tk)−p(tk−1)|=

∫ b
a |p′ (t)|dt. This gives a proof

that the lengths of polygonal curves approximating the curve converge to the appro-
priate integral. Thus we could have defined the length as the limit of the lengths of
the approximating polygonal curves and replaced the definition with a theorem.

16.6 Motion on Space Curves
A fly buzzing around the room, a person riding a roller coaster, and a satellite orbiting the
earth all have something in common. They are moving over some sort of curve in three
dimensions.

Denote by R(t) the position vector of the point on the curve which occurs at time t.
Assume that R′,R′′ exist and are continuous. Thus R′ = v, the velocity and R′′ = a is
defined as the acceleration.
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R(t)

x

z

y

Lemma 16.6.1 Define T (t)≡R′ (t)/
∣∣R′ (t)

∣∣. Then |T (t)|= 1 and if T ′ (t) ̸= 0, then
there exists a unit vector N (t) perpendicular to T (t) and a scalar valued function κ (t),
with T ′ (t) = κ (t) |v|N (t).

Proof: It follows from the definition that |T | = 1. Therefore, T ·T = 1 and so, upon
differentiating both sides, T ′ ·T +T ·T ′ = 2T ′ ·T = 0. Therefore, T ′ is perpendicular to
T . Let N (t)

∣∣T ′∣∣≡ T ′. Note that if
∣∣T ′∣∣= 0, you could let N (t) be any unit vector. Then

letting κ (t) be defined such that
∣∣T ′∣∣ ≡ κ (t) |v (t)|, it follows T ′ (t) =

∣∣T ′ (t)
∣∣N (t) =

κ (t) |v (t)|N (t) . ■

Definition 16.6.2 The vector T (t) is called the unit tangent vector and the vector
N (t) is called the principal normal. The function κ (t) in the above lemma is called the
curvature. The radius of curvature is defined as ρ = 1/κ . The plane determined by the
two vectors T and N in the case where T ′ ̸= 0 is called the osculating1 plane. It identifies
a particular plane which is in a sense tangent to this space curve.

The important thing about this is that it is possible to write the acceleration as the sum
of two vectors, one perpendicular to the direction of motion and the other in the direction
of motion.

Theorem 16.6.3 For R(t) the position vector of a space curve, the acceleration is
given by the formula

a=
d |v|
dt

T +κ |v|2N ≡ aTT +aNN . (16.11)

Furthermore, a2
T +a2

N = |a|2.

Proof: a= dv
dt =

d
dt (R

′)= d
dt (|v|T )= d|v|

dt T + |v|T ′ = d|v|
dt T + |v|2 κN. This proves

the first part.
For the second part,

|a|2 = (aTT +aNN) · (aTT +aNN)

= a2
TT ·T +2aNaTT ·N +a2

NN ·N = a2
T +a2

N

because T ·N = 0. ■
From 16.11 and the geometric properties of the cross product,

a×v = κ |v|2N ×v

1To osculate means to kiss. Thus this plane could be called the kissing plane. However, that does not sound
formal enough so we call it the osculating plane.
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Hence, using the geometric description of the cross product again using that the angle
between N and T is 90◦,

|a×v|= κ |v|2 |v| , κ =
|a×v|
|v|3

=
|v×a|
|v|3

(16.12)

Finally, it is good to point out that the curvature is a property of the curve itself, and
does not depend on the parametrization of the curve. If the curve is given by two different
vector valued functions R(t) and R(τ), then from the formula above for the curvature,

κ (t) =

∣∣T ′ (t)
∣∣

|v (t)|
=

∣∣ dT
dτ

dτ

dt

∣∣∣∣ dR
dτ

dτ

dt

∣∣ =
∣∣ dT

dτ

∣∣∣∣ dR
dτ

∣∣ ≡ κ (τ) .

From this, it is possible to give an important formula from physics. Suppose an object
orbits a point at constant speed v and it travels over a circle of radius r. In the above
notation, |v| = v. What is the centripetal acceleration of this object? You may know from
a physics class that the answer is v2/r where r is the radius. This follows from the above
quite easily. First, what is the curvature of a circle of radius r? A parameterization of such
a curve is R(t) = (r cos t,r sin t). Thus using 16.12 and this parametrization,

v×a=

∣∣∣∣∣∣
i j k

−r sin t r cos t 0
−r cos t −r sin t 0

∣∣∣∣∣∣= kr2

Thus κ = r2

r3 = 1
r . Since v is constant, it follows from 16.11 that

a=
1
r
|v|2 N =

1
r

v2N

16.6.1 Some Simple Techniques
Recall the formula for acceleration is

a= aTT +aNN (16.13)

where aT = d|v|
dt and aN = κ |v|2. Of course one way to find aT and aN is to just find

|v| , d|v|
dt and κ and plug in. However, there is another way which might be easier. Take the

dot product of both sides with T a vector which is easy to find. This gives,

a ·T = aTT ·T +aNN ·T = aT .

Thus
a= (a ·T )T +aNN

and so
a− (a ·T )T = aNN (16.14)

and taking norms of both sides,

|a− (a ·T )T |= aN .
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Also from 16.14,
a− (a ·T )T

|a− (a ·T )T | =
aNN

aN |N | =N.

Also recall

κ =
|a×v|
|v|3

, a2
T +a2

N = |a|2

This is usually easier than computing T ′/
∣∣T ′∣∣. To illustrate the use of these simple obser-

vations, here is a simple example.

Example 16.6.4 Let R(t) =
(
cos(t) , t, t2

)
for t ∈ [0,3]. Find the speed, velocity, curva-

ture, and write the acceleration in terms of normal and tangential components when t = 0.
Also find N at the point where t = 0.

First I need to find the velocity and acceleration. Thus

v = (−sin t,1,2t) , a= (−cos t,0,2)

and consequently, T = (−sin t,1,2t)√
sin2(t)+1+4t2

. When t = 0, this reduces to

v (0) = (0,1,0) , a= (−1,0,2) , |v (0)|= 1, T = (0,1,0) .

Then the tangential component of acceleration when t = 0 is

aT = (−1,0,2) · (0,1,0) = 0

Now |a|2 = 5 and so aN =
√

5 because a2
T +a2

N = |a|2. Thus
√

5 = κ |v (0)|2 = κ ·1 = κ .
Next lets find N . From a= aTT +aNN it follows

(−1,0,2) = 0 ·T +
√

5N

and so
N =

1√
5
(−1,0,2) .

This was pretty easy.

Example 16.6.5 Find a formula for the curvature of the curve given by the graph of y =
f (x) for x ∈ [a,b]. Assume whatever you like about smoothness of f .

You need to write this as a parametric curve. This is most easily accomplished by letting
t = x. Thus a parametrization is (t, f (t) ,0) : t ∈ [a,b] . Then you can use the formula given
above. The acceleration is (0, f ′′ (t) ,0) and the velocity is (1, f ′ (t) ,0). Therefore,

a×v =
(
0, f ′′ (t) ,0

)
×
(
1, f ′ (t) ,0

)
=
(
0,0,− f ′′ (t)

)
.

Therefore, the curvature is given by

|a×v|
|v|3

=
| f ′′ (t)|(

1+ f ′ (t)2
)3/2 .

Sometimes curves do not come to you parametrically. This is unfortunate when it
occurs but you can sometimes find a parametric description of such curves. It should be
emphasized that it is only sometimes when you can actually find a parametrization. General
systems of nonlinear equations cannot be solved using algebra.
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Example 16.6.6 Find a parametrization for the intersection of the surfaces

y+3z = 2x2 +4 and y+2z = x+1.

You need to solve for x and y in terms of x. This yields

z = 2x2 − x+3, y =−4x2 +3x−5.

Therefore, letting t = x, the parametrization is

(x,y,z) =
(
t,−4t2 −5+3t,−t +3+2t2) .

Example 16.6.7 Find a parametrization for the straight line joining (3,2,4) and (1,10,5).

(x,y,z) = (3,2,4) + t (−2,8,1) = (3−2t,2+8t,4+ t) where t ∈ [0,1]. Note where
this came from. The vector (−2,8,1) is obtained from (1,10,5)− (3,2,4). Now you
should check to see this works. It is usually not possible to find an explicit formula for the
intersection of two surfaces as was just done.

16.7 Geometry of Space Curves∗

If you are interested in more on space curves, you should read this section. Otherwise,
proceed to the exercises. Denote by R(s) the function which takes s to a point on this curve
where s is arc length. Thus R(s) equals the point on the curve which occurs when you have
traveled a distance of s along the curve from one end. This is known as the parametrization
of the curve in terms of arc length. Note also that it incorporates an orientation on the curve
because there are exactly two ends you could begin measuring length from. In this section,
assume anything about smoothness and continuity to make the following manipulations
valid. In particular, assume that R′ exists and is continuous.

Lemma 16.7.1 Define T (s) ≡ R′ (s). Then |T (s)| = 1 and if T ′ (s) ̸= 0, then there
exists a unit vector N (s) perpendicular to T (s) and a scalar valued function κ (s) with
T ′ (s) = κ (s)N (s).

Proof: First, s =
∫ s

0

∣∣R′ (r)
∣∣ dr because of the definition of arc length. Therefore, from

the fundamental theorem of calculus, 1 =
∣∣R′ (s)

∣∣ = |T (s)|. Therefore, T ·T = 1 and so
upon differentiating this on both sides, yields T ′ ·T +T ·T ′ = 0 which shows T ·T ′ = 0.
Therefore, the vector T ′ is perpendicular to the vector T . In case T ′ (s) ̸= 0, let N (s) =
T ′(s)
|T ′(s)| and so T ′ (s) =

∣∣T ′ (s)
∣∣N (s), showing the scalar valued function is κ (s) =

∣∣T ′ (s)
∣∣.

■
The radius of curvature is defined as ρ = 1

κ
. Thus at points where there is a lot of

curvature, the radius of curvature is small and at points where the curvature is small, the
radius of curvature is large. The plane determined by the two vectors T and N is called
the osculating plane. It identifies a particular plane which is in a sense tangent to this space
curve. In the case where

∣∣T ′ (s)
∣∣= 0 near the point of interest, T (s) equals a constant and

so the space curve is a straight line which it would be supposed has no curvature. Also, the
principal normal is undefined in this case. This makes sense because if there is no curving
going on, there is no special direction normal to the curve at such points which could be
distinguished from any other direction normal to the curve. In the case where

∣∣T ′ (s)
∣∣= 0,

κ (s) = 0 and the radius of curvature would be considered infinite.
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Definition 16.7.2 The vector T (s) is called the unit tangent vector and the vector
N (s) is called the principal normal. The function κ (s) in the above lemma is called
the curvature. When T ′ (s) ̸= 0 so the principal normal is defined, the vector B (s) ≡
T (s)×N (s) is called the binormal.

The binormal is normal to the osculating plane and B′ tells how fast this vector changes.
Thus it measures the rate at which the curve twists.

Lemma 16.7.3 Let R(s) be a parametrization of a space curve with respect to arc
length and let the vectors T,N, and B be as defined above. Then B′ = T ×N ′ and there
exists a scalar function τ (s) such that B′ = τN.

Proof: From the definition of B = T ×N, and you can differentiate both sides and get
B′ =T ′×N +T ×N ′. Now recall that T ′ is a multiple called curvature multiplied by N
so the vectors T ′ and N have the same direction, so B′ = T ×N ′. Therefore, B′ is either
zero or is perpendicular to T. But also, from the definition of B,B is a unit vector and so
B (s) ·B (s) = 1. Differentiating this, B′ (s) ·B (s)+B (s) ·B′ (s) = 0 showing that B′ is
perpendicular to B also. Therefore, B′ is a vector which is perpendicular to both vectors
T and B and since this is in three dimensions, B′ must be some scalar multiple of N , and
this multiple is called τ . Thus B′ = τN as claimed. ■

Lets go over this last claim a little more. The following situation is obtained. There
are two vectors T and B which are perpendicular to each other and both B′ and N are
perpendicular to these two vectors, hence perpendicular to the plane determined by them.
Therefore, B′ must be a multiple of N. Take a piece of paper, draw two unit vectors on it
which are perpendicular. Then you can see that any two vectors which are perpendicular to
this plane must be multiples of each other.

The scalar function τ is called the torsion. In case T ′ = 0, none of this is defined
because in this case there is not a well defined osculating plane. The conclusion of the
following theorem is called the Serret Frenet formulas.

Theorem 16.7.4 (Serret Frenet) Let R(s) be the parametrization with respect to
arc length of a space curve and T (s) =R′ (s) is the unit tangent vector. Suppose

∣∣T ′ (s)
∣∣ ̸=

0 so the principal normal N (s) = T ′(s)
|T ′(s)| is defined. The binormal is the vector B ≡ T ×N

so T,N,B forms a right handed system of unit vectors each of which is perpendicular to
every other. Then the following system of differential equations holds in R9.

B′ = τN , T ′ = κN , N ′ =−κT − τB

where κ is the curvature and is nonnegative and τ is the torsion.

Proof: κ ≥ 0 because κ =
∣∣T ′ (s)

∣∣. The first two equations are already established.
To get the third, note that B×T =N which follows because T,N,B is given to form a
right handed system of unit vectors each perpendicular to the others. (Use your right hand.)
Now take the derivative of this expression. thus

N ′ =B′×T +B×T ′ = τ N ×T+κB×N.

Now recall again that T,N,B is a right hand system. Thus

N ×T =−B, B×N =−T.
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This establishes the Frenet Serret formulas. ■
This is an important example of a system of differential equations in R9. It is a re-

markable result because it says that from knowledge of the two scalar functions τ and κ ,
and initial values for B,T, and N when s = 0 you can obtain the binormal, unit tangent,
and principal normal vectors. It is just the solution of an initial value problem although
this is for a vector valued rather than scalar valued function. Having done this, you can
reconstruct the entire space curve starting at some point R0 because R′ (s) = T (s) and so
R(s) =R0 +

∫ s
0 T (r) dr. There are ways to solve such a system of equations numerically

and even draw the graph of the resulting curve but this is not a topic for this book.

16.8 Exercises
1. Find a parametrization for the intersection of the planes 2x+ y+ 3z = −2 and 3x−

2y+ z =−4.

2. Find a parametrization for the intersection of the plane 3x + y + z = −3 and the
circular cylinder x2 + y2 = 1.

3. Find a parametrization for the intersection of the plane 4x + 2y+ 3z = 2 and the
elliptic cylinder x2 +4z2 = 9.

4. Find a parametrization for the straight line joining (1,2,1) and (−1,4,4).

5. Find a parametrization for the intersection of the surfaces 3y + 3z = 3x2 + 2 and
3y+2z = 3.

6. Find a formula for the curvature of the curve y = sinx in the xy plane.

7. An object moves over the curve (t,et ,at) where t ∈ R and a is a positive constant.
Find the value of t at which the normal component of acceleration is largest if there
is such a point.

8. Find a formula for the curvature of the space curve in R2, (x(t) ,y(t)).

9. An object moves over the helix, (cos3t,sin3t,5t). Find the normal and tangential
components of the acceleration of this object as a function of t and write the acceler-
ation in the form aTT +aNN .

10. An object moves in R3 according to the formula
(
cos3t,sin3t, t2

)
. Find the normal

and tangential components of the acceleration of this object as a function of t and
write the acceleration in the form aTT +aNN .

11. An object moves over the helix, (cos t,sin t,2t). Find the osculating plane at the point
of the curve corresponding to t = π/4.

12. An object moves over a circle of radius r according to the formula

r (t) = (r cos(ωt) ,r sin(ωt))

where v = rω . Show that the speed of the object is constant and equals to v. Tell
why aT = 0 and find aN , N.
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13. Suppose |R(t)| = c where c is a constant. Show the velocity, R′ (t) is always per-
pendicular to R(t).

14. An object moves in three dimensions and the only force on the object is a central
force. This means that if r (t) is the position of the object, a(t) = k (r (t))r (t) where
k is some function. Show that if this happens, then the motion of the object must be
in a plane. Hint: First argue that a×r = 0. Next show that (a×r) = (v×r)′.
Therefore, (v×r)′ = 0. Explain why this requires v×r = c for some vector c
which does not depend on t. Then explain why c ·r = 0. This implies the motion is
in a plane. Why? What are some examples of central forces?

15. Let R(t) = (cos t)i+(cos t)j+
(√

2sin t
)
k. Find the arc length, s as a function of

the parameter t, if t = 0 is taken to correspond to s = 0.

16. Let R(t) = 2i+(4t +2)j+4tk. Find the arc length, s as a function of the parameter
t, if t = 0 is taken to correspond to s = 0.

17. Let R(t)= e5ti+e−5tj+5
√

2tk. Find the arc length, s as a function of the parameter
t, if t = 0 is taken to correspond to s = 0.

18. Consider the curve obtained from the graph of y = f (x). Find a formula for the
curvature.

19. Consider the curve in the plane y = ex. Find the point on this curve at which the
curvature is a maximum.

20. An object moves along the x axis toward (0,0) and then along the curve y = x2 in
the direction of increasing x at constant speed. Is the force acting on the object a
continuous function? Explain. Is there any physically reasonable way to make this
force continuous by relaxing the requirement that the object move at constant speed?
If the curve were part of a railroad track, what would happen at the point where
x = 0?

21. An object of mass m moving over a space curve is acted on by a force, F. The
work is defined as

∫ b
a F (r (t)) ·r′ (t)dt and recall that F = ma, the mass times the

acceleration. Work will be discussed more formally later. Show the work done by
this force equals maT (length of the curve) . In other words, it is only the tangential
component of the force which does work.

22. The edge of an elliptical skating rink represented in the following picture has a light
at its left end and satisfies the equation x2

900 +
y2

256 = 1. (Distances measured in yards.)

(x,y)z

L

T
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A hockey puck slides from the point T towards the center of the rink at the rate of 2
yards per second. What is the speed of its shadow along the wall when z = 8? Hint:
You need to find

√
x′2 + y′2 at the instant described.

23. Use MATLAB to graph the parametric curve x = t cos(t) ,y = t sin(t) ,z = t2 for
t ∈ [0,24].



Chapter 17

Some Physical Applications

17.1 Spherical and Cylindrical Coordinates

There are two extensions of polar coordinates to three dimensions which are important
in applications, cylindrical and spherical coordinates. These will be studied much more
in multi-variable calculus but it is convenient to give an introduction to these here. It is
important to understand the geometric significance of these coordinate systems. When you
remember the geometric meaning of the spherical coordinates, they are not too bad, but if
you try to ignore this, you will be constantly confused about what you are trying to do.

Cylindrical coordinates are defined as follows.

x(r,θ ,z) ≡

 x
y
z

=

 r cos(θ)
r sin(θ)

z

 ,

r ≥ 0,θ ∈ [0,2π),z ∈ R

Spherical coordinates are a little harder. These are given by

x(ρ,θ ,φ) ≡

 x
y
z

=

 ρ sin(φ)cos(θ)
ρ sin(φ)sin(θ)

ρ cos(φ)

 ,

ρ ≥ 0,θ ∈ [0,2π),φ ∈ [0,π]

The following picture relates the various coordinates.

367
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x1 (x1,y1,0)

y1

(ρ,φ ,θ)
(r,θ ,z1)
(x1,y1,z1)

z1

ρ

rθ

φ

•

x

y

z

In this picture, ρ is the distance between the origin, the point whose Cartesian coor-
dinates are (0,0,0) and the point indicated by a dot and labelled as (x1,y1,z1), (r,θ ,z1),
and (ρ,φ ,θ). The angle between the positive z axis and the line between the origin and
the point indicated by a dot is denoted by φ , and θ is the angle between the positive x
axis and the line joining the origin to the point (x1,y1,0) as shown, while r is the length
of this line. Thus r = ρ sin(φ) and is the usual polar coordinate while θ is the other polar
coordinate. Letting z1 denote the usual z coordinate of a point in three dimensions, like
the one shown as a dot, (r,θ ,z1) are the cylindrical coordinates of the dotted point. The
spherical coordinates are determined by (ρ,φ ,θ). When ρ is specified, this indicates that
the point of interest is on some sphere of radius ρ which is centered at the origin. Then
when φ is given, the location of the point is narrowed down to a circle of “latitude” and
finally, θ determines which point is on this circle by specifying a circle of “longitude”. Let
φ ∈ [0,π],θ ∈ [0,2π), and ρ ∈ [0,∞). The picture shows how to relate these new coordinate
systems to Cartesian coordinates. Note that θ is the same in the two coordinate systems
and that ρ sinφ = r.

If you fix two of the variables and take a derivative with respect to the other, you are
finding the tangent vector to a space curve. There are three of these space curves

ρ →

 ρ sin(φ)cos(θ)
ρ sin(φ)sin(θ)

ρ cos(φ)

 ,θ →

 ρ sin(φ)cos(θ)
ρ sin(φ)sin(θ)

ρ cos(φ)

 ,φ →

 ρ sin(φ)cos(θ)
ρ sin(φ)sin(θ)

ρ cos(φ)


Doing derivatives with respect to ρ,θ , and φ for these three space curves gives tangent
vectors, the first in the direction of increasing ρ for fixed θ ,φ , the second in the direction
of increasing θ fixing ρ,φ , and the third in the direction of increasing φ for fixed θ ,ρ .
These tangent vectors are sin(φ)cos(θ)

sin(φ)sin(θ)
cos(φ)

 ,

 −ρ sinθ sinφ

ρ cosθ sinφ

0

 ,

 ρ cosθ cosφ

ρ cosφ sinθ

−ρ sinφ


You should note that the dot product of any two different vectors is zero. This is why these
spherical coordinates are known as an orthogonal. This procedure is important for general
curvilinear coordinates.

It is often convenient to divide these vectors by their lengths to obtain unit vectors in
the given directions. Also it is very useful to list them in an order that the vectors are a right
handed system. I will do this later by listing them according to differentiating with respect
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to φ first, then with respect to θ and then with respect to ρ . This yields the following unit
vectors in this order: cosθ cosφ

cosφ sinθ

−sinφ

 ,

 −sinθ

cosθ

0

 ,

 sin(φ)cos(θ)
sin(φ)sin(θ)

cos(φ)


You could denote these vectors respectively as i,j,k and from the geometrical definition
of the cross product, it follows that i×j = k j×k= i, etc. Here is a picture illustrating
these vectors in the order just described at a point (ρ,θ ,φ) of the sphere of radius ρ . The
first is tangent to a line of longitude, the second, a line of latitude and the third points
directly out away from the sphere of radius ρ .

i

k
j

17.2 Exercises
1. The following are the polar coordinates of points. Find the rectangular coordinates.

(a)
(
5, π

6

)
(b)

(
3, π

3

)
(c)

(
4, 2π

3

)
(d)

(
2, 3π

4

)
(e)

(
3, 7π

6

)
(f)
(
8, 11π

6

)
2. The following are the rectangular coordinates of points. Find the polar coordinates

of these points.

(a)
(

5
2

√
2, 5

2

√
2
)

(b)
( 3

2 ,
3
2

√
3
)

(c)
(
− 5

2

√
2, 5

2

√
2
)

(d)
(
− 5

2 ,
5
2

√
3
)
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(e)
(
−
√

3,−1
)

(f)
( 3

2 ,−
3
2

√
3
)

3. The spherical coordinates are given. Find the rectangular coordinates (x,y,z). (It is
typcally a nuissance to go the other direction and in practice, you don’t want to do
this anyway.)

(a) (ρ,θ ,φ) =
(
4, π

2 ,
π

2

)
(b) (ρ,θ ,φ) =

(
1, π

3 ,
2π

3

)
(c) (ρ,θ ,φ) =

(
2, 3

2 π, π

3

)
(d) (ρ,θ ,φ) =

(
3, 2π

3 , 5π

6

)
4. Find the tangent vectors corresponding to keeping two coordinates constant in the

case of cylindrical coordinates and verify that cylindrical coordinates are orthogonal
like spherical coordinates.

5. Verify that the vectors cosθ cosφ

cosφ sinθ

−sinφ

 ,

 −sinθ

cosθ

0

 ,

 sin(φ)cos(θ)
sin(φ)sin(θ)

cos(φ)


obtained from differentiating the spherical coordinates with respect to φ ,θ , and ρ

and then dividing by the length are an orthonormal right handed system of vectors.

6. In general it is a stupid idea to try to use algebra to invert and solve for a set of
curvilinear coordinates such as polar or cylindrical coordinates in term of Cartesian
coordinates. Not only is it often very difficult or even impossible to do it1, but also
it takes you in entirely the wrong direction because the whole point of introducing
the new coordinates is to write everything in terms of these new coordinates and not
in terms of Cartesian coordinates. However, sometimes this inversion can be done.
Describe how to solve for r and θ in terms of x and y in polar coordinates.

17.3 Planetary Motion
Suppose at each point of space, r is associated a force F (r) which a given object of mass m
will experience if its position vector is r. This is called a force field. a force field is a central
force field if F (r) = g(r)er. Thus in a central force field the force an object experiences
will always be directed toward or away from the origin, 0. The following simple lemma is
very interesting because it says that in a central force field objects must move in a plane.

Lemma 17.3.1 Suppose an object moves in three dimensions in such a way that the only
force acting on the object is a central force. Then the motion of the object is in a plane.

1It is no problem for these simple cases of curvilinear coordinates. However, it is a major difficulty in general.
Algebra is simply not adequate to solve systems of nonlinear equations.
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Proof: Let r (t) denote the position vector of the object. Then from the definition of a
central force and Newton’s second law,

mr′′ = g(r)r.

Therefore,
mr′′×r = m

(
r′×r

)′
= g(r)r×r+mr′×r′ = 0 .

Therefore, (r′×r) =n, a constant vector and so r ·n= r·(r′×r) = 0 showing that n is
a normal vector to a plane which contains r (t) for all t. ■

Kepler’s laws of planetary motion state, among other things, that planets move around
the sun along an ellipse. These laws, discovered by Kepler, were shown by Newton to be
consequences of his law of gravitation which states that the force acting on a mass m by a
mass M is given by

F =−GMm
(

1
r3

)
r =−GMm

(
1
r2

)
er

where r is the distance between centers of mass and r is the position vector from M to
m. Here G is the gravitation constant. This is called an inverse square law. Gravity acts
according to this law and so does electrostatic force. The constant G, is very small when
usual units are used and it has been computed using a very delicate experiment. It is now
accepted to be

6.67×10−11 Newton meter2/kilogram2.

The experiment involved a light source shining on a mirror attached to a fiber from
which was suspended a long rod with two solid balls of equal mas at the ends which were
attracted by two larger masses. The gravitation force between the suspended balls and the
two large balls caused the fibre to twist ever so slightly and this twisting was measured
by observing the deflection of the light reflected from the mirror on a scale placed some
distance from the fibre. Part of the experiment must compute the necessary spring constant
of the fibre.

This constant was first measured successfully by Cavendish in 1798 in the manner
just described. The accelerations are extremely small so it took months to complete the
experiment. Also, the entire apparatus had to be shielded from any currents of air which
would of course render the results worthless. The measurement has been made repeatedly.
You should also note that it also depends on being able to show that the entire force can be
considered as acting between the centers of mass of the respective balls. However, this was
shown by Newton. If you have spherical coordinates which are curvilinear coordinates in
three dimensions, this is not too hard, but none of this was invented in Newton’s time.

In the following argument, M is the mass of the sun and m is the mass of the planet. (It
could also be a comet or an asteroid.)

17.3.1 The Equal Area Rule, Kepler’s Second Law

An object moves in three dimensions in such a way that the only force acting on the object
is a central force. Then the object moves in a plane and the radius vector from the origin to
the object sweeps out area at a constant rate. This is the equal area rule. In the context of
planetary motion it is called Kepler’s second law.
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Lemma 17.3.1 says the object moves in a plane. From the assumption that the force
field is a central force field, it follows from 12.5 that

2r′ (t)θ
′ (t)+ r (t)θ

′′ (t) = 0

Multiply both sides of this equation by r. This yields

2rr′θ ′+ r2
θ
′′ =

(
r2

θ
′)′ = 0. (17.1)

Consequently,
r2

θ
′ = c (17.2)

for some constant C. Now consider the following picture.

dθ

In this picture, dθ is the indicated angle and the two lines determining this angle are
position vectors for the object at point t and point t + dt. The area of the sector, dA, is
essentially r2dθ and so dA = 1

2 r2dθ . Therefore,

dA
dt

=
1
2

r2 dθ

dt
=

c
2
. (17.3)

17.3.2 Inverse Square Law, Kepler’s First Law
Consider the first of Kepler’s laws, the one which states that planets move along ellipses.
From Lemma 17.3.1, the motion is in a plane. Now from 12.5 and Newton’s second law,(

r′′ (t)− r (t)θ
′ (t)2

)
er +

(
2r′ (t)θ

′ (t)+ r (t)θ
′′ (t)

)
eθ

= −GMm
m

(
1
r2

)
er =−k

(
1
r2

)
er

Thus k = GM and

r′′ (t)− r (t)θ
′ (t)2 =−k

(
1
r2

)
, 2r′ (t)θ

′ (t)+ r (t)θ
′′ (t) = 0. (17.4)

As in 17.1,
(
r2θ

′)′ = 0 and so there exists a constant c, such that

r2
θ
′ = c. (17.5)

Now the other part of 17.4 and 17.5 implies

r′′ (t)− r (t)θ
′ (t)2 = r′′ (t)− r (t)

(
c2

r4

)
=−k

(
1
r2

)
. (17.6)
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It is only r as a function of θ which is of interest. Using the chain rule,

r′ =
dr
dθ

dθ

dt
=

dr
dθ

( c
r2

)
(17.7)

and so also

r′′ =
d2r
dθ

2

(
dθ

dt

)( c
r2

)
+

dr
dθ

(−2)(c)
(
r−3) dr

dθ

dθ

dt

=
d2r
dθ

2

( c
r2

)2
−2
(

dr
dθ

)2(c2

r5

)
(17.8)

Using 17.8 and 17.7 in 17.6 yields

d2r
dθ

2

( c
r2

)2
−2
(

dr
dθ

)2(c2

r5

)
− r (t)

(
c2

r4

)
=−k

(
1
r2

)
.

Now multiply both sides of this equation by r4/c2 to obtain

d2r
dθ

2 −2
(

dr
dθ

)2 1
r
− r =

−kr2

c2 . (17.9)

This is a nice differential equation for r as a function of θ but its solution is not clear. It
turns out to be convenient to define a new dependent variable, ρ ≡ r−1 so r = ρ−1. Then

dr
dθ

= (−1)ρ
−2 dρ

dθ
,

d2r
dθ

2 = 2ρ
−3
(

dρ

dθ

)2

+(−1)ρ
−2 d2ρ

dθ
2 .

Substituting this in to 17.9 yields

2ρ
−3
(

dρ

dθ

)2

+(−1)ρ
−2 d2ρ

dθ
2 −2

(
ρ
−2 dρ

dθ

)2

ρ −ρ
−1 =

−kρ−2

c2

which simplifies to

(−1)ρ
−2 d2ρ

dθ
2 −ρ

−1 =
−kρ−2

c2

since those two terms which involve
(

dρ

dθ

)2
cancel. Now multiply both sides by −ρ2 and

this yields
d2ρ

dθ
2 +ρ =

k
c2 , (17.10)

which is a much nicer differential equation. Let R = ρ − k
c2 . Then in terms of R, this

differential equation is
d2R
dθ

2 +R = 0.

Multiply both sides by dR
dθ

. Then using the chain rule,

1
2

d
dθ

((
dR
dθ

)2

+R2

)
= 0
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and so (
dR
dθ

)2

+R2 = δ
2 (17.11)

for some δ > 0. Therefore, there exists an angle ψ = ψ (θ) such that

R = δ sin(ψ) ,
dR
dθ

= δ cos(ψ)

because 17.11 says
( 1

δ

dR
dθ
, 1

δ
R
)

is a point on the unit circle. But differentiating, the first of
the above equations,

dR
dθ

= δ cos(ψ)
dψ

dθ
= δ cos(ψ)

and so dψ

dθ
= 1. Therefore, ψ = θ +φ . Choosing the coordinate system appropriately, you

can assume φ = 0. Therefore,

R = ρ − k
c2 =

1
r
− k

c2 = δ sin(θ)

and so, solving for r,

r =
1(

k
c2

)
+δ sinθ

=
c2/k

1+(c2/k)δ sinθ
=

pε

1+ ε sinθ

where
ε =

(
c2/k

)
δ and p = c2/kε. (17.12)

Here all these constants are nonnegative.
Thus

r+ εr sinθ = ε p

and so r = (ε p− εy). Then squaring both sides,

x2 + y2 = (ε p− εy)2 = ε
2 p2 −2pε

2y+ ε
2y2

And so
x2 +

(
1− ε

2)y2 = ε
2 p2 −2pε

2y. (17.13)

In case ε = 1, this reduces to the equation of a parabola. If ε < 1, this reduces to the
equation of an ellipse and if ε > 1, this is called a hyperbola. This proves that objects
which are acted on only by a force of the form given in the above example move along
hyperbolas, ellipses or circles. The case where ε = 0 corresponds to a circle. The constant
ε is called the eccentricity. This is called Kepler’s first law in the case of a planet.

17.3.3 Kepler’s Third Law
Kepler’s third law involves the time it takes for the planet to orbit the sun. From 17.13 you
can complete the square and obtain

x2 +
(
1− ε

2)(y+
pε2

1− ε2

)2

= ε
2 p2 +

p2ε4

(1− ε2)
=

ε2 p2

(1− ε2)
,
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and this yields

x2/

(
ε2 p2

1− ε2

)
+

(
y+

pε2

1− ε2

)2

/

(
ε2 p2

(1− ε2)2

)
= 1. (17.14)

Now note this is the equation of an ellipse and that the diameter of this ellipse is

2ε p
(1− ε2)

≡ 2a. (17.15)

This follows because
ε2 p2

(1− ε2)2 ≥ ε2 p2

1− ε2 .

Now let T denote the time it takes for the planet to make one revolution about the sun. It
is left as an exercise for you to show that the area of an ellipse whose long axis is 2a and
whose short axis is 2b is πab. This is an exercise in trig. substitutions and is a little tedious
but routine. Using this formula, and 17.3 the following equation must hold.

area of ellipse︷ ︸︸ ︷
π

ε p√
1− ε2

ε p
(1− ε2)

= T
c
2

Therefore,

T =
2
c

πε2 p2

(1− ε2)3/2

and so

T 2 =
4π2ε4 p4

c2 (1− ε2)3

Now using 17.12, recalling that k = GM, and 17.15,

T 2 =
4π2ε4 p4

kε p(1− ε2)3 =
4π2 (ε p)3

k (1− ε2)3 =
4π2a3

k
=

4π2a3

GM
.

Written more memorably, this has shown

T 2 =
4π2

GM

(
diameter of ellipse

2

)3

. (17.16)

This relationship is known as Kepler’s third law.

17.4 The Angular Velocity Vector
Let (i(t) ,j (t) ,k (t)) be a right handed system of unit basis vectors. Thus k (t) = i(t)×
j (t) and each vector has unit length. This represents a moving coordinate system. We
assume that i(t) ,j (t) ,k (t) are each continuous having continuous derivatives, as many as
needed for the following manipulations for t in some open interval. The various rules of
differentiation of vector valued functions will be used to show the existence of an angular
velocity vector.
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Lemma 17.4.1 The following hold. Whenever r (t) ,s(t) are two vectors from the set
of vectors {i(t) ,j (t) ,k (t)} ,

r (t) ·s′ (t) =−r′ (t) ·s(t)

In particular, the case where r = s, implies r′ (t) ·r (t) = 0.

Proof: By assumption, r (t) · s(t) is either 0 for all t or 1 in case r = s. Therefore,
from the product rule,

r (t) ·s′ (t)+r′ (t) ·s(t) = 0

which yields the desired result. ■
Then the fundamental result is the following major theorem which gives the existence

and uniqueness of the angular velocity vector.

Theorem 17.4.2 Let (i(t) ,j (t) ,k (t)) be a right handed orthogonal system of unit
vectors as explained above. Then there exists a unique vector Ω(t) , the angular velocity
vector, such that for r (t) any of the {i(t) ,j (t) ,k (t)} ,

r′ (t) =Ω(t)×r (t)

Proof: First I will show that if this angular velocity vector Ω(t) exists, then it must
be of a certain form. This will prove uniqueness. After showing this, I will verify that it
does what it needs to do by simply checking that it does so. In all considerations, recall
that in the box product, the × and · can be switched. I will use this fact with no comment
in what follows. So suppose that such an angular velocity vector exists. Then i′ (t) =
Ω(t)× i(t) with a similar formula holding for the other vectors. Also note that since this
is a right handed system, i(t)×j (t) = k (t) ,j (t)×k (t) = i(t) , and k (t)× i(t) = j (t) as
earlier. In addition, if you want the component of a vector v with respect to some r (t), it
is v ·r (t) = vr (t). Thus

v = vii(t)+ v jj (t)+ vkk (t) , vr = v ·r (t) for each r (t) ∈ {i(t) ,j (t) ,k (t)}

Then

i′ (t) ·j (t) =Ω(t)× i(t) ·j (t) =Ω(t) · i(t)×j (t) =Ω(t) ·k (t) = Ω(t)k

Thus the component of Ω(t) in the direction k (t) is determined. Next,

i′ (t) ·k (t) =Ω(t)× i(t) ·k (t) =Ω(t) · i(t)×k (t) =−Ω j (t)

and so the component in the direction j (t) is also determined. Next,

j ′ (t) ·k (t) =Ω(t)×j (t) ·k (t) =Ω(t) · (j (t)×k (t)) = Ωi (t)

so the component of Ω(t) in direction i(t) is determined. Thus, if there is such an angular
velocity vector, it must be of the form

Ω(t)≡
(
j ′ (t) ·k (t)

)
i(t)−

(
i′ (t) ·k (t)

)
j (t)+

(
i′ (t) ·j (t)

)
k (t)
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It only remains to verify that this vector works. Recall Lemma 17.4.1 which will be
used without comment in what follows. Does the above Ω(t) work?

Ω(t)× i(t) =
(
i′ (t) ·k (t)

)
k (t)

+
(
i′ (t) ·j (t)

)
j (t)+

 =0︷ ︸︸ ︷
i′ (t) · i(t)

i(t) = i′ (t)

Ω(t)×j (t) =
(
j ′ (t) ·k (t)

)
k (t)+

(
i′ (t) ·j (t)

)
(−i(t))

=
(
j ′ (t) ·k (t)

)
k (t)+

(
i(t) ·j ′ (t)

)
i(t) = j ′ (t)

and finally,

Ω(t)×k (t) =
(
j ′ (t) ·k (t)

)
(−j (t))−

(
i′ (t) ·k (t)

)
i(t)

=
(
j (t) ·k′ (t)

)
(j (t))+

(
i(t) ·k′ (t)

)
i(t) = k′ (t)

Thus, this Ω(t) is the angular velocity vector and there is only one. Of course it might have
different descriptions but there can only be one and it is the vector just described. ■

This implies the following simple corollary.

Corollary 17.4.3 Let u(t) be a vector such that its components with respect to the
basis vectors i(t) ,j (t) ,k (t) are constant. Then u′ (t) =Ω(t)×u(t).

Proof: Say u(t) = uii(t)+u jj (t)+ukk (t) . Then

u′ (t) = uii
′ (t)+u jj

′ (t)+ukk
′ (t)

= uiΩ(t)× i(t)+u jΩ(t)×j (t)+ukΩ(t)×k (t)

=Ω(t)× (uii(t)+u jj (t)+ukk (t)) =Ω(t)×u(t) ■

17.5 Angular Velocity Vector on Earth
So how do you find the angular velocity vector? One way is to use the formula shown
above. However, in important cases, this angular velocity vector can be determined from
simple geometric reasoning. An obvious example concerns motion on the surface of the
earth. Imagine you have a coordinate system fixed with the earth. Then it is actually
rotating through space because the earth is turning. However, to an observer on the surface
of the earth, these vectors are not moving and this observer wants to understand motion in
terms of these apparently fixed vectors. This is a very interesting problem which can be
understood relative to what was just discussed.

Of course the earth moves through space, but this is ignored because the accelerations
relative to this motion are so small. After all, it takes a year to go around the sun.

Imagine a point on the surface of the earth which is not moving relative to the earth.
Now consider unit vectors, one pointing South, one pointing East and one pointing directly
away from the center of the earth.
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i

k
j

Denote the first as i(t), the second as j (t) , and the third as k (t). If you are standing on
the earth you will consider these vectors as fixed, but of course they are not. As the earth
turns, they change direction and so each is in reality a function of t. What is the description
of the angular velocity vector in this situation?

Let i∗,j∗,k∗, be the usual basis vectors fixed in space with k∗ pointing in the direction
of the north pole from the center of the earth and let i(t) ,j (t) ,k (t) be the unit vectors
described earlier with i(t) pointing South, j (t) pointing East, and k (t) pointing away
from the center of the earth at some point of the rotating earth’s surface p(t). (This means
that the components of p(t) are constant with respect to the vectors fixed with the earth. )
Letting R(t) be the position vector of the point p(t) , from the center of the earth, observe
that this is a typical vector having coordinates constant with respect to i(t) ,j (t) ,k (t) .
Also, since the earth rotates from West to East and the speed of a point on the surface of
the earth relative to an observer fixed in space is ω |R|sinφ where ω is the angular speed
of the earth about an axis through the poles and φ is the polar angle measured from the
positive z axis down as in spherical coordinates. It follows from the geometric definition of
the cross product that

R′ (t) = ωk∗×R(t)

Therefore, the vector of Theorem 17.4.2 is Ω(t) = ωk∗ because it acts like it should for
vectors having components constant with respect to the vectors fixed with the earth. As
mentioned, you could let θ ,ρ,φ each be a function of t and use the formula above along
with the chain rule to verify analytically that the angular velocity vector is what is claimed
above. That is, you would have θ (t) = ωt and the other spherical coordinates constant.
See Problem 12 on Page 385 below for a more analytical explanation.

17.6 Coriolis Force and Centripetal Force

Let p(t) be a point which has constant components relative to the moving coordinate sys-
tem described above {i(t) ,j (t) ,k (t)}. For example, it could be a single point on the
rotating earth or more generally simply a generic moving coordinate system. Let i∗,j∗,k∗

be a typical rectangular coordinate system fixed in space and let R(t) be the position vector
of p(t) from the origin fixed in space. In the case of the earth, think of the origin as the cen-
ter of the earth. Thus the components of R(t) with respect to the moving coordinate system
are constants. A general observation is this. If w (t)=w1 (t)i(t)+w2 (t)j (t)+w3 (t)k (t) ,
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let w′
B (t) be

w′
B (t) = w′

1 (t)i(t)+w′
2 (t)j (t)+w′

3 (t)k (t)

A dot will indicate the total derivative. Thus

ẇ (t) ≡ w′
1 (t)i(t)+w′

2 (t)j (t)+w′
3 (t)k (t)

+w1 (t)i′ (t)+w2 (t)j ′ (t)+w3 (t)k′ (t)

≡w′
B (t)+Ω(t)×w (t)

Thus, when you differentiate a vector w, you write it as ẇ=w′
B +Ω(t)×w where w′

B is
the perceived time derivative in the moving coordinate system.

w′
B (t) = w′

1 (t)i(t)+w′
2 (t)j (t)+w′

3 (t)k (t)

Let rB (t) be the position vector from this point p(t) to some other point.

rB (t)≡ x(t)i(t)+ y(t)j (t)+ z(t)k (t)

The acceleration perceived by an observer moving with the moving coordinate system
would then be

aB (t) = x′′ (t)i(t)+ y′′ (t)j (t)+ z′′ (t)k (t)

and the perceived velocity would be

vB (t)≡ x′ (t)i(t)+ y′ (t)j (t)+ z′ (t)k (t)

Let r (t)≡R(t)+rB (t) . Then, since R(t) has constant components relative to the moving
coordinate system, Ṙ(t) = Ω(t)×R(t). It doesn’t have constant components fixed in
space, just with respect to the moving coordinate system. Thus, using the above observation
with the usual conventions that v is velocity and a acceleration,

v (t)= ṙ (t) = r′B (t)+Ω(t)×r (t)≡ vB (t)+Ω(t)×r (t)

Now go to the acceleration. Using the same process, a= v̇ =

v̇B + Ω̇×r+Ω×ṙ = aB +Ω×vB +Ω̇×r+Ω× (vB +Ω×r)

= aB +2Ω×vB + Ω̇×r+Ω× (Ω×r) (17.17)

17.7 Coriolis Force on the Rotating Earth
As explained above, on the rotating earth, Ω is a constant and so 17.17 reduces to

a= aB +2(Ω×vB)+Ω× (Ω×r) (17.18)

Since rB +R= r,

aB = a−Ω× (Ω×R)−2Ω×vB −Ω× (Ω×rB) . (17.19)

In this formula, you can totally ignore the term Ω× (Ω×rB) because it is so small when-
ever you are considering motion near some point on the earth’s surface. To see this, note
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ω

seconds in a day︷ ︸︸ ︷
(24)(3600) = 2π , and so ω = 7.2722× 10−5 in radians per second. If you are using

seconds to measure time and feet to measure distance, this term is therefore, no larger than(
7.2722×10−5

)2
|rB| .

Clearly this is not worth considering in the presence of the acceleration due to gravity which
is approximately 32 feet per second squared near the surface of the earth.

If the acceleration a is due to gravity, then

aB = a−Ω× (Ω×R)−2Ω×vB =

≡g︷ ︸︸ ︷
−GM (R+rB)

|R+rB|3
−Ω× (Ω×R)−2Ω×vB ≡ g−2Ω×vB.

Note that
Ω× (Ω×R) = (Ω·R)Ω−|Ω|2R

and so g, the acceleration relative to the moving coordinate system on the earth is not
directed exactly toward the center of the earth except at the equator or at poles, although
the components of acceleration which are in other directions are very small when compared
with the acceleration due to the force of gravity and are often neglected. Therefore, if
the only force acting on an object is due to gravity, the following formula describes the
acceleration relative to a coordinate system moving with the earth’s surface.

aB = g−2(Ω×vB)

While the vector Ω is quite small, if the relative velocity vB is large, the Coriolis accelera-
tion could be significant. This is described in terms of the vectors i(t) ,j (t) ,k (t) next.

Letting (ρ,θ ,φ) be the usual spherical coordinates of the point p(t) on the surface
taken with respect to i∗,j∗,k∗ the usual way with φ the polar angle, it follows the i∗,j∗,k∗

coordinates of this point are  ρ sin(φ)cos(θ)
ρ sin(φ)sin(θ)

ρ cos(φ)

 .

It follows,
i= cos(φ)cos(θ)i∗+ cos(φ)sin(θ)j∗− sin(φ)k∗

j =−sin(θ)i∗+ cos(θ)j∗+0k∗

and
k= sin(φ)cos(θ)i∗+ sin(φ)sin(θ)j∗+ cos(φ)k∗.

It is necessary to obtain k∗ in terms of the vectors, i(t) ,j (t) ,k (t) because, as shown
earlier, ωk∗ is the angular velocity vector Ω. To simplify notation, I will suppress the
dependence of these vectors on t. Thus the following equation needs to be solved for a,b,c
to find k∗ = a i+bj+ ck

k∗︷ ︸︸ ︷ 0
0
1

= a

i︷ ︸︸ ︷ cos(φ)cos(θ)
cos(φ)sin(θ)

−sin(φ)

+b

j︷ ︸︸ ︷ −sin(θ)
cos(θ)

0

+ c

k︷ ︸︸ ︷ sin(φ)cos(θ)
sin(φ)sin(θ)

cos(φ)

 (17.20)
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The solution is a =−sin(φ) ,b = 0, and c = cos(φ) .
Now the Coriolis acceleration on the earth equals

2(Ω×vB) = 2ω

 k∗︷ ︸︸ ︷
−sin(φ) i+0j+ cos(φ)k

×
(
x′ i+ y′ j+ z′k

)
.

Recall that i,j,k is a right handed orthonormal system and so the method for finding the
cross product is valid for these vectors. Thus, this equals

2ω
[(
−y′ cosφ

)
i+
(
x′ cosφ + z′ sinφ

)
j−

(
y′ sinφ

)
k
]
. (17.21)

Remember φ is fixed and pertains to the fixed point p(t) on the earth’s surface. Therefore,
if the acceleration a is due to gravity,

aB = g−2ω
[(
−y′ cosφ

)
i+
(
x′ cosφ + z′ sinφ

)
j−

(
y′ sinφ

)
k
]

where g =−GM(R+rB)

|R+rB|3
−Ω× (Ω×R) as explained above. The term Ω× (Ω×R) is quite

small and will be neglected. However, the Coriolis force will not be neglected.

Example 17.7.1 Suppose a rock is dropped from a tall building. Where will it strike?

Assume a=−gk and the j component of aB is approximately

−2ω
(
x′ cosφ + z′ sinφ

)
.

The dominant term in this expression is clearly the second one because x′ will be small.
Also, the i and k contributions will be very small. Therefore, the following equation is
descriptive of the situation.

aB =−gk−2z′ω sinφj.

z′ =−gt approximately. Therefore, considering the j component, this is

2gtω sinφ .

Two integrations give
(
ωgt3/3

)
sinφ for the j component of the relative displacement at

time t.
This shows the rock does not fall directly towards the center of the earth as expected

but slightly to the east.

17.8 The Foucault Pendulum∗

In 1851 Foucault set a pendulum vibrating and observed the earth rotate out from under it.
It was a very long pendulum with a heavy weight at the end so that it would vibrate for a
long time without stopping2. This is what allowed him to observe the earth rotate out from
under it. Clearly such a pendulum will take 24 hours for the plane of vibration to appear to
make one complete revolution at the north pole. It is also reasonable to expect that no such

2There is such a pendulum in the Eyring building at BYU and to keep people from touching it, there is a little
sign which says Warning! 1000 ohms. You certainly don’t want to encounter too many ohms! Most modern
Foucault pendulums have a mechanism which applies a periodic force to keep it vibrating.
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observed rotation would take place on the equator. Is it possible to predict what will take
place at various latitudes?

Using 17.21, in 17.19,
aB = a−Ω× (Ω×R)

−2ω
[(
−y′ cosφ

)
i+
(
x′ cosφ + z′ sinφ

)
j−

(
y′ sinφ

)
k
]
.

Neglecting the small term, Ω× (Ω×R) , this becomes

=−gk+T/m−2ω
[(
−y′ cosφ

)
i+
(
x′ cosφ + z′ sinφ

)
j−

(
y′ sinφ

)
k
]

where T , the tension in the string of the pendulum, is directed towards the point at which
the pendulum is supported, and m is the mass of the weight at the end of the pendulum.
The pendulum can be thought of as the position vector from (0,0, l) to the surface of the
sphere x2 + y2 +(z− l)2 = l2. Therefore,

T =−T
x
l
i−T

y
l
j+T

l − z
l

k

and consequently, the differential equations of relative motion are

x′′ =−T
x

ml
+2ωy′ cosφ

y′′ =−T
y

ml
−2ω

(
x′ cosφ + z′ sinφ

)
and

z′′ = T
l − z
ml

−g+2ωy′ sinφ .

If the vibrations of the pendulum are small so that for practical purposes, z′′ = z = 0, the
last equation may be solved for T to get

gm−2ωy′ sin(φ)m = T.

Therefore, the first two equations become

x′′ =−
(
gm−2ωmy′ sinφ

) x
ml

+2ωy′ cosφ

and
y′′ =−

(
gm−2ωmy′ sinφ

) y
ml

−2ω
(
x′ cosφ + z′ sinφ

)
.

All terms of the form xy′ or y′y can be neglected because it is assumed x and y remain small.
Also, the pendulum is assumed to be long with a heavy weight so that x′ and y′ are also
small. With these simplifying assumptions, the equations of motion become

x′′+g
x
l
= 2ωy′ cosφ

and
y′′+g

y
l
=−2ωx′ cosφ .

These equations are of the form

x′′+a2x = by′, y′′+a2y =−bx′ (17.22)
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where a2 = g
l and b = 2ω cosφ . There are systematic ways to solve the above linear system

of ordinary differential equations, but for the purposes here, it is fairly tedious but routine
to verify that for each constant c,

x = csin
(

bt
2

)
sin

(√
b2 +4a2

2
t

)
, y = ccos

(
bt
2

)
sin

(√
b2 +4a2

2
t

)
(17.23)

yields a solution to 17.22 along with the initial conditions,

x(0) = 0,y(0) = 0,x′ (0) = 0,y′ (0) =
c
√

b2 +4a2

2
. (17.24)

It is clear from experiments with the pendulum that the earth does indeed rotate out from
under it causing the plane of vibration of the pendulum to appear to rotate. The purpose
of this discussion is not to establish this obvious fact but to predict how long it takes for
the plane of vibration to make one revolution. There will be some instant in time at which
the pendulum will be vibrating in a plane determined by k and j. (Recall k points away
from the center of the earth and j points East. ) At this instant in time, defined as t = 0,
the conditions of 17.24 will hold for some value of c and so the solution to 17.22 having
these initial conditions will be those of 17.23. (Some interesting mathematical details are
being ignored here. Such initial value problems as 17.23 and 17.24 have only one solution
so if you have found one, then you have found the solution. This is a general fact shown in
differential equations courses. However, for the above system of equations see Problem 13
on Page 385 found below.) Writing these solutions differently,(

x(t)
y(t)

)
= c
(

sin
( bt

2

)
cos
( bt

2

) )sin

(√
b2 +4a2

2
t

)

This is very interesting! The vector, c
(

sin
( bt

2

)
cos
( bt

2

) ) always has magnitude equal to |c| but

its direction changes very slowly because b is very small. The plane of vibration is deter-

mined by this vector and the vector k. The term sin
(√

b2+4a2

2 t
)

changes relatively fast and

takes values between −1 and 1. This is what describes the actual observed vibrations of the
pendulum. Thus the plane of vibration will have made one complete revolution when t = T
for bT

2 ≡ 2π . Therefore, the time it takes for the earth to turn out from under the pendulum
is

T =
4π

2ω cosφ
=

2π

ω
secφ .

Since ω is the angular speed of the rotating earth, it follows ω = 2π

24 = π

12 in radians per
hour. Therefore, the above formula implies T = 24secφ . I think this is really amazing.
You could determine latitude, not by taking readings with instruments using the North star
but by doing an experiment with a big pendulum. You would set it vibrating, observe T in
hours, and then solve the above equation for φ . Also note the pendulum would not appear
to change its plane of vibration at the equator because limφ→π/2 secφ = ∞.

17.9 Exercises
1. Find the length of the cardioid, r = 1+ cosθ ,θ ∈ [0,2π]. Hint: A parametrization

is x(θ) = (1+ cosθ)cosθ ,y(θ) = (1+ cosθ)sinθ .
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2. In general, show that the length of the curve given in polar coordinates by r =

f (θ) ,θ ∈ [a,b] equals
∫ b

a

√
f ′ (θ)2 + f (θ)2dθ .

3. Using the above problem, find the lengths of graphs of the following polar curves.

(a) r = θ , θ ∈ [0,3]
(b) r = 2cosθ , θ ∈ [−π/2,π/2]
(c) r = 1+ sinθ , θ ∈ [0,π/4]
(d) r = eθ , θ ∈ [0,2]
(e) r = θ +1, θ ∈ [0,1]

4. Suppose the curve given in polar coordinates by r = f (θ) for θ ∈ [a,b] is rotated
about the y axis. Find a formula for the resulting surface of revolution. You should
get

2π

∫ b

a
f (θ)cos(θ)

√
f ′ (θ)2 + f (θ)2dθ

5. Using the result of the above problem, find the area of the surfaces obtained by
revolving the polar graphs about the y axis.

(a) r = θ sec(θ) , θ ∈ [0,2]
(b) r = 2cosθ , θ ∈ [−π/2,π/2]
(c) r = eθ , θ ∈ [0,2]
(d) r = (1+θ)sec(θ) , θ ∈ [0,1]

6. Suppose an object moves in such a way that r2θ
′ is a constant. Show that the only

force acting on the object is a central force.

7. Explain why low pressure areas rotate counter clockwise in the Northern hemisphere
and clockwise in the Southern hemisphere. Hint: Note that from the point of view
of an observer fixed in space above the North pole, the low pressure area already
has a counter clockwise rotation because of the rotation of the earth and its spherical
shape. Now consider 17.2. In the low pressure area stuff will move toward the center
so r gets smaller. How are things different in the Southern hemisphere?

8. What are some physical assumptions which are made in the above derivation of Ke-
pler’s laws from Newton’s laws of motion?

9. The orbit of the earth is pretty nearly circular and the distance from the sun to the
earth is about 149×106 kilometers. Using 17.16 and the above value of the universal
gravitation constant, determine the mass of the sun. The earth goes around it in 365
days. (Actually it is 365.256 days.)

10. It is desired to place a satellite above the equator of the earth which will rotate about
the center of mass of the earth every 24 hours. Is it necessary that the orbit be
circular? What if you want the satellite to stay above the same point on the earth
at all times? If the orbit is to be circular and the satellite is to stay above the same
point, at what distance from the center of mass of the earth should the satellite be?
You may use that the mass of the earth is 5.98× 1024 kilograms. Such a satellite is
called geosynchronous.
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11. Show directly that the area of the inside of an ellipse x2

a2 +
y2

b2 = 1 is πab. Hint: Solve
for y and consider the top half of the ellipse.

12. Recall the formula derived above for the angular velocity vector

Ω(t) =
(
j ′ (t) ·k (t)

)
i(t)−

(
i′ (t) ·k (t)

)
j (t)+

(
i′ (t) ·j (t)

)
k (t)

In the case of the rotating earth, i(t) ,j (t) , and k (t) are respectively cos(ωt)cosφ

cosφ sin(ωt)
−sinφ

 ,

 −sin(ωt)
cos(ωt)

0

 ,

 sin(φ)cos(ωt)
sin(φ)sin(ωt)

cos(φ)


where column vectors are in terms of the fixed vectors i∗,j∗,k∗. Show directly that
Ω(t) = ωk∗ as claimed above.

13. Suppose you have
x′′+a2x = by′, y′′+a2y =−bx′ (17.25)

and x(0) = x′ (0) = y(0) = y′ (0) = 0. Show that x(t) = y(t) = 0. Show this implies
there is only one solution to the initial value problem 17.23 and 17.24. Hint: If you
had two solutions to 17.23 and 17.24, x̃, ỹ and x̂, ŷ, consider x = x̂− x̃ and y = ŷ− ỹ
and show x,y satisfies 17.25. To show the first part, multiply the first equation by x′

the second by y′ add and obtain the following using the product rule.

d
dt

((
x′
)2

+
(
y′
)2

+a2 (x2 + y2))= 0

Thus the inside is a constant. From the initial condition, this constant can only be 0.

14. This problem is about finding the equation of a hanging chain. Consider the follow-
ing picture of a portion of this chain.

T0

T (x)

θ

T (x)cosθ

T (x)sinθ

ρl(x)g

In this picture, ρ denotes the density of the chain which is assumed to be constant
and g is the acceleration due to gravity. T (x) and T0 represent the magnitude of the
tension in the chain at x and at 0 respectively, as shown and l(x) is the length of the
chain up to x. Let the bottom of the chain be at the origin as shown. If this chain
does not move, then all these forces acting on it must balance. In particular,

T (x)sinθ = l (x)ρg, T (x)cosθ = T0.

Therefore, dividing these yields tan(θ) = sinθ

cosθ
= l (x)

≡c︷ ︸︸ ︷
ρg/T0. Now letting y(x) de-

note the y coordinate of the hanging chain corresponding to x, tanθ = y′ (x) . There-
fore, this yields y′ (x) = cl (x) . From formula for the length of a graph, explain why
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l′ (x) =
√

1+ y′ (x)2. Explain why y′′ (x) = cl′ (x) = c
√

1+ y′ (x)2. Now let z(x) =

y′ (x) and explain why z′(x)√
1+z2

= c. Therefore,
∫ z′(x)√

1+z2
dx = cx+d. Change variables

and verify that sinh−1 (y′ (x)) = cx+ d. Now verify that y(x) = 1
c cosh(cx+d)+ k

which is the equation of a catenary.
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Functions of Many Variables
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Chapter 18

Linear Functions

Calculus of many variables involves the consideration of functions of many variables, just
as calculus of one variable, considered earlier is about functions of one variable. Recall
this could involve a function which has vector values, but the function depended on only
one variable. When you consider functions of many variables, the easiest are those which
are linear.

18.1 The Matrix of a Linear Transformation
The next definition is on what it means for a function to be linear.

Definition 18.1.1 Let T : Rn → Rm. This function is linear if whenever α,β are
numbers and x,y are vectors in Rn, it follows that

T (αx+βy) = αT (x)+βT (y)

Such linear functions are also called linear transformations or linear maps. Also, for
T : Rn → Rm linear, it is standard to write T ∈ L (Rn,Rm).

The first thing we need to do is to give an easily usable description of such a linear
function. This will involve special vectors called ek. Also, from now on bold face x will
refer to a vector as earlier but now the vector will be written as a column vector. Thus

x=

 x1
...

xn


would denote a vector in Rn. Actually, to save space, this vector will often be written as(

x1 · · · xn
)T the exponent T indicating that one is to make this row of numbers into a

column of numbers as above. All other conventions about addding and and multiplying by
numbers (scalars) are the same as discussed earlier. Now for the definition of the special
vectors ek,

Definition 18.1.2 ek is the vector
(

0 · · · 1 · · · 0
)T where there is a 1 in

the kth position and a 0 in every other position. Thus if x=
(

x1 · · · xn
)T is a vector

389
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in Rn,
x= x1e1 + x2e2 + · · ·+ xnen

Written out, this is of the form x1
...

xn

= x1

 1
...
0

+ · · ·+ xn

 0
...
1


As an example,  1

2
3

= 1

 1
0
0

+2

 0
1
0

+3

 0
0
1


Be sure you understand this before reading further. You need to use the rules of vector ad-
ddition and scalar multiplication discussed earlier but this time applied to column vectors.

Proposition 18.1.3 Let T : Rn → Rm be linear, T ∈ L (Rn,Rm). Then for

x=
(

x1 · · · xn
)T

,

T (x) = x1T (e1)+ x2T (e2)+ · · ·+ xnT (en)

In other words, for each i ≤ m,

T (x)i = x1T (e1)i + x2T (e2)i + · · ·+ xnT (en)i ≡ ∑
k

xkT (ek)i

Proof: Since T is linear, T (x) = T (∑n
k=1 xkek) = ∑

n
k=1 xkT (ek) which is the above. ■

Note that Proposition 18.1.3 shows that if you know what the linear function does to
each ek, then you know what it does to an arbitrary vector x.

Example 18.1.4 Suppose T : R3 → R3 is linear and

Te1 ≡

 1
1
1

 ,Te2 ≡

 1
2
3

 ,Te3 ≡

 1
0
1


Describe T (x) .

According to the above proposition,

Tx= x1

 1
1
1

+ x2

 1
2
3

+ x3

 1
0
1


There is a shortened version of this described in the following definition.

Definition 18.1.5 Letting x be a vector in Rn, and letting u1, · · · ,un be vectors in
Rm, the linear combination

x1u1 + x2u2 + · · ·+ xnun ≡
n

∑
k=1

xkuk
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is written as

(
u1 u2 · · · un

)


x1
x2
...

xn


Here

(
u1 u2 · · · un

)
is called an m× n matrix, meaning it is a rectangular array

of numbers having m rows (rows are horizontal) and n columns (columns are vertical). The
kth column from the left will be uk. Note that a linear combination is just an expression
consisting of scalars times vectors added together. For T a linear transformation, its matrix
A is such that T (x) = Ax.

Theorem 18.1.6 Let T ∈ L (Rn,Rm) . Then the matrix of T is the following where
each Tek is a column vector: (

Te1 Te2 · · · Ten
)

Proof: This follows from the above definition and Proposition 18.1.3. ■

Example 18.1.7 Write the following as a matrix times a vector.

2

 1
1
1

−2

 1
2
3

+3

 0
−4
2


According to the above definition, this is of the form 1 1 0

1 2 −4
1 3 2

 2
−2
3


When you multiply a matrix times a vector, you are just specifying a linear combination

of the columns of the matrix. Thus every linear function T : Rn → Rm can be written as
follows:

Tx= Ax

where A is an m× n matrix called the matrix of the linear transformation. This matrix is
denoted as [T ]. This is formalized in the following definition.

Definition 18.1.8 Let A be an m×n matrix. Then Ai j will denote the number in the
ith row and jth column. [T ] denotes the m×n matrix such that T (x) = [T ]x.

Example 18.1.9 Say A =

(
1 2 −5
4 −7 2

)
. Then A11 = 1,A12 = 2,A23 = 2,A22 = −7

etc.

When writing Ai j the first index i always refers to the row and the second listed index
refers to the column. This is hard for some of us to remember. Perhaps it will help to
think Rowman Catholic. Another thing which is sometimes hard to remember is that the
columns are vertical like those on the Parthenon in Athens and the rows are horizontal like
the rows made by a tractor pulling a plow.
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Definition 18.1.10 Suppose T : Rn → Rm and S : Rm → Rp. You could consider
the composition of these functions S◦T defined as S◦T (x)≡ S (T (x)) .

With this definition, which is really nothing more than a re-statement of definitions from
pre-calculus or algebra, the following is a fundamental theorem. It says that, appropriately
defined, matrix multiplication corresponds to composition of linear transformations. This
definition will be as follows.

Definition 18.1.11 Let A be an m×n matrix and let B be an n× p matrix. Then

(AB)i j =
n

∑
k=1

AikBk j = Ai1B1 j +Ai2B2 j + · · ·+AinBn j

In terms of familiar concepts, the i jth entry of AB is the ith row of A times the jth column of
B meaning you take the dot product of the ith row of A with the jth column of B. Note that
Ax is a special case of this. Indeed,

(Ax)i = ∑
k

Aikxk

This next theorem shows that this is what is needed in order to have matrix multiplica-
tion correspond to composition of linear transformations.

Theorem 18.1.12 Let T : Rn → Rm and S : Rm → Rp and suppose both T and S
are linear. Then S◦T : Rn → Rp is also linear and

[S◦T ] = [S] [T ]

where matrix multiplication is defined in Definition 18.1.11.

Proof: By definition,

∑
j
[S◦T ]i j x j ≡ (S◦T (x))i = (S (T (x)))i = ([S] (Tx))i

= ∑
k
[S]ik (Tx)k = ∑

k
[Si]ik ([T ]x)k

= ∑
k
[Si]ik ∑

j
[T ]k j x j = ∑

j

(
∑
k
[Si]ik [T ]k j

)
x j

It follows, since x is completely arbitrary that for each i, and for each j,

[S◦T ]i j = ∑
k
[Si]ik [T ]k j ■

Here is something you must understand about matrix multiplication. For A and B ma-
trices, in order to form the product AB the number of columns of A must equal the number
of rows of B.

(m×n)(n× p) = m× p, (m×n)(k× p) = nonsense (18.1)

The two outside numbers give the size of the product and the middle two numbers must
match. You must have the same number of columns on the left as you have rows on the
right.
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Example 18.1.13 Let A =

(
1 −1 2
3 −2 1

)
and B =

 2 3
−1 1
0 3

. Then find AB. After

this, find BA

Consider first AB. It is the product of a 2× 3 and a 3× 2 matrix and so it is a 2× 2
matrix. The top left corner is the dot product of the top row of A and the first column

of B and so forth. Be sure you can show the following that AB =

(
3 8
8 10

)
,BA = 11 −8 7

2 −1 −1
9 −6 3

.

Note this shows that matrix multiplication is not commutative. Indeed, it can result
in matrices of different size when you interchange the order. Here is a perplexing little
observation. If you add the entries on the main diagonal of both matrices in the above, you
get the same number 13. This is the diagonal from upper left to lower right. You might
wonder whether this always happens or if this is just a fluke. In fact, it will always happen.
You should try and show this.

You can add matrices of the same size by adding the corresponding entries. Indeed, you
must do this if you want to preserve the idea that matrix multiplication of a vector gives a
linear transformation of the vector. Say T,S ∈ L (Rn,Rm) . These are just functions of a
special sort. Thus T +S is defined as the function which does the following: (T +S)(x)≡
T (x)+S (x) .

∑
k
[T +S]ik xk ≡ ((T +S)(x))i ≡ (T (x)+S (x))i

= (T (x))i +(S (x))i = ([T ]x)i +([S]x)i

= ∑
k
[T ]ik xk +∑

k
[S]ik xk = ∑

k
([T ]ik +[S]ik)xk

Since x is arbitrary, it follows that [T +S]ik = [T ]ik +[S]ik . In other words, you must add
corresponding entries. This shows why you must add matrices of the same size. Similarly
you need α [T ] = [αT ].

Then in terms scalar multiplication and addition of either matrices or linear transforma-
tions, following properties are called the vector space axioms.

• Commutative Law Of Addition.

A+B = B+A, (18.2)

• Associative Law for Addition.

(A+B)+C = A+(B+C) , (18.3)

• Existence of an Additive Identity

A+0 = A, (18.4)

• Existence of an Additive Inverse

A+(−A) = 0, (18.5)
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Also for α,β scalars, the following additional properties hold.

• Distributive law over Matrix Addition.

α (A+B) = αA+αB, (18.6)

• Distributive law over Scalar Addition

(α +β )A = αA+βA, (18.7)

• Associative law for Scalar Multiplication

α (βA) = αβ (A) , (18.8)

• Rule for Multiplication by 1.
1A = A. (18.9)

Example 18.1.14
(

1 2 3
4 −5 −8

)
+

(
1 2 3
4 5 6

)
=

(
2 4 6
8 0 −2

)
.

Example 18.1.15 Find
(

1 2 3
4 −5 −8

) 2 8
1 0
2 −2

+

(
1 2
2 1

)

(
1 2 3
4 −5 −8

) 2 8
1 0
2 −2

+

(
1 2
2 1

)

=

(
10 2
−13 48

)
+

(
1 2
2 1

)
=

(
11 4
−11 49

)
Although matrix multiplication (composition of linear transformations) is not commu-

tative, it does have several very important properties.

Proposition 18.1.16 If all multiplications and additions make sense, the following
hold for matrices A,B,C and a,b scalars.

A(aB+bC) = a(AB)+b(AC) (18.10)

(B+C)A = BA+CA (18.11)

A(BC) = (AB)C (18.12)

Proof: Using the definition for matrix multiplication, (A(aB+bC))i j =

∑
k

Aik (aB+bC)k j = ∑
k

Aik
(
aBk j +bCk j

)
= a∑

k
AikBk j +b∑

k
AikCk j

= a(AB)i j +b(AC)i j = (a(AB)+b(AC))i j .

Thus A(B+C) = AB+AC as claimed. Formula 18.11 is entirely similar.
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Formula 18.12 is the associative law of multiplication. Using Definition 18.1.11,

(A(BC))i j = ∑
k

Aik (BC)k j = ∑
k

Aik ∑
l

BklCl j

= ∑
l
(AB)il Cl j = ((AB)C)i j .

This proves 18.12. ■
Specializing 18.10 to the case where B,C are vectors, this shows that x→ Ax is a linear

transformation. Thus every linear transformation can be realized by matrix multiplication
and conversely, if you consider matrix multiplication, this is a linear transformation. This
is why in this book, I will emphasize matrix multiplication rather than the abstract concept
of a linear transformation.

Also note that 18.12, along with the theorem that matrix multiplication corresponds to
composition of linear transformations, follows from the general observation from college
algebra that

S◦ (T ◦V ) = (S◦T )◦V

As to the restriction 18.1, it is essentially the statement that if you want S ◦ T, then the
possible values of T must be in the domain of S.

Definition 18.1.17 Let A be a m× n matrix. Then AT is the n×m matrix defined
as
(
AT
)

i j ≡ A ji. In other words, the ith row becomes the ith column.

Example 18.1.18 Let A =

(
1 4 −6
−3 2 1

)
.Then AT =

 1 −3
4 2
−6 1

.

There is a fundamental theorem about how the transpose relates to multiplication.

Lemma 18.1.19 Let A be an m×n matrix and let B be a n× p matrix. Then

(AB)T = BT AT (18.13)

and if α and β are scalars,

(αA+βB)T = αAT +βBT (18.14)

Proof: From the definition,(
(AB)T

)
i j
= (AB) ji = ∑

k
A jkBki = ∑

k

(
BT )

ik

(
AT )

k j =
(
BT AT )

i j

The proof of Formula 18.14 is left as an exercise and this proves the lemma. ■

Definition 18.1.20 An n×n matrix, A is said to be symmetric if A = AT . It is said
to be skew symmetric if A =−AT .

Example 18.1.21

 2 1 3
1 5 −3
3 −3 7

 is symmetric and

 0 1 3
−1 0 2
−3 −2 0

 is skew sym-

metric.
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Example 18.1.22 Find AT B+CT where A =
(

1 2
)
,B =

(
1 1

)
,C =

(
1 2
1 1

)
(

1 2
)T ( 1 1

)
+

(
1 2
1 1

)T

=

(
1 1
2 2

)
+

(
1 2
1 1

)T

=

(
2 2
4 3

)
Example 18.1.23 For F an m× n matrix, it is always possible to do the multiplication
FT F.

This is true because FT is n×m and F is m×n.
Another important observation is the following which will be used frequently.

Proposition 18.1.24 Let A be an m×n matrix. Let B =
(
b1 · · · bp

)
where each

bk is a column vector or n×1 matrix. Then AB is an m× p matrix and

AB =
(

Ab1 · · · Abp
)

so the kth column of AB is just Abk.

Proof: From the definition of multiplication of matrices, (AB)ik = ∑r AirBrk. However,

bk =

 B1k
...

Bnk


and so, from the way we multiply a matrix times a vector,

(Abk)i = ∑
r

Air (bk)r = ∑
r

AirBrk

Thus, the ith entry from the top of Abk is the ith entry in the kth column of AB showing that
indeed the claim is true. ■

18.2 Row Operations and Linear Equations
In Junior High, you learned to solve things like ax = b when a ̸= 0. The fundamental
problem considered in this section is the higher dimensional version of this Ax= b where
A is an m×n matrix. First of all, there might not even be a solution to this. Consider(

1 2
1 2

)(
x
y

)
=

(
1
3

)

Obviously there is no solution because on the left you get
(

x+2y
x+2y

)
and you can’t have

x+ 2y equal to both 1 and 3. In contrast to religion and liberal arts, we do not tolerate
contradictory assertions in mathematics. When two or more equations result in such con-
tradictions, we say the equations are inconsistent. When something like this happens, we
say the solution is /0 the empty set. So how do you go about solving such equations when
they can be solved or determining that there is no solution like the above? This involves
the concept of a row operation.
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Definition 18.2.1 The row operations applied to a matrix A consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by a multiple of another row added to it.

It is very useful to show that each of these row operations can be accomplished by mul-
tiplication on the left by a suitable matrix called an elementary matrix. First is a definition
of the identity matrix.

Definition 18.2.2 An n× n matrix I is called the identity matrix if Ii j = 1 if i = j
and Ii j = 0 if i ̸= j.

The importance of the identity matrix is that when you multiply by it, nothing changes.
It acts like 1.

Proposition 18.2.3 Let A be an m× n matrix then if I is the m×m identity matrix, it
follows that IA = A and if I is the n×n identity matrix, then AI = A.

Proof: From the definition of how we multiply matrices, (IA)i j = ∑k IikAk j. Now each
Iik = 0 except when k = i when it is 1. Hence the sum reduced so Ai j and so the i jth entry
of IA is the same as the i jth entry of A and so IA = A because they are the same matrix. On
the other side it is similar and this is left as an exercise. ■

The identity matrix has 1 down the main diagonal and 0 everywhere else. This means
it looks like this in the case of the 3×3 identity: 1 0 0

0 1 0
0 0 1


It is also standard notation to denote the i jth entry of the identity matrix with the symbol
δ i j sometimes δ

i
j.

When you multiply by the identity, nothing happens, but when you multiply by an
elementary matrix you end up doing a row operation. The next definition is what is meant
by an elementary matrix.

Definition 18.2.4 The elementary matrices consist of those matrices which result
by applying a row operation to an identity matrix. Those which involve switching rows of
the identity are called permutation matrices1.

The importance of elementary matrices is that when you multiply on the left by one, it
does the row operation which was used to produce the elementary matrix.

1More generally, a permutation matrix is a matrix which comes by permuting the rows of the identity matrix,
which means possibly more than two rows are switched.



398 CHAPTER 18. LINEAR FUNCTIONS

Now consider what these elementary matrices look like. First consider the one which
involves switching row i and row j where i < j. This matrix is of the form

. . .
0 1

. . .
1 0

. . .


Note how the ith and jth rows are switched in the identity matrix and there are thus all ones
on the main diagonal except for those two positions indicated. The two exceptional rows
are shown. The ith row was the jth and the jth row was the ith in the identity matrix. Now
consider what this does to a column vector.

. . .
0 1

. . .
1 0

. . .





...
xi
...

x j
...


=



...
x j
...
xi
...


Now denote by Pi j the elementary matrix which comes from the identity from switching

rows i and j. From what was just explained and Proposition 18.1.24,

Pi j



...
...

...
ai1 ai2 · · · aip
...

...
...

a j1 a j2 · · · a jp
...

...
...


=



...
...

...
a j1 a j2 · · · a jp

...
...

...
ai1 ai2 · · · aip
...

...
...


This has established the following lemma.

Lemma 18.2.5 Let Pi j denote the elementary matrix which involves switching the ith

and the jth rows. Then
Pi jA = B

where B is obtained from A by switching the ith and the jth rows.

Example 18.2.6 Consider the following. 0 1 0
1 0 0
0 0 1

 a b
g d
e f

=

 g d
a b
e f


Next consider the row operation which involves multiplying the ith row by a nonzero

constant, c. The elementary matrix which results from applying this operation to the ith row
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of the identity matrix is of the form

. . . 0
1

c
1

0
. . .


Now consider what this does to a column vector.

. . . 0
1

c
1

0
. . .





...
vi−1
vi

vi+1
...

=



...
vi−1
cvi

vi+1
...


Denote by E (c, i) this elementary matrix which multiplies the ith row of the identity by the
nonzero constant, c. Then from what was just discussed and Proposition 18.1.24,

E (c, i)



...
...

...
a(i−1)1 a(i−1)2 · · · a(i−1)p

ai1 ai2 · · · aip
a(i+1)1 a(i+1)2 · · · a(i+1)p

...
...

...

=



...
...

...
a(i−1)1 a(i−1)2 · · · a(i−1)p

cai1 cai2 · · · caip
a(i+1)1 a(i+1)2 · · · a(i+1)p

...
...

...


This proves the following lemma.

Lemma 18.2.7 Let E (c, i) denote the elementary matrix corresponding to the row op-
eration in which the ith row is multiplied by the nonzero constant, c. Thus E (c, i) involves
multiplying the ith row of the identity matrix by c. Then

E (c, i)A = B

where B is obtained from A by multiplying the ith row of A by c.

Example 18.2.8 Consider this. 1 0 0
0 5 0
0 0 1

 a b
c d
e f

=

 a b
5c 5d
e f


Finally consider the third of these row operations. Denote by E (c× i+ j) the elemen-

tary matrix which replaces the jth row with the jth row added to c times the ith row. In case
i < j this will be of the form 

. . . 0
1

. . .
c 1

0
. . .
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Now consider what this does to a column vector.

. . . 0
1

. . .
c 1

0
. . .





...
vi
...

v j
...


=



...
vi
...

cvi + v j
...


Now from this and Proposition 18.1.24,

E (c× i+ j)



...
...

...
ai1 ai2 · · · aip
...

...
...

a j1 a j2 · · · a jp
...

...
...



=



...
...

...
ai1 ai2 · · · aip
...

...
...

cai1 +a j1 cai2 +a j2 · · · caip +a jp
...

...
...


The case where i > j is handled similarly. This proves the following lemma.

Lemma 18.2.9 Let E (c× i+ j) denote the elementary matrix obtained from I by re-
placing the jth row with c times the ith row added to it. Then

E (c× i+ j)A = B

where B is obtained from A by replacing the jth row of A with itself added to c times the ith

row of A.

Example 18.2.10 Consider the third row operation. 1 0 0
0 1 0
2 0 1

 a b
c d
e f

=

 a b
c d

2a+ e 2b+ f


The next theorem is the main result.

Theorem 18.2.11 To perform any of the three row operations on a matrix A, it
suffices to do the row operation on the identity matrix obtaining an elementary matrix E
and then take the product, EA. Furthermore, if E is an elementary matrix, then there is
another elementary matrix Ê such that EÊ = ÊE = I.
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Proof: The first part of this theorem has been proved in Lemmas 18.2.5 - 18.2.9. It
only remains to verify the claim about the matrix Ê. Consider first the elementary matrices
corresponding to row operation of type three.

E (−c× i+ j)E (c× i+ j) = I.

This follows because the first matrix takes c times row i in the identity and adds it to row j.
When multiplied on the left by E (−c× i+ j) it follows from the first part of this theorem
that you take the ith row of E (c× i+ j) which coincides with the ith row of I since that row
was not changed, multiply it by −c and add to the jth row of E (c× i+ j) which was the
jth row of I added to c times the ith row of I. Thus E (−c× i+ j) multiplied on the left,
undoes the row operation which resulted in E (c× i+ j). The same argument applied to
the product E (c× i+ j)E (−c× i+ j) replacing c with −c in the argument yields that this
product is also equal to I. Therefore, there is an elementary matrix of the same sort which
when multiplied by E on either side gives the identity.

Similar reasoning shows that for E (c, i) the elementary matrix which comes from mul-
tiplying the ith row by the nonzero constant c, you can take Ê = E ((1/c) , i).

Finally, consider Pi j which involves switching the ith and the jth rows Pi jPi j = I be-
cause by the first part of this theorem, multiplying on the left by Pi j switches the ith and jth

rows of Pi j which was obtained from switching the ith and jth rows of the identity. First
you switch them to get Pi j and then you multiply on the left by Pi j which switches these
rows again and restores the identity matrix. ■

The way we solve the linear equation Ax= b is to multiply on both sides by a suc-
cession of elementary matrices, in other words do row operations to both sides until the
solution is obvious.

Proposition 18.2.12 The solution set to Ax= b is unchanged if the same row opera-
tion is done to A as to b. In other words, it has the same solution set as EAx= Eb.

Proof: If x is such that EAx = Eb then use the Ê of the above Theorem 18.2.11 mul-
tiply both sides by Ê and use the associative law to obtain Ax = Ê (EA)x = ÊEb= b. If
Ax= b, then EAx= Eb. Thus the two systems have the same solution set. ■

More generally, it is convenient to consider such a system in the form (A|b) where the
matrix A is on the left and there is another column b to give the last column. Such a matrix
is called an augmented matrix. Then solving the system Ax= b is equivalent to finding
b as a linear combination of the columns of A. In other words, you want to find a linear
relationship between b and the other columns. You are doing the same row operations on
A as on b and so you might as well consider the system in this shortened form.

Example 18.2.13 Solve (
1 1 1
1 2 −1

) x
y
z

=

(
1
−5

)
You consider (

1 1 1 1
1 2 −1 −5

)
Now proceed to do row operations. Take −1 times the top row and add to the bottom.(

1 1 1 1
0 1 −2 −6

)
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Now take −1 times the bottom and add to the top.(
1 0 3 7
0 1 −2 −6

)
At this point it is obvious. Write as equations. You have x+3z = 7,y−2z =−6. You can
therefore, pick z to be anything. I shall let it equal t. Then a solution is of the form

x = 7−3t, y =−6+2t, z = t, t ∈ R

The solution is given parametrically in this form. Remember parametric lines. In this case,
there is an infinite selection of solutions.

Example 18.2.14 Find the solution to 2 2 3
1 1 0
2 2 2

 x
y
z

=

 3
3
4


Do it the same.  2 2 3 3

1 1 0 3
2 2 2 4


Now do row operations to this matrix to get 1 1 0 3

0 0 1 −1
0 0 0 0


Thus x = 3− t,y = t,z =−1 and t ∈ R.

Example 18.2.15 Find the solution to

 1 2 1
0 2 1
1 1 1

 x
y
z

=

 2
1
1

 .

Add in the last column as above. 1 2 1 2
0 2 1 1
1 1 1 1


Now do row operations till you can see the answer. 1 0 0 1

0 1 0 1
0 0 1 −1


Thus x = 1,y = 1,z =−1.

Example 18.2.16 Find the solution to

 1 1 1
−1 0 −3
1 2 −1

 x
y
z

=

 1
0
3

 .
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Add in the last column  1 1 1 1
−1 0 −3 0
1 2 −1 3


Now do row operations till you see the answer. Knowing when to stop is discussed more a
little later.  1 0 3 0

0 1 −2 0
0 0 0 1


The original system of equations has the same solution as one which includes the equation
0x+ 0y+ 0z = 1 so there is no solution to this system of equations. The equations are
inconsistent.

Definition 18.2.17 Let A =
(
a1 · · · an

)
. Then ak is linearly related to the

other columns means there are numbers xi such that ak = ∑i̸=k xiai.

This is just a more general notion than finding the solution to a system of equations in
which you obtain a linear combination of columns of A equal to b in Ax= b. All that is
happening here is to note that there is nothing sacred about the last column in (A|b). You
can ask the same question about all the other columns, whether they are a linear combina-
tion of the other columns. It turns out that row operations preserve all linear relations.

Lemma 18.2.18 Let A and B be two m×n matrices and suppose B results from a row
operation applied to A. Then the kth column of B is a linear combination of the i1, · · · , ir
columns of B if and only if the kth column of A is a linear combination of the i1, · · · , ir
columns of A. Furthermore, the scalars in the linear combination are the same. (The linear
relationship between the kth column of A and the i1, · · · , ir columns of A is the same as the
linear relationship between the kth column of B and the i1, · · · , ir columns of B.)

Proof: Let A equal the following matrix in which the ak are the columns(
a1 a2 · · · an

)
and let B equal the following matrix in which the columns are given by the bk(

b1 b2 · · · bn
)

Then by Theorem 18.2.11 on Page 400 bk =Eak where E is an elementary matrix. Suppose
then that one of the columns of A ak is a linear combination of some other columns of A.
Say ak = ∑

r
k=1 cikaik . Then multiplying by E, bk = Eak = ∑

r
k=1 cik Eaik = ∑

r
k=1 cikbik . ■

How do you know when to stop doing row operations in solving a system of equations?
This involves the row reduced echelon form.

Definition 18.2.19 Let ei denote the column vector which has all zero entries ex-
cept for the ith slot which is one. An m×n matrix is said to be in row reduced echelon form
if, in viewing successive columns from left to right, the first nonzero column encountered is
e1 and if you have encountered e1,e2, · · · ,ek, the next column is either ek+1 or is a linear
combination of the vectors, e1,e2, · · · ,ek.

Theorem 18.2.20 Let A be an m× n matrix. Then A has a row reduced echelon
form determined by a simple process.
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Proof: Viewing the columns of A from left to right take the first nonzero column. Pick
a nonzero entry in this column and switch the row containing this entry with the top row of
A. Now divide this new top row by the value of this nonzero entry to get a 1 in this position
and then use row operations to make all entries below this equal to zero. Thus the first
nonzero column is now e1. Denote the resulting matrix by A1. Consider the sub-matrix of
A1 to the right of this column and below the first row. Do exactly the same thing for this
sub-matrix that was done for A. This time the e1 will refer to Fm−1. Use the first 1 obtained
by the above process which is in the top row of this sub-matrix and row operations to zero
out every entry above it in the rows of A1. Call the resulting matrix A2. Thus A2 satisfies
the conditions of the above definition up to the column just encountered. Continue this way
till every column has been dealt with and the result must be in row reduced echelon form.
■

The process of doing this is completely routine and involves elementary school arith-
metic and being careful. I have found that you are less likely to make a mistake if you do it
on a blackbord and erase and replace as you go. Here is an example.

Example 18.2.21 Find the row reduced echelon form for the matrix 3 2 1 1
1 −1 3 2
1 4 3 2


I will switch the first two rows because I don’t like to work with fractions. This yields 1 −1 3 2

3 2 1 1
1 4 3 2


Now take −3 times the top row and add to the second followed by −1 times the top row
added to the bottom.  1 −1 3 2

0 5 −8 −5
0 5 0 0


Now take −1 times the second row and add to the bottom. 1 −1 3 2

0 5 −8 −5
0 0 8 5


Add the bottom to the second  1 −1 3 2

0 5 0 0
0 0 8 5


Then take −1/5 times the bottom and add to the top. 1 −1 7

5 1
0 5 0 0
0 0 8 5
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then take −1/5 times the middle and add to top. Finally divide each row by the numbers
down the diagonal and then take 2 times the middle and add to top then −7/5 times the
bottom and add to top.  1 0 0 1

8
0 1 0 0
0 0 1 5

8


Finally you get the row reduced echelon form for this matrix.

18.2.1 Using MATLAB

It may seem tedious to find the row reduced echelon form. You can let MATLAB do it for
you. Here is an example.

>> A=[1 2 3 4;2 3 -11 12;3 5 6 7];
rref(A)
ans =
1.0000 0 0 -7.9286
0 1.0000 0 6.9286
0 0 1.0000 -0.6429

At the >> I entered the matrix

 1 2 3 4
2 3 −11 12
3 5 6 7

 . The semicolon indicates you

start a new row. Then press shift enter to get to the next line and press enter and it produces
the row reduced echelon form . It does it in terms of decimals. 1.0 0 0 −7.9286

0 1.0 0 6.9286
0 0 1.0 −0.64286


If you want it in terms of fractions, you do the following.

>>A=[1 2 3 4;2 3 -11 12;3 5 6 7];
rref(sym(A))
ans =
[ 1, 0, 0, -111/14]
[ 0, 1, 0, 97/14]
[ 0, 0, 1, -9/14]
You need to have the symbolic toolbox installed with MATLAB for this option.

18.2.2 Uniqueness

I keep referring to the row reduced echelon form. Is there only one? This would be
surprising given the infinitely many ways of doing row operations. However, it is in fact
the case. Any two sequences of row operations which yield a matrix in row reduced echelon
form give the same thing.

Corollary 18.2.22 The row reduced echelon form is unique. That is if B,C are two
matrices in row reduced echelon form and both are row equivalent to A, then B =C.
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Proof: Suppose B and C are both row reduced echelon forms for the matrix A. Then
they clearly have the same zero columns since row operations leave zero columns un-
changed. In reading from left to right in B, suppose e1, · · · ,er occur first in positions
i1, · · · , ir respectively. The description of the row reduced echelon form means that each of
these columns is not a linear combination of the preceding columns. Therefore, by Lemma
18.2.18, the same is true of the columns in positions i1, i2, · · · , ir for C. It follows from the
description of the row reduced echelon form that in C, e1, · · · ,er occur first in positions
i1, i2, · · · , ir. Therefore, both B and C have the sequence e1,e2, · · · ,er occurring first in the
positions, i1, i2, · · · , ir. By Lemma 18.2.18, the columns between the ik and ik+1 position
in the two matrices are linear combinations involving the same scalars of the columns in
the i1, · · · , ik position. Also the columns after the ir position are linear combinations of
the columns in the i1, · · · , ir positions involving the same scalars in both matrices. This
is equivalent to the assertion that each of these columns is identical and this proves the
corollary. ■

Definition 18.2.23 If A is an n× n matrix, and e1, · · · ,er occur for the first time
when viewed from left to right in positions i1, · · · , ir, then columns i1, · · · , ir in the original
matrix A are called pivot columns. The rank of the matrix A is the number of these pivot
columns.

From the description of the row reduced echelon form, every column in this matrix is a
linear combination of the pivot columns. Therefore, from Lemma 18.2.18 the same is true
for the columns of the original matrix A.

Example 18.2.24 Let A =

 1 2 3 0
1 2 3 2
−3 2 −1 4

 . Identify the pivot columns and rank.

The row reduced echelon form is

 1 0 1 0
0 1 1 0
0 0 0 1

 and so the pivot columns are the

first, second, and last. Thus every column of A is a linear combination of these pivot
columns.

18.2.3 The Inverse
Definition 18.2.25 Let A be an n×n matrix. It is said to be invertible if there is a
matrix B such that AB = BA = I. Then B is called the inverse of A and is denoted by A−1.

First of all, the inverse, if it exists, is unique. To see this suppose both B, B̂ work in the
above definition. Then

B̂ = B̂I = B̂(AB) =
(
B̂A
)

B = IB = B

This means that to show something is the inverse, it suffices to show that it acts like the
inverse. If it walks like a duck and quacks like a duck, then it is a duck. However, although
there are many ducks, a given matrix has at most one inverse.

Recall the elementary matrices, how if E is one of them, there is another elementary
matrix of the same sort Ê such that ÊE = EÊ = I. This was Theorem 18.2.11 above. Thus
Ê = E−1.
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Lemma 18.2.26 A product of elementary matrices E1E2 · · ·En has an inverse and its
inverse is ÊnÊn−1 · · · Ê1, the product of the inverses in the reverse order.

Proof: In case n = 1, this was shown above. Suppose it is true for n matrices. Then

E1E2 · · ·EnEn+1Ên+1ÊnÊn−1 · · · Ê1

= E1E2 · · ·En
(
En+1Ên+1

)
ÊnÊn−1 · · · Ê1

= E1E2 · · ·EnIÊnÊn−1 · · · Ê1 = E1E2 · · ·EnÊnÊn−1 · · · Ê1

and this is I by induction. It is exactly similar in the other order.

Ên+1ÊnÊn−1 · · · Ê1E1E2 · · ·EnEn+1

= Ên+1ÊnÊn−1 · · ·
(
Ê1E1

)
E2 · · ·EnEn+1

= Ên+1ÊnÊn−1 · · · Ê2E2 · · ·EnEn+1 = I

by induction, since there are now only n matrices in each of the two products. ■
Now here is the main result about inverses.

Theorem 18.2.27 Let A be an n×n matrix. Then A is invertible if and only if the
row reduced echelon form of A is I. In this case A equals a finite product of elementary
matrices.

Proof: ⇐ Suppose the row reduced echelon form of A is I. Then, as shown above, there
are elementary matrices E1, · · · ,Em such that E1 · · ·EmA = I. Then, by Lemma 18.2.26,
A = Êm · · · Ê1I = Êm · · · Ê1 and so A is the product of elementary matrices. By Lemma
18.2.26 again, A−1 exists and equals E1 · · ·Em.

⇒ Suppose now that A is invertible. Either every column of A is a pivot column,
in which case the row reduced echelon form of A, called R, is the identity or else some
column is not a pivot column and in this case, R has a bottom row of zeros. I need to
rule out this case. However, since the bottom row of R is all zeros, there is no solution
x to Rx= en. Say E1 · · ·EmA = R where the Ei are elementary matrices corresponding
to row operations which produced R. Then A = Êm · · · Ê1R and so there is no solution
to Ax = Êm · · · Ê1R x= Êm · · · Ê1b≡ c because by Proposition 18.2.12, multiplying both
sides of an equation by an elementary matrix preserves the solution set. Now this is a
contradiction because if A−1 exists, then you would get a unique solution to Ax= c, namely
x= A−1c so the first case must hold that the row reduced echelon form of A is I. ■

Now it is not hard to give a simple algorithm for finding the inverse of an n×n matrix
when it exists and to determine that there is no inverse in case it does not exist. From the
above, there are elementary matrices Ei such that

E1 · · ·EmA = R

where R is in row reduced echelon form. If R ̸= I, then there is no inverse. If R = I, then
the inverse of A is E1 · · ·Em = E1 · · ·EmI. Thus you do a sequence of row operations to I
which gives the inverse of A with the same sequence of operations applied to A yielding I.
This is summarized in the procedure for finding the inverse.

Procedure 18.2.28 Let A be an n×n matrix. Write (A|I) . Then do row operations
until you get the row reduced echelon form. If you get I on the left, then what remains on
the right will be the inverse of A. If you have a row of zeros on the left so the row reduced
echelon form of A is not I, then A−1 does not exist.



408 CHAPTER 18. LINEAR FUNCTIONS

Example 18.2.29 Find A−1 where A =

 4 1 1
0 2 −1
1 −1 1

 .

Write  4 1 1 1 0 0
0 2 −1 0 1 0
1 −1 1 0 0 1


and do row operations to find the row reduced echelon form. This yields 1 0 0 1 −2 −3

0 1 0 −1 3 4
0 0 1 −2 5 8


Now the inverse is what is on the right.

A−1 =

 1 −2 −3
−1 3 4
−2 5 8


You should always check your work. 1 −2 −3

−1 3 4
−2 5 8

 4 1 1
0 2 −1
1 −1 1

=

 1 0 0
0 1 0
0 0 1


By the above discussion involving elementary matrices, a matrix obtained in this way

which acts like the inverse on the left will also act like the inverse on the right so it suffices
to check multiplication on only one side.

18.2.4 MATLAB and Matrix Arithmetic
To find the inverse of a square matrix in matlab, you open it and type the following. The
>> will already be there. To enter a matrix, you list the rows in order from left to right
separating the entries with commas or simply leaving a space. Then to start a new row, you
enter ; a semicolon.

>>inv([1,2,3;5,2,7;8,2,1]) Then press enter and it will give the following:
ans =
-0.1667 0.0556 0.1111
0.7083 -0.3194 0.1111
-0.0833 0.1944 -0.1111
Note how it computed the inverse in decimals. If you want the answer in terms of

fractions, you should have the symbolic toolbox installed and then you do the following:
>>inv(sym([1,2,3;5,2,7;8,2,1])) Then press enter and it will give the following:
ans =
[ -1/6, 1/18, 1/9]
[ 17/24, -23/72, 1/9]
[ -1/12, 7/36, -1/9]
You can do other things as well. Say you have
>>A=[1,2,3;5,2,7;8,2,1];B=[3,2,-5;3,11,2;-3,-1,5];
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C=[1,2;4,-3;7,3];D=[1,2,3;-3,2,1];
This defines some matrices. Then suppose you wanted to find

(
A−1DT +BC

)T
. You

would then type
transpose(inv(sym(A))*transpose(D)+B*C) or (inv(sym(A))*D’+B*C)’
and press enter. This gives
ans =
[ -427/18, 4421/72, 1007/36]
[ -257/18, -1703/72, 451/36]
In matlab, A’ means ĀT the conjugate transpose of A. Since everything is real here, this

reduces to the transpose. Also, when entering a row in a matrix, it suffices to leave a space
between the entries, but you need ; to start a new row.

To get to a new line in MATLAB, you need to press shift enter. Notice how a ; was
placed after the definition of A,B,C,D. This tells MATLAB that you have defined some-
thing but not to say anything about it. If you don’t do this, then when you press return, it
will list the matrices and you don’t want to see that. You just want the answer. When you
have done a computation in MATLAB, you ought to go to >> and type “clear all” and then
enter. That way, you can use the symbols again with different definition. If you don’t do
the “clear all” thing, it will go on thinking that A is what you defined earlier.

18.3 Exercises
1. Here are some matrices:

A =

(
1 2 3
2 1 7

)
,B =

(
3 −1 2
−3 2 1

)
,

C =

(
1 2
3 1

)
,D =

(
−1 2
2 −3

)
,E =

(
2
3

)
.

Find if possible −3A,3B−A,AC,CB,AE,EA. If it is not possible explain why.

2. Here are some matrices:

A =

 1 2
3 2
1 −1

 ,B =

(
2 −5 2
−3 2 1

)
,

C =

(
1 2
5 0

)
,D =

(
−1 1
4 −3

)
,E =

(
1
3

)
.

Find if possible −3A,3B−A,AC,CA,AE,EA,BE,DE. If it is not possible explain
why.

3. Here are some matrices:

A =

 1 2
3 2
1 −1

 ,B =

(
2 −5 2
−3 2 1

)
,

C =

(
1 2
5 0

)
,D =

(
−1 1
4 −3

)
,E =

(
1
3

)
.

Find if possible −3AT ,3B − AT ,AC,CA,AE,ET B,BE,DE,EET ,ET E. If it is not
possible explain why.
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4. Here are some matrices:

A =

 1 2
3 2
1 −1

 ,B =

(
2 −5 2
−3 2 1

)
,

C =

(
1 2
5 0

)
,D =

(
−1
4

)
,E =

(
1
3

)
.

Find the following if possible and explain why it is not possible if this is the case.

AD,DA,DT B,DT BE,ET D,DET .

5. Suppose A and B are square matrices of the same size. Which of the following are
correct?

(a) (A−B)2 = A2 −2AB+B2

(b) (AB)2 = A2B2

(c) (A+B)2 = A2 +2AB+B2

(d) (A+B)2 = A2 +AB+BA+B2

(e) A2B2 = A(AB)B

(f) (A+B)3 = A3 +3A2B+3AB2 +B3

(g) (A+B)(A−B) = A2 −B2

6. Let A =

(
−1 −1
3 3

)
. Find all 2×2 matrices, B such that AB = 0.

7. Let x= (−1,−1,1) and y = (0,1,2) . Find xTy and xyT if possible.

8. Let A =

(
1 2
3 4

)
,B =

(
1 2
3 k

)
. Is it possible to choose k such that AB = BA?

If so, what should k equal?

9. Let A =

(
1 2
3 4

)
,B =

(
1 2
1 k

)
. Is it possible to choose k such that AB = BA?

If so, what should k equal?

10. Let A be an n× n matrix. Show A equals the sum of a symmetric and a skew sym-
metric matrix. (M is skew symmetric if M = −MT . M is symmetric if MT = M.)
Hint: Show that 1

2

(
AT +A

)
is symmetric and then consider using this as one of the

matrices.

11. Show every skew symmetric matrix has all zeros down the main diagonal. The main
diagonal consists of every entry of the matrix which is of the form aii. It runs from
the upper left down to the lower right.

12. Suppose M is a 3×3 skew symmetric matrix. Show there exists a vector Ω such that
for all u ∈ R3 Mu =Ω×u. Hint: Explain why, since M is skew symmetric it is of
the form

M =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0


where the ω i are numbers. Then consider ω1i+ω2j+ω3k.
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13. Using only the properties 18.2 - 18.9 show −A is unique.

14. Using only the properties 18.2 - 18.9 show 0 is unique.

15. Using only the properties 18.2 - 18.9 show 0A = 0. Here the 0 on the left is the scalar
0 and the 0 on the right is the zero for m×n matrices.

16. Using only the properties 18.2 - 18.9 and previous problems show (−1)A =−A.

17. Prove 18.14.

18. Prove that ImA = A where A is an m×n matrix.

19. Give an example of matrices, A,B,C such that B ̸=C, A ̸= 0, and yet AB = AC.

20. Suppose AB = AC and A is an invertible n× n matrix. Does it follow that B = C?
Explain why or why not. What if A were a non invertible n×n matrix?

21. Find your own examples:

(a) 2×2 matrices, A and B such that A ̸= 0,B ̸= 0 with AB ̸= BA.

(b) 2×2 matrices, A and B such that A ̸= 0,B ̸= 0, but AB = 0.

(c) 2×2 matrices, A, D, and C such that A ̸= 0,C ̸= D, but AC = AD.

22. Give an example of a matrix A such that A2 = I and yet A ̸= I and A ̸=−I.

23. Give an example of matrices, A,B such that neither A nor B equals zero and yet
AB = 0.

24. Let A =

(
2 1
−1 3

)
.Find A−1 if possible. If A−1 does not exist, determine why.

25. Let A =

(
0 1
5 3

)
.Find A−1 if possible. If A−1 does not exist, determine why.

26. Let A =

(
2 1
3 0

)
. Find A−1 if possible. If A−1 does not exist, determine why.

27. Let A =

(
2 1
4 2

)
.Find A−1 if possible. If A−1 does not exist, determine why.

28. Let A be a 2× 2 matrix which has an inverse. Say A =

(
a b
c d

)
. Find a formula

for A−1 in terms of a,b,c,d.

29. Let

A =

 1 2 3
2 1 4
1 0 2

 .

Find A−1 if possible. If A−1 does not exist, determine why.
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30. Let

A =

 1 0 3
2 3 4
1 0 2

 .

Find A−1 if possible. If A−1 does not exist, determine why.

31. Let

A =

 1 2 3
2 1 4
4 5 10

 .

Find A−1 if possible. If A−1 does not exist, determine why.

32. Let

A =


1 2 0 2
1 1 2 0
2 1 −3 2
1 2 1 2


Find A−1 if possible. If A−1 does not exist, determine why.

33. Write


x1 − x2 +2x3

2x3 + x1
3x3

3x4 +3x2 + x1

 in the form A


x1
x2
x3
x4

 where A is an appropriate matrix.

34. Write


x1 +3x2 +2x3

2x3 + x1
6x3

x4 +3x2 + x1

 in the form A


x1
x2
x3
x4

 where A is an appropriate matrix.

35. Write


x1 + x2 + x3
2x3 + x1 + x2

x3 − x1
3x4 + x1

 in the form A


x1
x2
x3
x4

 where A is an appropriate matrix.

36. Using the inverse of the matrix, find the solution to the systems 1 0 3
2 3 4
1 0 2

 x
y
z

 =

 1
2
3

 ,

 1 0 3
2 3 4
1 0 2

 x
y
z

=

 2
1
0


 1 0 3

2 3 4
1 0 2

 x
y
z

 =

 1
0
1

 ,

 1 0 3
2 3 4
1 0 2

 x
y
z

=

 3
−1
−2

 .

Now give the solution in terms of a,b, and c to 1 0 3
2 3 4
1 0 2

 x
y
z

=

 a
b
c

 .
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37. Using the inverse of the matrix, find the solution to the system
3 −2 −1 1
0 1 1 1
1 −1 −1 0
1 1 0 1




x
y
z
w

=


a
b
c
d

 .

38. Show that if A is an n×n invertible matrix and x is a n×1 matrix such that Ax= b
for b an n×1 matrix, then x= A−1b.

39. Prove that if A−1 exists and Ax= 0 then x= 0.

40. Show that if A−1 exists for an n×n matrix, then it is unique. That is, if BA = I and
AB = I, then B = A−1.

41. Show that if A is an invertible n×n matrix, then so is AT and
(
AT
)−1

=
(
A−1

)T
.

42. Show (AB)−1 = B−1A−1 by verifying that AB
(
B−1A−1

)
= I and

B−1A−1 (AB) = I. Hint: Use Problem 40.

43. Show that (ABC)−1 =C−1B−1A−1 by verifying that
(ABC)

(
C−1B−1A−1

)
= I and

(
C−1B−1A−1

)
(ABC) = I. Hint: Use Problem 40.

44. If A is invertible, show
(
A2
)−1

=
(
A−1

)2
. Hint: Use Problem 40.

45. If A is invertible, show
(
A−1

)−1
= A. Hint: Use Problem 40.

46. Let A and be a real m× n matrix and let x ∈ Rn and y ∈ Rm. Show (Ax,y)Rm =(
x,ATy

)
Rn where (·, ·)Rk denotes the dot product in Rk. In the notation above, this

would be written as Ax ·y = x·ATy. Use the definition of matrix multiplication to
do this.

47. Use the result of Problem 46 to verify directly that (AB)T = BT AT without making
any reference to subscripts.

48. Suppose A is an n×n matrix and for each j,

n

∑
i=1

∣∣Ai j
∣∣< 1

Show that the infinite series ∑
∞
k=0 Ak converges in the sense that the i jth entry of the

partial sums converge for each i j. Hint: Let R ≡ max j ∑
n
i=1

∣∣Ai j
∣∣ . Thus R < 1. Show

that ∣∣∣∣∣∑i

(
A2)

i j

∣∣∣∣∣≤ R2.

Then generalize to show that
∣∣∣∑i (Am)i j

∣∣∣ ≤ Rm. Use this to show that the i jth entry
of the partial sums is a Cauchy sequence. From calculus, these converge by com-
pleteness of the real or complex numbers. Next show that (I −A)−1 = ∑

∞
k=0 Ak. The

Leontief model in economics involves solving an equation for x of the form

x= Ax+b, or (I −A)x= b
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The vector Ax is called the intermediate demand and the vectors Akx have economic
meaning. From the above,

x= Ib+Ab+A2b+ · · ·

The series is also called the Neuman series. It is important in functional analysis.

49. Let a be a fixed vector. The function Ta defined by Tav = a+v has the effect of
translating all vectors by adding a. Show this is not a linear transformation. Explain
why it is not possible to realize Ta in R3 by multiplying by a 3×3 matrix.

50. In spite of Problem 49 we can represent both linear transformations and translations
by matrix multiplication at the expense of using higher dimensions. This is done by
the homogeneous coordinates. I will illustrate in R3 where most interest in this is
found. For each vector v = (v1,v2,v3)

T , consider the vector in R4 (v1,v2,v3,1)
T .

What happens when you do
1 0 0 a1
0 1 0 a2
0 0 1 a3
0 0 0 1




v1
v2
v3
1

?

Describe how to consider both linear transformations and translations all at once by
forming appropriate 4×4 matrices.

18.4 Subspaces Spans and Bases
The span of some vectors consists of all linear combinations of these vectors. As explained
earlier, a linear combination of vectors is just a finite sum of scalars times vectors.

Definition 18.4.1 Let
{
u1, · · · ,up

}
be some vectors in Fn. A linear combination

of these vectors is a sum of the following form:
p

∑
k=1

akuk

That is, it is a sum of scalars times the vectors for some choice of scalars a1, · · · ,ap.
span(u1, · · · ,up) denotes the set of all linear combinations of these vectors.

Observation 18.4.2 Let
{
u1, · · · ,up

}
be vectors in Fn. Form the n× p matrix A ≡(

u1 · · · up
)

which has these vectors as columns. Then

span(u1, · · · ,up)

consists of all vectors which are of the form

Ax for x ∈ Fp.

Recall why this is so. A typical thing in what was just described is

(
u1 · · · up

) x1
...

xp

= x1u1 + · · ·+ xnup
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In other words, a typical vector of the form Ax is a linear combination of the columns of A.
Thus we can write either span(u1, · · · ,up) or all Ax for x ∈ Fp to denote the same thing.

Definition 18.4.3 The vectors Ax where x ∈ Fp is also called the column space of
A and also Im(A) meaning image of A, also denoted as A(Fn). Thus column space equals
span(u1, · · · ,up) where the ui are the columns of A.

As explained earlier, when you say there is a solution x to a linear system of equa-
tions Ax= b, you mean that b is in the span of the columns of A. After all, if A =(
u1 · · · up

)
, you are looking for x=

(
x1 · · · xp

)T such that x1u1 + x2u2 +
· · ·+ xpup = Ax= b.

A subspace is a set of vectors with the property that linear combinations of these vectors
remain in the set. Geometrically, subspaces are like lines and planes which contain the
origin. More precisely, the following definition is the right way to think of this.

Definition 18.4.4 Let V be a nonempty collection of vectors in Fn. Then V is called
a subspace if whenever α,β are scalars and u,v are vectors in V, the linear combination
αu+βv is also in V .

There is no substitute for the above definition or equivalent algebraic definition! How-
ever, it is sometimes helpful to look at pictures at least initially. The following are four
subsets of R2. The first is the shaded area between two lines which intersect at the origin,
the second is a line through the origin, the third is the union of two lines through the origin,
and the last is the region between two rays from the origin. Note that in the last, multipli-
cation of a vector in the set by a nonnegative scalar results in a vector in the set as does the
sum of two vectors in the set. However, multiplication by a negative scalar does not take a
vector in the set to another in the set.

not subspace not subspacesubspace not subspace

Observe how the above definition indicates that the claims posted on the picture are
valid. Now here are the two main examples of subspaces.

Theorem 18.4.5 Let A be an m×n matrix. Then Im(A) is a subspace of Fm. Also
let

ker(A)≡ N (A)≡ {x ∈ Fn such that Ax= 0}

Then ker(A) is a subspace of Fn.

Proof: Suppose Axi is in Im(A) and a,b are scalars. Does it follow that aAx1 +bAx2
is in Im(A)? The answer is yes because

aAx1 +bAx2 = A(ax1 +bx2) ∈ Im(A)
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this because of the above properties of matrix multiplication. Note that A0 = 0 so 0 ∈
Im(A) and so Im(A) ̸= /0.

Now suppose x,y are both in N (A) and a,b are scalars. Does it follow that ax+
by ∈N (A)? The answer is yes because

A(ax+by) = aAx+bAy = a0+b0 = 0.

Thus the condition is satisfied. Of course N (A) ̸= /0 because A0 = 0. ■
Subspaces are exactly those subsets of Fn which are themselves vector spaces. Recall

that a vector space is something which satisfies the vector space axioms on Page 283.

Proposition 18.4.6 Let V be a nonempty collection of vectors in Fn. Then V is a sub-
space if and only if V is itself a vector space having the same operations as those defined
on Fn.

Proof: Suppose first that V is a subspace. It is obvious all the algebraic laws hold on V
because it is a subset of Fn and they hold on Fn. Thus u+v = v+u along with the other
axioms. Does V contain 0? Yes because it contains 0u= 0. Are the operations defined
on V ? That is, when you add vectors of V do you get a vector in V ? When you multiply a
vector in V by a scalar, do you get a vector in V ? Yes. This is contained in the definition.
Does every vector in V have an additive inverse? Yes because − v = (−1)v which is given
to be in V provided v ∈V .

Next suppose V is a vector space. Then by definition, it is closed with respect to linear
combinations. Hence it is a subspace. ■

18.5 Linear Independence
Now here is a very fundamental definition.

Definition 18.5.1 Let {u1, · · · ,ur} be vectors in Fp. They are independent if and
only if the only solution to the system of equations(

u1 · · · ur
)
x= 0

is x= 0. In other words the vectors are independent means that whenever
r

∑
i=1

xiui = 0

it follows that each xi = 0. The set of vectors is dependent if it is not independent.

Note that any list of vectors containing the zero vector is automatically linearly depen-
dent. Indeed, you could multiply this vector by 1 and all the others by 0. Then adding these
together, you would have a linear combination of the vectors in your list which equals 0
although not all of the scalars used are 0. There is a fundamental result in the case where
m < n. In this case, the matrix A of the linear transformation looks like the following.
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Theorem 18.5.2 Let A be an m × n matrix where m < n. Then N (A) contains
nonzero vectors.

Proof: Since the matrix has more columns than rows, you can have at most m pivot
columns. Without loss of generality, A has a nonzero column. Pick the first non-pivot
column of A called ar. Then such that ar = ∑

r−1
i=1 ciai. Therefore,

0 =
r−1

∑
i=1

ciai −ar =
(
a1 · · · ar−1 ar · · · an

)


c1
...

cr−1
−1

...
0


■

Note that the same conclusion occurs more generally if there is some column which is
not a pivot column even in case m ≥ n.

With this preparation, here is a major theorem.

Theorem 18.5.3 Suppose you have vectors {u1, · · · ,ur} and that this set of vectors
is independent. Suppose also that there are vectors {v1, · · · ,vs} and that each u j is a linear
combination of the vectors {v1, · · · ,vs} . Then r ≤ s. A little less precisely, spanning sets
are at least as long as linearly independent sets.

Proof: By assumption, uk = ∑
s
i=1 aikvi for a suitable choice of the scalars aik. Then

the matrix whose ikth entry is aik has more columns than rows if s < r. Thus there is x ̸= 0
such that ∑

r
k=1 aikxk = 0 for each i thanks to Theorem 18.5.2. Now

r

∑
k=1

xkuk =
r

∑
k=1

xk

s

∑
i=1

aikvi =
s

∑
i=1

(
r

∑
k=1

aikxk

)
vi =

s

∑
i=1

0vi = 0

contradicting linear independence of {u1, · · · ,ur} and so you must have s ≥ r. ■
Now is the very important idea of a basis and dimension.

Definition 18.5.4 Let V be a subspace of Fn. Then {u1, · · · ,ur} is called a basis
for V if each ui ∈ V and span(u1, · · · ,ur) = V and {u1, · · · ,ur} is linearly independent.
In words, {u1, · · · ,ur} spans and is independent.

Theorem 18.5.5 Let {u1, · · · ,ur} and {v1, · · · ,vs} be bases for V . Then s = r.

Proof: From Theorem 18.5.3, r ≤ s since ui ∈ span(v1, · · · ,vs) and {u1, · · · ,ur} is
independent. Then also r ≥ s by the same reasoning. ■

Definition 18.5.6 Let V be a subspace of Fn. Then the dimension of V is the num-
ber of vectors in a basis. This is well defined by Theorem 18.5.5.

Observation 18.5.7 The dimension of Fn is n. This is obvious because if x∈Fn, where
x =

(
x1 · · · xn

)T
, then x= ∑

n
i=1 xiei which shows that {e1, · · · ,en} is a spanning

set. However, these vectors are clearly independent because if

∑
i

xiei = 0,
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then 0 =
(

x1 · · · xn
)T and so each xi = 0. Thus {e1, · · · ,en} is also linearly inde-

pendent.

The next lemma says that if you have a vector not in the span of a linearly independent
set, then you can add it in and the resulting longer list of vectors will still be linearly
independent.

Lemma 18.5.8 Suppose v /∈ span(u1, · · · ,uk) and {u1, · · · ,uk} is linearly indepen-
dent. Then {u1, · · · ,uk,v} is also linearly independent.

Proof: Suppose ∑
k
i=1 ciui+dv= 0. It is required to verify that each ci = 0 and that d =

0. But if d ̸= 0, then you can solve for v as a linear combination of the vectors, {u1, · · · ,uk},
v = −∑

k
i=1
( ci

d

)
ui contrary to assumption. Therefore, d = 0. But then ∑

k
i=1 ciui = 0 and

the linear independence of {u1, · · · ,uk} implies each ci = 0 also. ■
It turns out that every nonzero subspace equals the span of linearly independent vectors.

This is the content of the next theorem.

Theorem 18.5.9 V is a nonzero subspace of Fn if and only if it has a basis.

Proof: Pick a nonzero vector of V,u1. If V = span{u1} , then stop. You have found
your basis. If V ̸= span(u1) , then there exists u2 a vector of V which is not a vector in
span(u1) . Consider span(u1,u2) . By Lemma 18.5.8, {u1,u2} is linearly independent.
If V = span(u1,u2) , stop. You have found a basis. Otherwise, pick u3 /∈ span(u1,u2) .
Continue this way until you obtain a basis. The process must stop after fewer than n+ 1
iterations because if it didn’t, then there would be a linearly independent set of more than
n vectors which is impossible because there is a spanning set of n vectors from the above
observation. ■

The following is a fundamental result. It includes the idea that you can enlarge a linearly
independent set of vectors to obtain a basis.

Theorem 18.5.10 If V is a subspace of Fn and the dimension of V is m, then m ≤ n
and also if {u1, · · · ,um} is an independent set of vectors of V , then this set of vectors is a
basis for V . Also, if you have a linearly independent set of vectors of V,{u1, · · · ,uk} for
k ≤ m = dim(V ) , there is a linearly independent set of vectors {u1, · · · ,uk,vk+1, · · ·vm}
which is a basis for V .

Proof: If the dimension of V is m, then it has a basis of m vectors. It follows m ≤
n because if not, you would have an independent set of vectors which is longer than a
spanning set of vectors {e1, · · · ,en} contrary to Theorem 18.5.3.

Next, if {u1, · · · ,um} is an independent set of vectors of V , then if it fails to span V, it
must be there is a vector w which is not in this span. But then by Lemma 18.5.8, you could
add w to the list of vectors and get an independent set of m+1 vectors. However, the fact
that V is of dimension m means there is a spanning set having only m vectors and so this
contradicts Lemma 18.5.8. Thus {u1, · · · ,um} must be a spanning set.

Finally, if k = m, the vectors {u1, · · · ,uk} must span V since if not, you could add
another vector which is not in this list to the list and get an independent set which is longer
than a spanning set contrary to Theorem 18.5.3. Thus assume k < m. The set of vectors
{u1, · · · ,uk} cannot span V because if it did, the dimension of V would be k not m. Thus
there is a vector vk+1 not in this span. Then by Lemma 18.5.8, {u1, · · · ,uk,vk+1} is
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independent. If it spans V , stop. You have your basis. Otherwise, there is a vk+2 not
in the span and so you can add it in and get an independent set {u1, · · · ,uk,vk+1,vk+2}.
Continue this process till it stops. It must stop since otherwise, you would be able to get an
independent set of vectors larger than m which is the dimension of V, contrary to Theorem
18.5.3. ■

Definition 18.5.11 The rank of a matrix A is the dimension of Im(A) which is the
same as the column space of A.

Theorem 18.5.12 Let A be an n×n matrix. Then A−1 exists if and only if the rank
of A equals n.

Proof: This follows from Theorem 18.2.27 which says that A has an inverse if and only
if each column of A is a pivot column if and only if the rank of A is n. ■

18.6 Exercises
1. Let {u1, · · · ,un} be vectors in Rn. The parallelepiped determined by these vectors

P(u1, · · · ,un) is defined as

P(u1, · · · ,un)≡

{
n

∑
k=1

tkuk : tk ∈ [0,1] for all k

}
.

Now let A be an n × n matrix. Show {Ax : x ∈ P(u1, · · · ,un)} is also a paral-
lelepiped.

2. In the context of Problem 1, draw P(e1,e2) where e1,e2 are the standard basis vec-

tors for R2. Thus e1 = (1,0) ,e2 = (0,1) . Now suppose E =

(
1 1
0 1

)
where E

is the elementary matrix which takes the second row and adds to the first. Draw
{Ex : x ∈ P(e1,e2)} . In other words, draw the result of doing E to the vectors in
P(e1,e2). Next draw the results of doing the other elementary matrices to P(e1,e2).

3. Determine which matrices are in row reduced echelon form.

(a)
(

1 2 0
0 1 7

)

(b)

 1 0 0 0
0 0 1 2
0 0 0 0


(c)

 1 1 0 0 0 5
0 0 1 2 0 4
0 0 0 0 1 3



4. Row reduce the following matrices to obtain the row reduced echelon form. List the
pivot columns in the original matrix.

(a)

 1 2 0 3
2 1 2 2
1 1 0 3


(b)


1 2 3
2 1 −2
3 0 0
3 2 1
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(c)

 1 2 1 3
−3 2 1 0
3 2 1 1


5. Find the rank of the following matrices. If the rank is r, identify r columns in the

original matrix which have the property that every other column may be written as
a linear combination of these. Also find a basis for column space of the matrices.

(a)


1 2 0
3 2 1
2 1 0
0 2 1



(b)


1 0 0
4 1 1
2 1 0
0 2 0



(c)


0 1 0 2 1 2 2
0 3 2 12 1 6 8
0 1 1 5 0 2 3
0 2 1 7 0 3 4



(d)


0 1 0 2 0 1 0
0 3 2 6 0 5 4
0 1 1 2 0 2 2
0 2 1 4 0 3 2



(e)


0 1 0 2 1 1 2
0 3 2 6 1 5 1
0 1 1 2 0 2 1
0 2 1 4 0 3 1



6. Suppose A is an m× n matrix. Explain why the rank of A is always no larger than
min(m,n) .

7. A matrix A is called a projection if A2 = A. Here is a matrix. 2 0 2
1 1 2
−1 0 −1


Show that this is a projection. Show that a vector in the column space of a projection
matrix is left unchanged by multiplication by A.

8. Let H denote span
((

1
2

)
,

(
2
4

)
,

(
1
3

))
. Find the dimension of H and deter-

mine a basis.

9. Let H denote span

 1
2
0

 ,

 2
4
0

 ,

 1
3
1

 ,

 0
1
1

 . Find the dimension of

H and determine a basis.

10. Let H denote span

 1
2
0

 ,

 1
4
0

 ,

 1
3
1

 ,

 0
1
1

 . Find the dimension of

H and determine a basis.

11. Let M =
{
u= (u1,u2,u3,u4) ∈ R4 : u3 = u1 = 0

}
. Is M a subspace? Explain.

12. Let M =
{
u= (u1,u2,u3,u4) ∈ R4 : u3 ≥ u1

}
. Is M a subspace? Explain.
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13. Let w ∈ R4 and let M =
{
u= (u1,u2,u3,u4) ∈ R4 : w ·u= 0

}
. Is M a subspace?

Explain.

14. Let M =
{
u= (u1,u2,u3,u4) ∈ R4 : ui ≥ 0 for each i = 1,2,3,4

}
. Is M a subspace?

Explain.

15. Let w,w1 be given vectors in R4 and define

M =
{
u= (u1,u2,u3,u4) ∈ R4 : w ·u= 0 and w1 ·u= 0

}
.

Is M a subspace? Explain.

16. Let M =
{
u= (u1,u2,u3,u4) ∈ R4 : |u1| ≤ 4

}
. Is M a subspace? Explain.

17. Let M =
{
u= (u1,u2,u3,u4) ∈ R4 : sin(u1) = 1

}
. Is M a subspace? Explain.

18. Suppose {x1, · · · ,xk} is a set of vectors from Fn. Show that span(x1, · · · ,xk) con-
tains 0.

19. Prove the following theorem: If A,B are n× n matrices and if AB = I, then BA = I
and B = A−1. Hint: First note that if AB = I, then it must be the case that A is onto.
Explain why this requires span(columns of A) = Fn. Now explain why, this requires
A to be one to one. Next explain why A(BA− I) = 0 and why the fact that A is one
to one implies BA = I.

20. Here are three vectors. Determine whether they are linearly independent or linearly
dependent.

(
1 2 0

)T
,
(

2 0 1
)T

,
(

3 0 0
)T Make them the columns

of a matrix and row reduce to determine whether they are linearly independent.

21. Here are three vectors. Determine whether they are linearly independent or linearly
dependent.

(
4 2 0

)T
,
(

2 2 1
)T

,
(

0 2 2
)T

22. Here are three vectors. Determine whether they are linearly independent or linearly
dependent.

(
1 2 3

)T
,
(

4 5 1
)T

,
(

3 1 0
)T

23. Here are four vectors. Determine if they span R3. Are these vectors linearly inde-
pendent?(

1 2 3
)T

,
(

4 3 3
)T

,
(

3 1 0
)T

,
(

2 4 6
)T

24. Here are four vectors. Determine if they span R3. Are these vectors linearly inde-
pendent?

(
1 2 3

)T
,
(

4 3 3
)T

,
(

3 2 0
)T

,
(

2 4 6
)T

25. Determine if the following vectors are a basis for R3. If they are, explain why they
are and if they are not, give a reason and tell whether they span R3.(

1 0 3
)T

,
(

4 3 3
)T

,
(

1 2 0
)T

,
(

2 4 0
)T

26. Consider the vectors of the form
 2t +3s

s− t
t + s

 : s, t ∈ R

 .

Is this set of vectors a subspace of R3? If so, explain why, give a basis for the sub-
space and find its dimension.
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27. Consider the vectors of the form


2t +3s+u
s− t
t + s

u

 : s, t,u ∈ R

 .

Is this set of vectors a subspace of R4? If so, explain why, give a basis for the sub-
space and find its dimension.

28. Consider the vectors of the form


2t +u
t +3u

t + s+ v
u

 : s, t,u,v ∈ R

 .

Is this set of vectors a subspace of R4? If so, explain why, give a basis for the sub-
space and find its dimension.

29. If you have 5 vectors in F5 and the vectors are linearly independent, can it always be
concluded they span F5? Explain.

30. If you have 6 vectors in F5, is it possible they are linearly independent? Explain.

31. Suppose A is an m × n matrix and {w1, · · · ,wk} is a linearly independent set of
vectors in A(Fn) ⊆ Fm. Now suppose A(zi) =wi. Show {z1, · · · ,zk} is also inde-
pendent.

32. Suppose V,W are subspaces of Fn. Show V ∩W defined to be all vectors which are
in both V and W is a subspace also.

33. Suppose V and W both have dimension equal to 7 and they are subspaces of F10.
What are the possibilities for the dimension of V ∩W? Hint: Remember that a linear
independent set can be extended to form a basis.

34. Suppose V has dimension p and W has dimension q and they are each contained in
a subspace, U which has dimension equal to n where n > max(p,q) . What are the
possibilities for the dimension of V ∩W? Hint: Remember that a linear independent
set can be extended to form a basis.

35. If b ̸= 0, can the solution set of Ax= b be a plane through the origin? Explain.

36. Suppose a system of equations has fewer equations than variables and you have found
a solution to this system of equations. Is it possible that your solution is the only one?
Explain.

37. Suppose a system of linear equations has a 2×4 augmented matrix and the last col-
umn is a pivot column. Could the system of linear equations be consistent? Explain.

38. Suppose the coefficient matrix of a system of n equations with n variables has the
property that every column is a pivot column. Does it follow that the system of
equations must have a solution? If so, must the solution be unique? Explain.
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39. Suppose there is a unique solution to a system of linear equations. What must be true
of the pivot columns in the augmented matrix.

40. State whether each of the following sets of data are possible for the matrix equation
Ax= b. If possible, describe the solution set. That is, tell whether there exists a
unique solution no solution or infinitely many solutions.

(a) A is a 5×6 matrix, rank(A) = 4 and rank(A|b) = 4. Hint: This says b is in the
span of four of the columns. Thus the columns are not independent.

(b) A is a 3×4 matrix, rank(A) = 3 and rank(A|b) = 2.

(c) A is a 4×2 matrix, rank(A) = 4 and rank(A|b) = 4. Hint: This says b is in the
span of the columns and the columns must be independent.

(d) A is a 5×5 matrix, rank(A) = 4 and rank(A|b) = 5. Hint: This says b is not in
the span of the columns.

(e) A is a 4×2 matrix, rank(A) = 2 and rank(A|b) = 2.

41. Suppose A is an m×n matrix in which m ≤ n. Suppose also that the rank of A equals
m. Show that A maps Fn onto Fm. Hint: The vectors e1, · · · ,em occur as columns in
the row reduced echelon form for A.

42. Suppose A is an m×n matrix in which m ≥ n. Suppose also that the rank of A equals
n. Show that A is one to one. Hint: If not, there exists a vector x such that Ax= 0,
and this implies at least one column of A is a linear combination of the others. Show
this would require the column rank to be less than n.

43. Explain why an n×n matrix A is both one to one and onto if and only if its rank is n.

44. For M a matrix, ker(M) consists of all vectors x such that Mx= 0. Suppose A is an
m×n matrix and B is an n× p matrix. Show that

dim(ker(AB))≤ dim(ker(A))+dim(ker(B)) .

Hint: Consider the subspace, B(Fp)∩ker(A) and suppose a basis for this subspace
is {w1, · · · ,wk} . Now suppose {u1, · · · ,ur} is a basis for ker(B) . Let {z1, · · · ,zk}
be such that Bzi =wi and argue that

ker(AB)⊆ span(u1, · · · ,ur,z1, · · · ,zk) .

Here is how you do this. Suppose ABx= 0. Then Bx ∈ ker(A)∩B(Fp) and so
Bx= ∑

k
i=1 Bzi showing that x−∑

k
i=1zi ∈ ker(B) .

45. Explain why Ax= 0 always has a solution even when A−1 does not exist.

(a) What can you conclude about A if the solution is unique?

(b) What can you conclude about A if the solution is not unique?

46. Let A be an n×n matrix and let x be a nonzero vector such that Ax= λx for some
scalar λ . When this occurs, the vector x is called an eigenvector and the scalar λ

is called an eigenvalue. It turns out that not every number is an eigenvalue. Only
certain ones are. Why? Hint: Show that if Ax= λx, then (A−λ I)x= 0. Explain
why this shows that (A−λ I) is not one to one and not onto.
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47. Let A be an n×n matrix and consider the matrices
{

I,A,A2, · · · ,An2
}
. Explain why

there exist scalars, ci not all zero such that ∑
n2

i=1 ciAi = 0. Then argue there exists a
polynomial, p(λ ) of the form

λ
m +dm−1λ

m−1 + · · ·+d1λ +d0

such that p(A) = 0 and if q(λ ) is another polynomial such that q(A) = 0, then q(λ )
is of the form p(λ ) l (λ ) for some polynomial, l (λ ) . This extra special polynomial,
p(λ ) is called the minimal polynomial. Hint: You might consider an n×n matrix
as a vector in Fn2

. What would be a basis for this set of matrices?

48. Let A be an n × n matrix and let p(λ ) be the minimal polynomial of the above
problem. By the fundamental theorem of algebra, this can be factored as

m

∏
i=1

(λ −µ i)

where µ i ∈C. Thus, from the above problem, ∏
m
i=1 (A−µ iI) = 0. Explain why there

is a vector vk such that uk ≡ ∏i̸=k (A−µ iI)vk ̸= 0. Explain why (A−µkI)uk = 0.
Thus A has an eigenvector for each of the µ i. Note that you must allow all arithmetic
to take place in C because the eigenvalues µ i are only known to be complex numbers.

49. Let θ ∈R. For x a vector in Rp, p > 1, let Tθ be defined as follows. Place x with its
tail at the origin and rotate through an angle of θ . If θ > 0, rotate counter clockwise
and if θ < 0 rotate clockwise as in trigonometry. Argue with elementary geometry
that Tθ is a linear transformation. In case p = 2, explain why the matrix of Tθ , called
a rotation matrix, is (

cosθ −sinθ

sinθ cosθ

)
It amounts to justifying the following picture.

e1

e2

θ
θ

(cos(θ),sin(θ))(−sin(θ),cos(θ)) T (e1)

T (e2)

50. Now note that Tθ Tα = Tθ+α . Using matrix multiplication and the above problem,
derive with virtually no effort the formulas for sin(θ +α) and cos(θ +α).



Chapter 19

Eigenvalues and Eigenvectors

19.1 Definition of Eigenvalues
The thing to always keep in mind is the following definition of eigenvalues and eigenvec-
tors. There are many ways to find them and in this chapter, I will present the standard way
to do this. It is also the very worst way. This is a book on multi-variable calculus, not one
on linear algebra. This is why I have been focussed almost exclusively on Rn. However,
when one considers eigenvalues and eigenvectors, it is no longer possible to give a reason-
able presentation without the use of the complex numbers. Thus, for the material in this
section, it will be understood that the vectors are in Cn meaning ordered lists of complex
numbers. The matrices will also be understood to have entries in C and all scalars will be
understood to lie in C rather than be restricted to be in R.

Definition 19.1.1 Let A be an n× n matrix and let x ∈ Cn,λ ∈ C. Then x is an
eigenvector for the eigenvalue λ if and only if the following two conditions hold.

1. Ax= λx

2. x ̸= 0. This is very important. By definition 0 is NEVER an eigenvector although
0 can be an eigenvalue.

Now here is an important observation which really is just a re statement of the above
definition.

Theorem 19.1.2 Let A be an n× n matrix. The vector x is an eigenvector for the
eigenvalue λ if and only if (A−λ I)−1 does not exist.

Proof: If (A−λ I)−1 does not exist, then by Theorem 18.5.12 the columns of A −
λ I are not independent because its rank is less than n. Thus there exists x ̸= 0 such that
(A−λ I)x= 0 and so λ is an eigenvalue and x is an eigenvector which goes with λ .
Conversely, if (A−λ I)x= 0, and x ̸= 0, then the rank of (A−λ I) has no inverse because
its rank is less than n. Indeed, some column is a linear combination of the others. ■

Now with this fundamental definition, I will present the worst way of finding eigen-
values and eigenvectors. It is very important because everyone cherishes it and it is the
standard way to do it in all undergraduate courses. Also, it gives an introduction to the
important topic of determinants which will be presented in more detail later.

425
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19.2 An Introduction to Determinants

19.2.1 Cofactors and 2×2 Determinants
Let A be an n× n matrix. The determinant of A, denoted as det(A) is a number. If the
matrix is a 2×2 matrix, this number is very easy to find.

Definition 19.2.1 Let A =

(
a b
c d

)
. Then det(A)≡ ad−cb. The determinant is

also often denoted by enclosing the matrix with two vertical lines. Thus

det
(

a b
c d

)
=

∣∣∣∣ a b
c d

∣∣∣∣ .
Example 19.2.2 Find det

(
2 4
−1 6

)
.

From the definition this is just (2)(6)− (−1)(4) = 16.
Having defined what is meant by the determinant of a 2×2 matrix, what about a 3×3

matrix?

Definition 19.2.3 Suppose A is a 3× 3 matrix. The i jth minor, denoted here as
minor(A)i j , is the determinant of the 2× 2 matrix which results from deleting the ith row
and the jth column.

Example 19.2.4 Consider the matrix 1 2 3
4 3 2
3 2 1

 .

The (1,2) minor is the determinant of the 2× 2 matrix which results when you delete the
first row and the second column. This minor is therefore

det
(

4 2
3 1

)
=−2.

The (2,3) minor is the determinant of the 2× 2 matrix which results when you delete the
second row and the third column. This minor is therefore

det
(

1 2
3 2

)
=−4.

Definition 19.2.5 Suppose A is a 3× 3 matrix. The i jth cofactor is defined to be
(−1)i+ j ×

(
i jth minor

)
. In words, you multiply (−1)i+ j times the i jth minor to get the i jth

cofactor. The cofactors of a matrix are so important that special notation is appropriate
when referring to them. The i jth cofactor of a matrix A will be denoted by cof(A)i j . It is
also convenient to refer to the cofactor of an entry of a matrix as follows. For ai j an entry
of the matrix, its cofactor is just cof(A)i j . Thus the cofactor of the i jth entry is just the i jth

cofactor.
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Example 19.2.6 Consider the matrix

A =

 1 2 3
4 3 2
3 2 1

 .

The (1,2) minor is the determinant of the 2× 2 matrix which results when you delete the
first row and the second column. This minor is therefore

det
(

4 2
3 1

)
=−2.

It follows

cof(A)12 = (−1)1+2 det
(

4 2
3 1

)
= (−1)1+2 (−2) = 2

The (2,3) minor is the determinant of the 2× 2 matrix which results when you delete the
second row and the third column. This minor is therefore

det
(

1 2
3 2

)
=−4.

Therefore,

cof(A)23 = (−1)2+3 det
(

1 2
3 2

)
= (−1)2+3 (−4) = 4.

Similarly,

cof(A)22 = (−1)2+2 det
(

1 3
3 1

)
=−8.

Definition 19.2.7 The determinant of a 3× 3 matrix A, is obtained by picking a
row (column) and taking the product of each entry in that row (column) with its cofactor
and adding these. This process when applied to the ith row (column) is known as expanding
the determinant along the ith row (column).

Example 19.2.8 Find the determinant of

A =

 1 2 3
4 3 2
3 2 1

 .

Here is how it is done by “expanding along the first column”.

1

cof(A)11︷ ︸︸ ︷
(−1)1+1

∣∣∣∣ 3 2
2 1

∣∣∣∣+4

cof(A)21︷ ︸︸ ︷
(−1)2+1

∣∣∣∣ 2 3
2 1

∣∣∣∣+3

cof(A)31︷ ︸︸ ︷
(−1)3+1

∣∣∣∣ 2 3
3 2

∣∣∣∣= 0.

This simply follows the rule in the above definition. We took the 1 in the first column and
multiplied it by its cofactor, the 4 in the first column and multiplied it by its cofactor, and
the 3 in the first column and multiplied it by its cofactor. Then we added these numbers
together.
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You could also expand the determinant along the second row as follows.

4

cof(A)21︷ ︸︸ ︷
(−1)2+1

∣∣∣∣ 2 3
2 1

∣∣∣∣+3

cof(A)22︷ ︸︸ ︷
(−1)2+2

∣∣∣∣ 1 3
3 1

∣∣∣∣+2

cof(A)23︷ ︸︸ ︷
(−1)2+3

∣∣∣∣ 1 2
3 2

∣∣∣∣= 0.

Observe this gives the same number. You should try expanding along other rows and
columns. If you don’t make any mistakes, you will always get the same answer.

What about a 4× 4 matrix? You know now how to find the determinant of a 3× 3
matrix. The pattern is the same. In general, it is as described in the following definition.

Definition 19.2.9 Let A = (ai j) be an n× n matrix and suppose the determinant
of a (n−1)× (n−1) matrix has been defined. Then a new matrix called the cofactor
matrix, cof(A) is defined by cof(A)i j = (ci j) where to obtain ci j delete the ith row and
the jth column of A, take the determinant of the (n−1)× (n−1) matrix which results,
(This is called the i jth minor of A. ) and then multiply this number by (−1)i+ j. Thus
(−1)i+ j ×

(
the i jth minor

)
equals the i jth cofactor. Then det(A) is given by ∑i Ai jci j =

∑ j Ai jci j. Any of these expansions along a row or a column gives the same number.

You should regard the above claim that you always get the same answer by picking
any row or column with considerable skepticism. It is incredible and not at all obvious.
However, it requires a little effort to establish it. This is done in the section on the theory of
the determinant, Section 20 which is presented later. This is summarized in the following
theorem whose conclusion is incredible.

Theorem 19.2.10 Expanding the n× n matrix along any row or column always
gives the same answer so the above definition is a good definition.

Example 19.2.11 Expand

∣∣∣∣∣∣∣∣
1 2 −1 1
2 3 1 1
1 1 0 0
1 2 3 1

∣∣∣∣∣∣∣∣ along first column.

It is

1

∣∣∣∣∣∣
3 1 1
1 0 0
2 3 1

∣∣∣∣∣∣−2

∣∣∣∣∣∣
2 −1 1
1 0 0
2 3 1

∣∣∣∣∣∣+1

∣∣∣∣∣∣
2 −1 1
3 1 1
2 3 1

∣∣∣∣∣∣−1

∣∣∣∣∣∣
2 −1 1
3 1 1
1 0 0

∣∣∣∣∣∣= 0

19.2.2 The Determinant of a Triangular Matrix
Notwithstanding the difficulties involved in using the method of Laplace expansion, certain
types of matrices are very easy to deal with.

Definition 19.2.12 A matrix M, is upper triangular if Mi j = 0 whenever i > j.
Thus such a matrix equals zero below the main diagonal, the entries of the form Mii, as
shown. 

∗ ∗ · · · ∗

0 ∗
. . .

...
...

. . .
. . . ∗

0 · · · 0 ∗
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A lower triangular matrix is defined similarly as a matrix for which all entries above the
main diagonal are equal to zero.

You should verify the following using the above theorem on Laplace expansion.

Corollary 19.2.13 Let M be an upper (lower) triangular matrix. Then det(M) is ob-
tained by taking the product of the entries on the main diagonal.

Example 19.2.14 Let

A =


1 2 3 77
0 2 6 7
0 0 3 33.7
0 0 0 −1


Find det(A) .

From the above corollary, it suffices to take the product of the diagonal elements. Thus
det(A) = 1×2×3× (−1) =−6. Without using the corollary, you could expand along the
first column. This gives

1

∣∣∣∣∣∣
2 6 7
0 3 33.7
0 0 −1

∣∣∣∣∣∣+0(−1)2+1

∣∣∣∣∣∣
2 3 77
0 3 33.7
0 0 −1

∣∣∣∣∣∣+
0(−1)3+1

∣∣∣∣∣∣
2 3 77
2 6 7
0 0 −1

∣∣∣∣∣∣+0(−1)4+1

∣∣∣∣∣∣
2 3 77
2 6 7
0 3 33.7

∣∣∣∣∣∣
and the only nonzero term in the expansion is

1

∣∣∣∣∣∣
2 6 7
0 3 33.7
0 0 −1

∣∣∣∣∣∣ .
Now expand this along the first column to obtain

1×
(

2×
∣∣∣∣ 3 33.7

0 −1

∣∣∣∣+0(−1)2+1
∣∣∣∣ 6 7

0 −1

∣∣∣∣+0(−1)3+1
∣∣∣∣ 6 7

3 33.7

∣∣∣∣)
= 1×2×

∣∣∣∣ 3 33.7
0 −1

∣∣∣∣
Next expand this last determinant along the first column to obtain the above equals

1×2×3× (−1) =−6

which is just the product of the entries down the main diagonal of the original matrix. It
works this way in general.

19.2.3 Properties of Determinants
There are many properties satisfied by determinants. Some of these properties have to do
with row operations. Recall the row operations.
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Definition 19.2.15 The row operations consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by a multiple of another row added to itself.

Theorem 19.2.16 Let A be an n× n matrix and let A1 be a matrix which results
from multiplying some row of A by a scalar c. Then cdet(A) = det(A1).

Example 19.2.17 Let A =

(
1 2
3 4

)
,A1 =

(
2 4
3 4

)
. det(A) =−2, det(A1) =−4.

Theorem 19.2.18 Let A be an n× n matrix and let A1 be a matrix which results
from switching two rows of A. Then det(A) =−det(A1) . Also, if one row of A is a multiple
of another row of A, then det(A) = 0.

Example 19.2.19 Let A =

(
1 2
3 4

)
and let A1 =

(
3 4
1 2

)
. detA =−2, det(A1) = 2.

Theorem 19.2.20 Let A be an n× n matrix and let A1 be a matrix which results
from applying row operation 3. That is you replace some row by a multiple of another row
added to itself. Then det(A) = det(A1).

Example 19.2.21 Let A =

(
1 2
3 4

)
and let A1 =

(
1 2
4 6

)
. Thus the second row of A1

is one times the first row added to the second row. det(A) =−2 and det(A1) =−2.

Theorem 19.2.22 In Theorems 19.2.16 - 19.2.20 you can replace the word, “row”
with the word “column”.

There are two other major properties of determinants which do not involve row opera-
tions overtly.

Theorem 19.2.23 Let A and B be two n×n matrices. Then

det(AB) = det(A)det(B).

Also,
det(A) = det

(
AT
)
.

Example 19.2.24 Compare det(AB) and det(A)det(B) for

A =

(
1 2
−3 2

)
,B =

(
3 2
4 1

)
.

First

AB =

(
1 2
−3 2

)(
3 2
4 1

)
=

(
11 4
−1 −4

)
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and so

det(AB) = det
(

11 4
−1 −4

)
=−40.

Now

det(A) = det
(

1 2
−3 2

)
= 8, det(B) = det

(
3 2
4 1

)
=−5.

Thus det(A)det(B) = 8× (−5) =−40.

19.2.4 Finding Determinants Using Row Operations
Theorems 19.2.20 - 19.2.22 can be used to find determinants using row operations. As
pointed out above, the method of Laplace expansion will not be practical for any matrix of
large size. Here is an example in which all the row operations are used.

Example 19.2.25 Find the determinant of the matrix

A =


1 2 3 4
5 1 2 3
4 5 4 3
2 2 −4 5


Replace the second row by (−5) times the first row added to it. Then replace the third

row by (−4) times the first row added to it. Finally, replace the fourth row by (−2) times
the first row added to it. This yields the matrix

B =


1 2 3 4
0 −9 −13 −17
0 −3 −8 −13
0 −2 −10 −3


and from Theorem 19.2.20, it has the same determinant as A. Now using other row opera-
tions, det(B) =

(−1
3

)
det(C) where

C =


1 2 3 4
0 0 11 22
0 −3 −8 −13
0 6 30 9

 .

The second row was replaced by (−3) times the third row added to the second row. By
Theorem 19.2.20 this didn’t change the value of the determinant. Then the last row was
multiplied by (−3) . By Theorem 19.2.16 the resulting matrix has a determinant which is
(−3) times the determinant of the un-multiplied matrix. Therefore, we multiplied by −1/3
to retain the correct value. Now replace the last row with 2 times the third added to it.
This does not change the value of the determinant by Theorem 19.2.20. Finally switch
the third and second rows. This causes the determinant to be multiplied by (−1) . Thus
det(C) =−det(D) where

D =


1 2 3 4
0 −3 −8 −13
0 0 11 22
0 0 14 −17
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You could do more row operations or you could note that this can be easily expanded along
the first column followed by expanding the 3×3 matrix which results along its first column.
Thus

det(D) = 1(−3)
∣∣∣∣ 11 22

14 −17

∣∣∣∣= 1485

and so det(C) =−1485 and det(A) = det(B) =
(−1

3

)
(−1485) = 495.

Example 19.2.26 Find the determinant of the matrix
1 2 3 2
1 −3 2 1
2 1 2 5
3 −4 1 2


Replace the second row by (−1) times the first row added to it. Next take −2 times the

first row and add to the third and finally take −3 times the first row and add to the last row.
This yields 

1 2 3 2
0 −5 −1 −1
0 −3 −4 1
0 −10 −8 −4

 .

By Theorem 19.2.20 this matrix has the same determinant as the original matrix. Remem-
ber you can work with the columns also. Take −5 times the last column and add to the
second column. This yields 

1 −8 3 2
0 0 −1 −1
0 −8 −4 1
0 10 −8 −4


By Theorem 19.2.22 this matrix has the same determinant as the original matrix. Now take
(−1) times the third row and add to the top row. This gives.

1 0 7 1
0 0 −1 −1
0 −8 −4 1
0 10 −8 −4


which by Theorem 19.2.20 has the same determinant as the original matrix. Lets expand
it now along the first column. This yields the following for the determinant of the original
matrix.

det

 0 −1 −1
−8 −4 1
10 −8 −4


which equals

8det
(

−1 −1
−8 −4

)
+10det

(
−1 −1
−4 1

)
=−82

I suggest you do not try to be fancy in using row operations. That is, stick mostly to
the one which replaces a row or column with a multiple of another row or column added to
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it. Also note there is no way to check your answer other than working the problem more
than one way. To be sure you have gotten it right you must do this. Unfortunately, this
process can go on and on when you keep getting different answers. This is a good example
of something for which you should use a computer algebra system.

19.3 MATLAB and Determinants

MATLAB can find determinants. Here is an example.
>> A=[1,3,2,4;-5,7,2,3;2,3,7,11;1,2,3,4]; det(A)
Then press enter and you get
ans =
-102.0000
To enter a complex number 1+ 2i for example, you type: complex(1,2). However,

when MATLAB gives the answer, it will write it in the usual form 1+ 2i. If you have
matrices in which there are complex entries, you can go ahead and let MATLAB do the
tedious computations for you.

19.4 Applications

19.4.1 A Formula for the Inverse

The definition of the determinant in terms of Laplace expansion along a row or column
also provides a way to give a formula for the inverse of a matrix. Recall the definition of
the inverse of a matrix in Definition 18.2.25 on Page 406. Also recall the definition of the
cofactor matrix given in Definition 19.2.9 on Page 428. This cofactor matrix was just the
matrix which results from replacing the i jth entry of the matrix with the i jth cofactor.

The following theorem says that to find the inverse, take the transpose of the cofactor
matrix and divide by the determinant. The transpose of the cofactor matrix is called the
adjugate or sometimes the classical adjoint of the matrix A. In other words, A−1 is equal
to one divided by the determinant of A times the adjugate matrix of A. This is what the
following theorem says with more precision. The proof is presented later in the appendix
devoted to the theory of the determinant.

Theorem 19.4.1 A−1 exists if and only if det(A) ̸= 0. If det(A) ̸= 0, then A−1 =(
a−1

i j

)
where

a−1
i j = det(A)−1 cof(A) ji

for cof(A)i j the i jth cofactor of A.

Example 19.4.2 Find the inverse of the matrix

A =

 1 2 3
3 0 1
1 2 1
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First find the determinant of this matrix. Using Theorems 19.2.20 - 19.2.22 on Page
430, the determinant of this matrix is 12. The cofactor matrix of A is −2 −2 6

4 −2 0
2 8 −6

 .

Each entry of A was replaced by its cofactor. Therefore, from the above theorem, the
inverse of A should equal

1
12

 −2 −2 6
4 −2 0
2 8 −6

T

=

 −1/6 1/3 1/6
−1/6 −1/6 2/3
1/2 0 −1/2

 .

Does it work? You should check to see if it does. When the matrices are multiplied −1/6 1/3 1/6
−1/6 −1/6 2/3
1/2 0 −1/2

 1 2 3
3 0 1
1 2 1

=

 1 0 0
0 1 0
0 0 1


and so we got it right. If the result of multiplying these matrices had been something other
than the identity matrix, you would know there was an error. When this happens, you
need to search for the mistake if you are interested in getting the right answer. A common
mistake is to forget to take the transpose of the cofactor matrix.

This formula for the inverse is also what justifies Cramer’s rule.

Procedure 19.4.3 Suppose A is an n×n matrix and it is desired to solve the system
Ax= y,y = (y1, · · · ,yn)

T for x= (x1, · · · ,xn)
T . Then Cramer’s rule says

xi =
detAi

detA

where Ai is obtained from A by replacing the ith column of A with the column

(y1, · · · ,yn)
T .

Find x  1 2 1
3 2 1
2 −3 2

 x
y
z

=

 1
2
3

 .

From Cramer’s rule,

x = det

 1 2 1
2 2 1
3 −3 2

/det

 1 2 1
3 2 1
2 −3 2

=
1
2

To find y,z you do something similar replacing the y or z column with the right hand side.
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19.4.2 Finding Eigenvalues Using Determinants
Theorem 19.4.1 says that A−1 exists if and only if det(A) ̸= 0 when there is even a for-
mula for the inverse. Recall also that an eigenvector for λ is a nonzero vector x such that
Ax = λx where λ is called an eigenvalue. Thus you have (A−λ I)x= 0 for x ̸= 0. If
(A−λ I)−1 were to exist, then you could multiply by it on the left and obtain x= 0 after
all. Therefore, it must be the case that det(A−λ I) = 0. This yields a polynomial of de-
gree n equal to 0. This polynomial is called the characteristic polynomial. For example,
consider  1 −1 −1

0 3 2
0 −1 0


You need to have

det

 1 −1 −1
0 3 2
0 −1 0

−λ

 1 0 0
0 1 0
0 0 1

= 0

That on the left equals a polynomial of degree 3 which when factored yields

(1−λ )(λ −1)(λ −2)

Therefore, the possible eigenvalues are 1,1,2. Note how the 1 is listed twice. This is because
it occurs twice as a root of the characteristic polynomial. Also, if M−1 does not exist where
M is an n×n matrix, then this means that the columns of M cannot be linearly independent
since if they were, then by Theorem 18.5.12 M−1 would exist. Thus if A−λ I fails to have
an inverse as above, then the columns are not independent and so there exists a nonzero x
such that (A−λ I)x= 0. Thus we have the following proposition.

Proposition 19.4.4 The eigenvalues of an n×n matrix are the roots of

det(A−λ I) = 0.

Corresponding to each of these λ is an eigenvector. Every n× n matrix for n ≥ 1 has
eigenvectors and eigenvalues in Cn.

Proof: It only remains to consider the last claim. This claim follows from the funda-
mental theorem of algebra, Theorem 15.14.3. Indeed, the characteristic polynomial is a
polynomial of degree n. It has a zero λ 1 by the fundamental theorem of calculus. Thus

det(A−λ I) = (z−λ 1) p2 (z)

where p2 (z) is a polynomial of degree n − 1. Now apply the fundamental theorem of
algebra to this one and continue this process untill you obtain an expression of the form

det(A−λ I) = (z−λ 1) · · ·(z−λ n)(−1)n

then there are n eigenvalues with some maybe being repeated. ■
Note that if A = S−1BS, then A,B have the same characteristic polynomial, hence the

same eigenvalues. (They might have different eigenvectors and usually will.) To see this,
note that from the properties of determinants

det(A−λ I) = det
(
S−1BS−λS−1IS

)
= det

(
S−1 (B−λ I)S

)
= det

(
S−1)det(B−λ I)det(S) = det

(
S−1S

)
det(B−λ I)

= det(I)det(B−λ I) = det(B−λ I) (19.1)
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19.5 MATLAB and Eigenvalues
The problem with eigenvalues and eigenvectors is that you have to factor a polynomial in
order to get the eigenvalues. We can’t do this in general. All we can do is find the eigenval-
ues approximately. But an approximate eigenvalue is never enough to get the eigenvector
because (A−λ I)−1 will exist if λ is not exactly right.

However, there are numerical methods to do this in the case that the polynomial does
not factor. I am going to mention how to get the answer using MATLAB.

To find the eigenvalues enter A and follow with ;. Then type eig(A) and press return. It
will give numerical approximation of the eigenvalues. If you want to have it find the exact
values, you type eig(sym(A)) and press return. To do this last thing, you need to have the
symbolic math package installed.

For example, if your matirix is 1 1 0
−1 0 −1
2 1 3

 ,

You would type the following: >>A=[1,1,0;-1,0,-1;2,1,3]; and then eig(sym(A)) and re-
turn, you will get the eigenvalues 1,1,2 listed in a column. This is correct. The matrix
has a repeated eigenvalue of 1. If you want to get the eigenvectors also, you would type
>>A=[1,1,0;-1,0,-1;2,1,3]; and then [V,D]=eig(sym(A)) and enter or if you want numeri-
cal answers, which will sometimes be all that is available, you would type [V,D]=eig(A). It
will find the matrix V such that AV =V D where D is a diagonal. In the case just considered,
it will only find two columns for V because this is a defective matrix. In general, however,
this would give V−1AV = D and the columns of V are the eigenvectors.

19.6 Matrices and the Dot Product
Here I will revert to consideration of Rn rather than Cn. I do this because this is not a
book on linear algebra, only multi-variable calculus and I will give specialized treatments
of some important theorems. Recall the inner product or dot product.

a ·b≡ ∑
k

akbk

In more advanced contexts, this is usually written as ⟨a,b⟩ or often simply as (a,b) instead
of a ·b. Also, the term “inner product” tends to be preferred over “dot product”. I will
sometimes use the notation (a,b) instead of a ·b because of this. First is an important
relationship between the inner product and the transpose.

Proposition 19.6.1 Suppose a,b are vectors in Rn and Rm respectively and let A be
an m×n matrix. Then (Aa,b) =

(
a,ATb

)
.

Proof: From the definition of the inner product,

(Aa,b) ≡ ∑
i
(Aa)i bi = ∑

i
∑

j
Ai ja jbi = ∑

j
∑

i
Ai ja jbi

= ∑
j
∑

i
AT

jibia j = ∑
j

(
ATb

)
j a j =

(
a,ATb

)
■
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In words, the above says that when you take the A across the dot or comma you put a
transpose on it and everything works just fine.

There are other more elegant ways to discuss eigenvectors and eigenvalues. See my
book on linear algebra and analysis to see a presentation which is independent of deter-
minants. However, this is a book on calculus, not linear algebra and the determinant is
important in other contexts. Also, from the point of view of history, the determinant came
earlier than the other linear algebra concepts.

19.7 Distance and Orthogonal Matrices
Some matrices preserve lengths of vectors. That is |Ux| = |x| for any x in Rn. Such
a matrix is called orthogonal. Actually, this is not the standard definition. The standard
definition is given next. First recall that if you have two square matrices of the same size
and one acts like the inverse of the other on one side, then it will act like the inverse on the
other side as well. See, for example, the discussion after Theorem 18.5.12. The traditional
definition of orthogonal is as follows.

Definition 19.7.1 Let U be a real n× n matrix. Then U is called orthogonal if
UTU =UUT = I.

Then the following proposition relates this to preservation of lengths of vectors.

Proposition 19.7.2 An n× n matrix U is orthogonal if and only if |Ux| = |x| for all
vectors x.

Proof: First suppose the matrix U preserves all lengths. Since U preserves distances,
|Uu| = |u| for every u. Let u,v be arbitrary vectors in Rn and let θ ∈ R, |θ | = 1, and
θ
(
UTUu−u,v

)
=
∣∣(UTUu−u,v

)∣∣. Therefore from the axioms of the inner product
and Proposition 19.7.2,

|u|2 + |v|2 +2θ (u,v) = |θu|2 + |v|2 +θ (u,v)+θ (v,u)

= |θu+v|2 = (U (θu+v) ,U (θu+v))

= (Uθu,Uθu)+(Uv,Uv)+(Uθu,Uv)+(Uv,Uθu)

= |θu|2 + |v|2 +θ
(
UTUu,v

)
+θ

(
v,UTUu

)
= |u|2 + |v|2 +2θ

(
UTUu,v

)
and so, subtracting the ends, it follows that for all u,v,

0 = 2θ
(
UTUu−u,v

)
= 2

∣∣(UTUu−u,v
)∣∣

from the above choice of θ . Now let v =UTUu−u. It follows that

UTUu−u=
(
UTU − I

)
u= 0.

This is true for all u and so UTU = I. Thus it is also true that UUT = I.
Conversely, if UTU = I, then

|Uu|2 = (Uu,Uu) =
(
UTUu,u

)
= (u,u) = |u|2

Thus U preserves distance. ■
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19.8 Diagonalization of Symmetric Matrices
Recall that a symmetric matrix is a real n× n matrix A such that AT = A. One nice thing
about symmetric matrices is that they have only real eigenvalues. You might want to review
the property of the conjugate which says that zw = z̄w̄ and how the conjugate of a sum is
the sum of the conjugates.

Proposition 19.8.1 Suppose A is a real symmetric matrix. Then all eigenvalues are
real.

Proof: Suppose Ax= λx. Then

xT Ax= xT
λx= λxTx= λxTx

The last step happens because both xTx and xTx are the sum of the entries of x times the
conjugate of these entries. Also xT Ax is some complex number, a 1× 1 matrix and so it
equals its transpose. Thus, since A = AT ,

xT Ax= xT ATx= xT Ax= xT Ax= xT
λx= λxTx

Since x ̸= 0, xTx is a positive real number. Hence, the above shows that λ = λ . ■

Definition 19.8.2 A set of vectors in Rp {x1, · · · ,xk} is called an orthonormal set
of vectors if

xT
i x j = δ i j ≡

{
1 if i = j
0 if i ̸= j

Note this is the same as saying that (xi,x j) = xi ·x j = δ i j.

What does it mean to say that UTU = I which is the definition for U to be orthogonal?

This says that for U =
(
u1 · · · un

)
,UT =

 uT
1
...
uT

n

 and so from the way we multiply

matrices in which the i jth entry of the product is the product of the ith row of the matrix on
the left with the jth column of the matrix on the right, we have uT

i u j = δ i j. In other words,
the columns of U are orthonormal. From this simple observation, the following theorem is
obtained.

Theorem 19.8.3 Let {u1, · · · ,un} be orthonormal. Then it is linearly independent.

Proof: We know from the above discussion that U =
(
u1 · · · un

)
is orthogo-

nal. Thus if Ux= 0, you can multiply on the left on both sides with UT and obtain
x = UTUx = UT0 = 0. Thus, from the definition of linear independence, Definition
18.5.1, it follows that the columns of U comprise an independent set of vectors. ■

The proof of the following theorem is based on the Gram Schmidt process.

Theorem 19.8.4 Let {x1, · · · ,xn} be linearly independent in Rp, p≥ n. Then there
exist orthonormal vectors {u1, · · · ,un} which have the property that for each k ≤ n,
span(x1, · · · ,xk) = span(u1, · · · ,uk) .
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Proof: Let u1 ≡ x1/ |x1| . Thus for k = 1, span(u1) = span(x1) and {u1} is an
orthonormal set. Now suppose for some k < n, u1, · · · , uk have been chosen such that
(u j,ul) = δ jl and span(x1, · · · ,xk) = span(u1, · · · ,uk). Then define

uk+1 ≡
xk+1 −∑

k
j=1 (xk+1 ·u j)u j∣∣∣xk+1 −∑
k
j=1 (xk+1 ·u j)u j

∣∣∣ , (19.2)

where the denominator is non-zero because the sum is in the span of the {x1, · · · ,xk}. Thus
by induction,

uk+1 ∈ span(u1, · · · ,uk,xk+1) = span(x1, · · · ,xk,xk+1) .

Also, xk+1 ∈ span(u1, · · · ,uk,uk+1) from solving 19.2 for xk+1, and it follows

span(x1, · · · ,xk,xk+1) = span(u1, · · · ,uk,uk+1) .

If l ≤ k,

(uk+1 ·ul) =C

(
(xk+1 ·ul)−

k

∑
j=1

(xk+1 ·u j)(u j ·ul)

)
=

C

(
(xk+1 ·ul)−

k

∑
j=1

(xk+1 ·u j)δ l j

)
=C ((xk+1 ·ul)− (xk+1 ·ul)) = 0.

The vectors,
{
u j
}n

j=1 , generated in this way are therefore orthonormal because each vector
has unit length. ■

Theorem 19.8.5 Let v1 be a unit vector (|v1|= 1) in Rp, p > 1. Then there exist
vectors {

v2, · · · ,vp
}

such that
{
v1,v2, · · · ,vp

}
is an orthonormal set of vectors.

Proof: Use Theorem 18.5.10 to extend {v1} to a basis for Rn and then use Theorem
19.8.4. ■

Thus, as observed above, the matrix
(
v1 · · · vp

)
is a orthogonal matrix. With this

preparation, here is a major result. It is actually a specialization of a much more interesting
theorem. See any of my linear algebra books under the topic of Schur’s theorem.

Theorem 19.8.6 Let A be a real symmetric matrix. Then there is an orthogonal
transformation U such that

UT AU = D

where D is a diagonal matrix having the real eigenvalues of A down the diagonal. Also,
the columns of U are an orthonormal set of eigenvectors.

Proof: This is obviously true if A is a 1× 1 matrix. Indeed, you let U = 1 and it all
works because in this case A is already a diagonal matrix. Suppose then that the theorem
is true for any k < p and let A be a real p× p symmetric matrix. Then by the fundamental
theorem of algebra, there exists a solution λ to the characteristic equation

det(A−λ I) = 0.
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Then since A−λ I has no inverse, it follows that the columns are dependent and so there
exists a nonzero vector u such that (A−λ I)u= 0 and from Proposition 19.8.1, λ is real.
Dividing this vector by its magnitude, we can assume that |u| = 1. By Theorem 19.8.5,
there are vectors v2, · · · ,vp such that

{
u,v2, · · · ,vp

}
is an orthonormal set of vectors. As

observed above, if
U =

(
u v2 · · · vp

)
it follows that U is an orthogonal matrix. Now consider UT AU. From the way we multiply
matrices, this is

uT

vT
2
...
vT

p

A
(
u v2 · · · vp

)
=


uT

vT
2
...
vT

p

( Au Av2 · · · Avp
)

=


uT

vT
2
...
vT

p

( Au Av2 · · · Avp
)
=


uT

vT
2
...
vT

p

( λu Av2 · · · Avp
)

Now recall the way we multiply matrices in which the i jth entry is the product of the ith

row on the left with the jth column on the right. Thus, since these columns of U are
orthonormal, the above product reduces to something of the form(

λ aT

0 A1

)
where A1 is an (p−1)× (p−1) matrix. Summarizing, there is an orthogonal matrix U
such that

UT AU =

(
λ aT

0 A1

)
I claim that a= 0. To see this, take the transpose of both sides, using symmetry of A to
obtain (

λ aT

0 A1

)
=UT AU =

(
UT AU

)T
=

(
λ 0T

a A1

)
Thus a= 0 as claimed. Now by induction, there is an orthogonal matrix Û such that

ÛT A1Û = D

where D is a diagonal matrix. Now note that from the way we multiply matrices,(
1 0T

0 Û

)T ( 1 0T

0 Û

)
=

(
1 0T

0 ÛT

)(
1 0T

0 Û

)

=

(
1 0T

0 ÛT

)(
1 0T

0 Û

)
=

(
1 0T

0 ÛTÛ

)
=

(
1 0T

0 I

)
= I

Thus (
1 0T

0 Û

)
≡ Ũ
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is an orthogonal matrix. Now

ŨTUT AUŨ = ŨT
(

λ 0T

0 A1

)
Ũ

=

(
1 0T

0 ÛT

)(
λ 0T

0 A1

)(
1 0T

0 Û

)

=

(
λ 0T

0 ÛT A1Û

)
=

(
λ 0T

0 D

)
which is a diagonal matrix. This shows the first part. Now if

U =
(
u1 u2 · · · up

)

D =

 λ 1 0
. . .

0 λ p

 , UT AU = D

then, multiplying on both sides by U,

AU =UD

and so, from the way we multiply matrices, this yields

AU =
(

Au1 Au2 · · · Aup
)
=UD

=
(

λ 1u1 λ 2u2 · · · λ pup
)

which shows that Au j = λ ju j for each j. This shows the columns of U form an orthonor-
mal set of eigenvectors and the diagonal entries of D are the eigenvalues of A. ■

Example 19.8.7 Here is a symmetric matrix which has eigenvalues 6,−12,18

A =

 1 −4 13
−4 10 −4
13 −4 1


Find a matrix U such that UT AU is a diagonal matrix.

From the above explanation the columns of this matrix U are eigenvectors of unit length
and in fact this is sufficient to obtain the matrix. After doing row operations to find the
eigenvectors and then dividing each by its magnitude, you obtain 1 −4 13

−4 10 −4
13 −4 1

 1
6

√
6

1
3

√
6

1
6

√
6

=


√

6
2
√

6√
6

= 6

 1
6

√
6

1
3

√
6

1
6

√
6


 1 −4 13

−4 10 −4
13 −4 1

 − 1
2

√
2

0
1
2

√
2

=

 6
√

2
0

−6
√

2

=−12

 − 1
2

√
2

0
1
2

√
2
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 1 −4 13
−4 10 −4
13 −4 1

 1
3

√
3

− 1
3

√
3

1
3

√
3

=

 6
√

3
−6

√
3

6
√

3

= 18

 1
3

√
3

− 1
3

√
3

1
3

√
3


Thus the matrix of interest is

U =

 1
6

√
6 − 1

2

√
2 1

3

√
3

1
3

√
6 0 − 1

3

√
3

1
6

√
6 1

2

√
2 1

3

√
3


Then 1

6

√
6 − 1

2

√
2 1

3

√
3

1
3

√
6 0 − 1

3

√
3

1
6

√
6 1

2

√
2 1

3

√
3

T  1 −4 13
−4 10 −4
13 −4 1

 1
6

√
6 − 1

2

√
2 1

3

√
3

1
3

√
6 0 − 1

3

√
3

1
6

√
6 1

2

√
2 1

3

√
3



=

 6 0 0
0 −12 0
0 0 18


19.9 Exercises

1. Let
{u1, · · · ,un}

be a basis for Fn and define a mapping T : Fn → span(v1, · · · ,vr) as follows.

T

(
n

∑
k=1

akuk

)
≡

r

∑
k=1

akvk

Explain why this is a linear transformation.

2. In the above problem, suppose vk =uk. Show Tv = v if v ∈V ≡ span(u1, · · · ,ur) .
Now show that T (T (x)) = T (x) .

3. The Cayley Hamilton theorem states that every matrix satisfies its characteristic
equation. I have given a short proof of this major theorem in the appendix on the
theory of determinants. See Section 20.2.10. Suppose you have p(λ ) is the charac-
teristic polynomial for a square n×n matrix A. Show that this matrix is invertible if
and only if the constant term of the p(λ ) is non zero. In this case, give a formula for
A−1 in terms of powers of A. Say

p(λ ) = λ
n +an−1λ

n−1 + · · ·+a1λ +a0

Thus you need explain why a0 ̸= 0 if A−1 exists and then find a formula for A−1

when this is the case. Hint: By the Cayley Hamilton theorem p(A) = 0 meaning

An +an−1An−1 + · · ·+a1A+a0I = 0

Now consider solving for I and factoring out A.
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4. Here are some matrices. Label according to whether they are symmetric, skew sym-
metric, or orthogonal. If the matrix is orthogonal, determine whether it is proper or
improper.

(a)

 1 0 0
0 1/

√
2 −1/

√
2

0 1/
√

2 1/
√

2

 (b)

 1 2 −3
2 1 4
−3 4 7

 (c)

 0 −2 −3
2 0 −4
3 4 0


5. Show that every real matrix may be written as the sum of a skew symmetric and a

symmetric matrix. Hint: If A is an n× n matrix, show that B ≡ 1
2

(
A−AT

)
is skew

symmetric.

6. Let x be a vector in Rn and consider the matrix I − 2xxT

|x|2
. Show this matrix is both

symmetric and orthogonal.

7. For U an orthogonal matrix, explain why |Ux|= |x| for any vector x. Next explain
why if U is an n×n matrix with the property that |Ux|= |x| for all vectors, x, then U
must be orthogonal. Thus the orthogonal matrices are exactly those which preserve
distance. This was done in general in the chapter for orthogonal matrices. Try to do
it in your own words.

8. A quadratic form in three variables is an expression of the form a1x2 +a2y2 +a3z2 +
a4xy+a5xz+a6yz. Show that every such quadratic form may be written as

(
x y z

)
A

 x
y
z


where A is a symmetric matrix.

9. Given a quadratic form in three variables, x,y, and z, show there exists an orthogonal
matrix U and variables x′,y′,z′ such that

(
x y z

)T
= U

(
x′ y′ z′

)T with
the property that in terms of the new variables, the quadratic form is

λ 1
(
x′
)2

+λ 2
(
y′
)2

+λ 3
(
z′
)2

where the numbers, λ 1,λ 2, and λ 3 are the eigenvalues of the matrix A in Problem 8.

10. If A is a symmetric invertible matrix, is it always the case that A−1 must be symmetric
also? How about Ak for k a positive integer? Explain.

11. If A,B are symmetric matrices, does it follow that AB is also symmetric?

12. Suppose A,B are symmetric and AB = BA. Does it follow that AB is symmetric?

13. Here are some matrices. What can you say about the eigenvalues of these matrices
just by looking at them?



444 CHAPTER 19. EIGENVALUES AND EIGENVECTORS

(a)

 0 0 0
0 0 −1
0 1 0


(b)

 1 2 −3
2 1 4
−3 4 7


(c)

 0 −2 −3
2 0 −4
3 4 0


(d)

 1 2 3
0 2 3
0 0 2



14. Find the eigenvalues and eigenvectors of the matrix

 c 0 0
0 0 −b
0 b 0

 . Here b,c are

real numbers.

15. Find the eigenvalues and eigenvectors of the matrix

 c 0 0
0 a −b
0 b a

. Here a,b,c

are real numbers.

16. Find the eigenvalues and an orthonormal basis of eigenvectors for A.

A =

 11 −1 −4
−1 11 −4
−4 −4 14

 .

Hint: Two eigenvalues are 12 and 18.

17. Find the eigenvalues and an orthonormal basis of eigenvectors for A.

A =

 4 1 −2
1 4 −2
−2 −2 7

 .

Hint: One eigenvalue is 3.

18. Show that if A is a real symmetric matrix and λ and µ are two different eigenvalues,
then if x is an eigenvector for λ and y is an eigenvector for µ, then x ·y= 0. Also all
eigenvalues are real. Supply reasons for each step in the following argument. First

λxTx= (Ax)T x= xT Ax= xT Ax= xT
λx= λxTx

and so λ = λ . This shows that all eigenvalues are real. It follows all the eigenvectors
are real. Why? Now let x,y,µ and λ be given as above.

λ (x ·y) = λx ·y = Ax ·y = x ·Ay = x·µy = µ (x ·y) = µ (x ·y)

and so
(λ −µ)(x ·y) = 0.

Since λ ̸= µ, it follows x ·y = 0.

19. Suppose U is an orthogonal n×n matrix. Explain why rank(U) = n.

20. Show that the eigenvalues and eigenvectors of a real matrix occur in conjugate pairs.
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21. If a real matrix A has all real eigenvalues, does it follow that A must be symmetric.
If so, explain why and if not, give an example to the contrary.

22. Suppose A is a 3×3 symmetric matrix and you have found two eigenvectors which
form an orthonormal set. Explain why their cross product is also an eigenvector.

23. Determine which of the following sets of vectors are orthonormal sets. Justify your
answer.

(a) {(1,1) ,(1,−1)}

(b)
{(

1√
2
, −1√

2

)
,(1,0)

}
(c)

{( 1
3 ,

2
3 ,

2
3

)
,
(−2

3 , −1
3 , 2

3

)
,
( 2

3 ,
−2
3 , 1

3

)}
24. Show that if {u1, · · · ,un} is an orthonormal set of vectors in Fn, then it is a basis.

Hint: It was shown earlier that this is a linearly independent set.

25. Fill in the missing entries to make the matrix orthogonal.
−1√

2
−1√

6
1√
3

1√
2

√
6

3

 .

26. Fill in the missing entries to make the matrix orthogonal.
1
3 − 2√

5
2
3 0

4
15

√
5


27. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A

by finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.

A =

 −1 1 1
1 −1 1
1 1 −1

 .

Hint: One eigenvalue is -2.

28. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A
by finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.

A =

 17 −7 −4
−7 17 −4
−4 −4 14

 .

Hint: Two eigenvalues are 18 and 24.
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29. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A
by finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.

A =

 13 1 4
1 13 4
4 4 10

 .

Hint: Two eigenvalues are 12 and 18.

30. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A
by finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.

A =


3 0 0
0 3

2
1
2

0 1
2

3
2

 .

31. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A
by finding an orthogonal matrix U and a diagonal matrix D such that UT AU = D.

A =

 2 0 0
0 5 1
0 1 5

 .

32. Explain why a real matrix A is symmetric if and only if there exists an orthogonal
matrix U such that A =UT DU for D a diagonal matrix.

33. Find an orthonormal basis for the spans of the following sets of vectors.

(a) (3,−4,0) ,(7,−1,0) ,(1,7,1).

(b) (3,0,−4) ,(11,0,2) ,(1,1,7)

(c) (3,0,−4) ,(5,0,10) ,(−7,1,1)

34. The set, V ≡ {(x,y,z) : 2x+3y− z = 0} is a subspace of R3. Find an orthonormal
basis for this subspace.

35. The two level surfaces, 2x+ 3y− z+w = 0 and 3x− y+ z+ 2w = 0 intersect in a
subspace of R4, find a basis for this subspace. Next find an orthonormal basis for
this subspace.

36. Let A,B be a m×n matrices. Define an inner product on the set of real m×n matrices
by

(A,B)F ≡ trace
(
ABT ) .

Show this is an inner product satisfying all the inner product axioms. Recall for M an
n×n matrix, trace(M)≡ ∑

n
i=1 Mii. The resulting norm, ||·||F is called the Frobenius

norm and it can be used to measure the distance between two matrices.

37. The trace of an n×n matrix M is defined as ∑i Mii. In other words it is the sum of the
entries on the main diagonal. If A,B are n×n matrices, show trace(AB) = trace(BA).
Now explain why if A = S−1BS it follows trace(A) = trace(B). Hint: For the first
part, write these in terms of components of the matrices and it just falls out.
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38. For U a matrix, a number will be called o(U) if it satisfies lim∥U∥→0
o(U)
∥U∥ = 0. Here

∥U∥ will be the Frobenius norm of U . Show that for U an n×n matrix, det(I +U) =
1+ trace(U)+o(U). Explain why if a number is a product of more than one entry
of U then it must be o(U) . For example, U12U23 would be o(U). Hint: This is true
obviously if n = 1. Suppose true for n− 1 and expand along last column and use
induction to get the result for n.

39. Next show that if F−1 exists, then

det(F +U)−det(F) = det(F) trace
(
F−1U

)
+o(U)

Hint: Factor out F from F +U .

40. Let A(t) be an m× n matrix whose entries are differentiable functions of t. The
symbol A′ (t) , means to replace each t dependent entry of A(t) with its derivative.
Thus if

A(t) =
(

sin t t2

t +1 ln
(
1+ t2

) ) , then A′ (t) =
(

cos t 2t
1 2 t

t2+1

)
Let A(t) be an m×n matrix and let B(t) be an n× p matrix. Show the product rule.

(AB)′ (t) = A′ (t)B(t)+A(t)B′ (t)

Hint: Just use the entries of both sides and reduce to the usual product rule. That is,
the i jth entry of (AB)′ (t) is ∑k

(
AikBk j

)′
(t) . Now use the product rule.
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Chapter 20

The Mathematical Theory of
Determinants∗

You might skip this chapter and return to it later if accepting the outrageous claims
about the determinant, that it is independent of the row or column chosen, does not bother
you. If this does cause some cognitive dissonance, then you should read this chapter now.

20.1 The Function sgn

The following Lemma will be essential in the definition of the determinant.

Lemma 20.1.1 There exists a function, sgnn which maps each ordered list of numbers
from {1, · · · ,n} to one of the three numbers, 0,1, or −1 which also has the following prop-
erties.

sgnn (1, · · · ,n) = 1 (20.1)

sgnn (i1, · · · , p, · · · ,q, · · · , in) =−sgnn (i1, · · · ,q, · · · , p, · · · , in) (20.2)

In words, the second property states that if two of the numbers are switched, the value of
the function is multiplied by −1. Also, in the case where n > 1 and {i1, · · · , in}= {1, · · · ,n}
so that every number from {1, · · · ,n} appears in the ordered list, (i1, · · · , in) ,

sgnn (i1, · · · , iθ−1,n, iθ+1, · · · , in)≡

(−1)n−θ sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in) (20.3)

where n = iθ in the ordered list, (i1, · · · , in) .

Proof: Define sign(x) = 1 if x > 0,−1 if x < 0 and 0 if x = 0. If n = 1, there is only
one list and it is just the number 1. Thus one can define sgn1 (1)≡ 1. For the general case
where n > 1, simply define

sgnn (i1, · · · , in)≡ sign

(
∏
r<s

(is − ir)

)

449
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This delivers either −1,1, or 0 by definition. What about the other claims? Suppose you
switch ip with iq where p < q so two numbers in the ordered list (i1, · · · , in) are switched.
Denote the new ordered list of numbers as ( j1, · · · , jn) . Thus jp = iq and jq = ip and if
r /∈ {p,q} , jr = ir. See the following illustration

i1
1

i2
2

· · · ip

p
· · · iq

q
· · · in

n

i1
1

i2
2

· · · iq
p

· · · ip

q
· · · in

n

j1
1

j2
2

· · · jp

p
· · · jq

q
· · · jn

n
Then

sgnn ( j1, · · · , jn)≡ sign

(
∏
r<s

( js − jr)

)

= sign

 both p,q
(ip − iq)

one of p,q︷ ︸︸ ︷
∏

p< j<q
(i j − iq) ∏

p< j<q
(ip − i j)

neither p nor q

∏
r<s,r,s/∈{p,q}

(is − ir)


The last product consists of the product of terms which were in the un-switched product
∏r<s (is − ir) so produces no change in sign, while the two products in the middle both
introduce q− p−1 minus signs. Thus their product produces no change in sign. The first
factor is of opposite sign to the iq − ip which occured in sgnn (i1, · · · , in) . Therefore, this
switch introduced a minus sign and

sgnn ( j1, · · · , jn) =−sgnn (i1, · · · , in)

Now consider the last claim. In computing sgnn (i1, · · · , iθ−1,n, iθ+1, · · · , in) there will
be the product of n−θ negative terms

(iθ+1 −n) · · ·(in −n)

and the other terms in the product for computing sgnn (i1, · · · , iθ−1,n, iθ+1, · · · , in) are those
which are required to compute sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in) multiplied by terms of the
form (n− i j) which are nonnegative. It follows that

sgnn (i1, · · · , iθ−1,n, iθ+1, · · · , in) = (−1)n−θ sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in)

It is obvious that if there are repeats in the list the function gives 0. ■

Lemma 20.1.2 Every ordered list of distinct numbers from {1,2, · · · ,n} can be obtained
from every other such ordered list by a finite number of switches. Also, sgnn is unique.

Proof: This is obvious if n = 1 or 2. Suppose then that it is true for sets of n− 1
elements. Take two ordered lists of numbers, P1,P2. Make one switch in both to place n at
the end. Call the result Pn

1 and Pn
2 . Then using induction, there are finitely many switches
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in Pn
1 so that it will coincide with Pn

2 . Now switch the n in what results to where it was in
P2.

To see sgnn is unique, if there exist two functions, f and g both satisfying 20.1 and
20.2, you could start with f (1, · · · ,n) = g(1, · · · ,n) = 1 and applying the same sequence
of switches, eventually arrive at f (i1, · · · , in) = g(i1, · · · , in) . If any numbers are repeated,
then 20.2 gives both functions are equal to zero for that ordered list. ■

Definition 20.1.3 When you have an ordered list of distinct numbers selected from
{1,2, · · · ,n} , say (i1, · · · , in) , this ordered list is called a permutation. The symbol for all
such permutations is Sn. The number sgnn (i1, · · · , in) is called the sign of the permutation.

A permutation can also be considered as a function from the set

{1,2, · · · ,n} to {1,2, · · · ,n}

as follows. Let f (k) = ik. Permutations are of fundamental importance in certain areas
of math. For example, it was by considering permutations that Galois was able to give a
criterion for solution of polynomial equations by radicals, but this is a different direction
than what is being attempted here.

In what follows sgn will often be used rather than sgnn because the context supplies the
appropriate n.

20.2 The Determinant

Definition 20.2.1 Let f be a function which has the set of ordered lists of numbers
from {1, · · · ,n} as its domain. Define

∑
(k1,··· ,kn)

f (k1 · · ·kn)

to be the sum of all the f (k1 · · ·kn) for all possible choices of ordered lists (k1, · · · ,kn) of
numbers of {1, · · · ,n} . For example,

∑
(k1,k2)

f (k1,k2) = f (1,2)+ f (2,1)+ f (1,1)+ f (2,2) .

20.2.1 The Definition

Definition 20.2.2 Let (ai j) = A denote an n × n matrix. The determinant of A,
denoted by det(A) is defined by

det(A)≡ ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)a1k1 · · ·ankn

where the sum is taken over all ordered lists of numbers from {1, · · · ,n}. Note it suffices
to take the sum over only those ordered lists in which there are no repeats because if there
are, sgn(k1, · · · ,kn) = 0 and so that term contributes 0 to the sum.
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20.2.2 Permuting Rows Or Columns
Let A be an n×n matrix, A = (ai j) and let (r1, · · · ,rn) denote an ordered list of n numbers
from {1, · · · ,n}. Let A(r1, · · · ,rn) denote the matrix whose kth row is the rk row of the
matrix A. Thus

det(A(r1, · · · ,rn)) = ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)ar1k1 · · ·arnkn (20.4)

and
A(1, · · · ,n) = A.

Proposition 20.2.3 Let
(r1, · · · ,rn)

be an ordered list of numbers from {1, · · · ,n}. Then

sgn(r1, · · · ,rn)det(A)

= ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)ar1k1 · · ·arnkn (20.5)

= det(A(r1, · · · ,rn)) . (20.6)

Proof: Let (1, · · · ,n) = (1, · · · ,r, · · ·s, · · · ,n) so r < s.

det(A(1, · · · ,r, · · · ,s, · · · ,n)) = (20.7)

∑
(k1,··· ,kn)

sgn(k1, · · · ,kr, · · · ,ks, · · · ,kn)a1k1 · · ·arkr · · ·asks · · ·ankn ,

and renaming the variables, calling ks,kr and kr, ks, this equals

= ∑
(k1,··· ,kn)

sgn(k1, · · · ,ks, · · · ,kr, · · · ,kn)a1k1 · · ·arks · · ·askr · · ·ankn

= ∑
(k1,··· ,kn)

−sgn

k1, · · · ,
These got switched︷ ︸︸ ︷

kr, · · · ,ks , · · · ,kn

a1k1 · · ·askr · · ·arks · · ·ankn

=−det(A(1, · · · ,s, · · · ,r, · · · ,n)) . (20.8)

Consequently,
det(A(1, · · · ,s, · · · ,r, · · · ,n)) =

−det(A(1, · · · ,r, · · · ,s, · · · ,n)) =−det(A)

Now letting A(1, · · · ,s, · · · ,r, · · · ,n) play the role of A, and continuing in this way, switch-
ing pairs of numbers,

det(A(r1, · · · ,rn)) = (−1)p det(A)

where it took p switches to obtain(r1, · · · ,rn) from (1, · · · ,n). By Lemma 20.1.1, this
implies

det(A(r1, · · · ,rn)) = (−1)p det(A) = sgn(r1, · · · ,rn)det(A)
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and proves the proposition in the case when there are no repeated numbers in the ordered
list, (r1, · · · ,rn). However, if there is a repeat, say the rth row equals the sth row, then the
reasoning of 20.7 -20.8 shows that detA(r1, · · · ,rn) = 0 and also sgn(r1, · · · ,rn) = 0 so the
formula holds in this case also. ■

Observation 20.2.4 There are n! ordered lists of distinct numbers from
{1, · · · ,n} .

To see this, consider n slots placed in order. There are n choices for the first slot. For
each of these choices, there are n−1 choices for the second. Thus there are n(n−1) ways
to fill the first two slots. Then for each of these ways there are n−2 choices left for the third
slot. Continuing this way, there are n! ordered lists of distinct numbers from {1, · · · ,n} as
stated in the observation.

20.2.3 A Symmetric Definition
With the above, it is possible to give a more symmetric description of the determinant from
which it will follow that det(A) = det

(
AT
)
.

Corollary 20.2.5 The following formula for det(A) is valid.

det(A) =
1
n!
·

∑
(r1,··· ,rn)

∑
(k1,··· ,kn)

sgn(r1, · · · ,rn)sgn(k1, · · · ,kn)ar1k1 · · ·arnkn . (20.9)

And also det
(
AT
)
= det(A) where AT is the transpose of A. (Recall that for AT =

(
aT

i j

)
,

aT
i j = a ji.)

Proof: From Proposition 20.2.3, if the ri are distinct,

det(A) = ∑
(k1,··· ,kn)

sgn(r1, · · · ,rn)sgn(k1, · · · ,kn)ar1k1 · · ·arnkn .

Summing over all ordered lists, (r1, · · · ,rn) where the ri are distinct, (If the ri are not
distinct, sgn(r1, · · · ,rn) = 0 and so there is no contribution to the sum.)

n!det(A) =

∑
(r1,··· ,rn)

∑
(k1,··· ,kn)

sgn(r1, · · · ,rn)sgn(k1, · · · ,kn)ar1k1 · · ·arnkn .

This proves the corollary since the formula gives the same number for A as it does for AT .
■

20.2.4 The Alternating Property of the Determinant
Corollary 20.2.6 If two rows or two columns in an n× n matrix A, are switched, the
determinant of the resulting matrix equals (−1) times the determinant of the original ma-
trix. If A is an n× n matrix in which two rows are equal or two columns are equal then



454 CHAPTER 20. THE MATHEMATICAL THEORY OF DETERMINANTS∗

det(A) = 0. Suppose the ith row of A equals
(xa1 + yb1, · · · ,xan + ybn). Then

det(A) = xdet(A1)+ ydet(A2)

where the ith row of A1 is (a1, · · · ,an) and the ith row of A2 is (b1, · · · ,bn) , all other rows of
A1 and A2 coinciding with those of A. In other words, det is a linear function of each row
A. The same is true with the word “row” replaced with the word “column”.

Proof: By Proposition 20.2.3 when two rows are switched, the determinant of the re-
sulting matrix is (−1) times the determinant of the original matrix. By Corollary 20.2.5 the
same holds for columns because the columns of the matrix equal the rows of the transposed
matrix. Thus if A1 is the matrix obtained from A by switching two columns,

det(A) = det
(
AT )=−det

(
AT

1
)
=−det(A1) .

If A has two equal columns or two equal rows, then switching them results in the same
matrix. Therefore, det(A) =−det(A) and so det(A) = 0.

It remains to verify the last assertion.

det(A)≡ ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)a1k1 · · ·
(
xaki + ybki

)
· · ·ankn

= x ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)a1k1 · · ·aki · · ·ankn

+y ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)a1k1 · · ·bki · · ·ankn

≡ xdet(A1)+ ydet(A2) .

The same is true of columns because det
(
AT
)
= det(A) and the rows of AT are the columns

of A. ■

20.2.5 Linear Combinations and Determinants
Linear combinations have been discussed already. However, here is a review and some new
terminology.

Definition 20.2.7 A vector w, is a linear combination of the vectors

{v1, · · · ,vr}

if there exists scalars, c1, · · ·cr such that w= ∑
r
k=1 ckvk. This is the same as saying

w ∈ span(v1, · · · ,vr) .

The following corollary is also of great use.

Corollary 20.2.8 Suppose A is an n × n matrix and some column (row) is a linear
combination of r other columns (rows). Then det(A) = 0.



20.2. THE DETERMINANT 455

Proof: Let A =
(
a1 · · · an

)
be the columns of A and suppose the condition that

one column is a linear combination of r of the others is satisfied. Then by using Corollary
20.2.6 the determinant of A is zero if and only if the determinant of the matrix B, which has
this special column placed in the last position, equals zero. Thus an = ∑

r
k=1 ckak and so

det(B) = det
(
a1 · · · ar · · · an−1 ∑

r
k=1 ckak

)
.

By Corollary 20.2.6

det(B) =
r

∑
k=1

ck det
(
a1 · · · ar · · · an−1 ak

)
= 0.

because there are two equal columns. The case for rows follows from the fact that det(A) =
det
(
AT
)
. ■

20.2.6 The Determinant of a Product

Recall the following definition of matrix multiplication.

Definition 20.2.9 If A and B are n×n matrices, A= (ai j) and B= (bi j), AB= (ci j)
where

ci j ≡
n

∑
k=1

aikbk j.

One of the most important rules about determinants is that the determinant of a product
equals the product of the determinants.

Theorem 20.2.10 Let A and B be n×n matrices. Then

det(AB) = det(A)det(B) .

Proof: Let ci j be the i jth entry of AB. Then by Proposition 20.2.3,

det(AB) =

∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)c1k1 · · ·cnkn

= ∑
(k1,··· ,kn)

sgn(k1, · · · ,kn)

(
∑
r1

a1r1br1k1

)
· · ·

(
∑
rn

anrnbrnkn

)
= ∑

(r1··· ,rn)
∑

(k1,··· ,kn)

sgn(k1, · · · ,kn)br1k1 · · ·brnkn (a1r1 · · ·anrn)

= ∑
(r1··· ,rn)

sgn(r1 · · ·rn)a1r1 · · ·anrn det(B) = det(A)det(B) . ■
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20.2.7 Cofactor Expansions
Lemma 20.2.11 Suppose a matrix is of the form

M =

(
A ∗
0 a

)
(20.10)

or

M =

(
A 0
∗ a

)
(20.11)

where a is a number and A is an (n−1)× (n−1) matrix and ∗ denotes either a column
or a row having length n− 1 and the 0 denotes either a column or a row of length n− 1
consisting entirely of zeros. Then det(M) = adet(A) .

Proof: Denote M by (mi j) . Thus in the first case, mnn = a and mni = 0 if i ̸= n while in
the second case, mnn = a and min = 0 if i ̸= n. From the definition of the determinant,

det(M)≡ ∑
(k1,··· ,kn)

sgnn (k1, · · · ,kn)m1k1 · · ·mnkn

Letting θ denote the position of n in the ordered list, (k1, · · · ,kn) then using Lemma 20.1.1,
det(M) equals

∑
(k1,··· ,kn)

(−1)n−θ sgnn−1

(
k1, · · · ,kθ−1,

θ

kθ+1, · · · ,
n−1
kn

)
m1k1 · · ·mnkn

Now suppose 20.11. Then if kn ̸= n, the term involving mnkn in the above expression equals
zero. Therefore, the only terms which survive are those for which θ = n or in other words,
those for which kn = n. Therefore, the above expression reduces to

a ∑
(k1,··· ,kn−1)

sgnn−1 (k1, · · ·kn−1)m1k1 · · ·m(n−1)kn−1 = adet(A) .

To get the assertion in the situation of 20.10 use Corollary 20.2.5 and 20.11 to write

det(M) = det
(
MT )= det

((
AT 0
∗ a

))
= adet

(
AT )= adet(A) .■

In terms of the theory of determinants, arguably the most important idea is that of
Laplace expansion along a row or a column. This will follow from the above definition of
a determinant.

Definition 20.2.12 Let A = (ai j) be an n×n matrix. Then a new matrix called the
cofactor matrix, cof(A) is defined by cof(A) = (ci j) where to obtain ci j delete the ith row
and the jth column of A, take the determinant of the (n−1)× (n−1) matrix which results,
(This is called the i jth minor of A. ) and then multiply this number by (−1)i+ j. To make
the formulas easier to remember, cof(A)i j will denote the i jth entry of the cofactor matrix.

The following is the main result. Earlier this was given as a definition and the outra-
geous totally unjustified assertion was made that the same number would be obtained by
expanding the determinant along any row or column. The following theorem proves this
assertion.
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Theorem 20.2.13 Let A be an n×n matrix where n ≥ 2. Then

det(A) =
n

∑
j=1

ai j cof(A)i j =
n

∑
i=1

ai j cof(A)i j . (20.12)

The first formula consists of expanding the determinant along the ith row and the second
expands the determinant along the jth column.

Proof: Let (ai1, · · · ,ain) be the ith row of A. Let B j be the matrix obtained from A by
leaving every row the same except the ith row which in B j equals

(0, · · · ,0,ai j,0, · · · ,0) .

Then by Corollary 20.2.6,

det(A) =
n

∑
j=1

det(B j)

Denote by Ai j the (n−1)× (n−1) matrix obtained by deleting the ith row and the jth col-
umn of A. Thus cof(A)i j ≡ (−1)i+ j det

(
Ai j
)
. At this point, recall that from Proposition

20.2.3, when two rows or two columns in a matrix M, are switched, this results in multi-
plying the determinant of the old matrix by −1 to get the determinant of the new matrix.
Therefore, by Lemma 20.2.11,

det(B j) = (−1)n− j (−1)n−i det
((

Ai j ∗
0 ai j

))
= (−1)i+ j det

((
Ai j ∗
0 ai j

))
= ai j cof(A)i j .

Therefore,

det(A) =
n

∑
j=1

ai j cof(A)i j

which is the formula for expanding det(A) along the ith row. Also,

det(A) = det
(
AT )= n

∑
j=1

aT
i j cof

(
AT )

i j

=
n

∑
j=1

a ji cof(A) ji

which is the formula for expanding det(A) along the ith column. ■

20.2.8 Row, Column, and Determinant Rank
This section will consider the concept of rank of a matrix. This is a number and its descrip-
tion is in the following definition.

Definition 20.2.14 A sub-matrix of a matrix A is the rectangular array of num-
bers obtained by deleting some rows and columns of A. Let A be an m× n matrix. The
determinant rank of the matrix equals r where r is the largest number such that some r× r
sub-matrix of A has a non zero determinant. The row rank is defined to be the dimension
of the span of the rows. The column rank is defined to be the dimension of the span of the
columns.
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Theorem 20.2.15 If A, an m×n matrix has determinant rank, r, then there exist r
rows of the matrix such that every other row is a linear combination of these r rows.

Proof: Suppose the determinant rank of A = (ai j) equals r. Thus some r× r subma-
trix has non zero determinant and there is no larger square submatrix which has non zero
determinant. Suppose such a submatrix is determined by the r columns whose indices are

j1 < · · ·< jr

and the r rows whose indices are
i1 < · · ·< ir

I want to show that every row is a linear combination of these rows. Consider the lth row
and let p be an index between 1 and n. Form the following (r+1)× (r+1) matrix

ai1 j1 · · · ai1 jr ai1 p
...

...
...

air j1 · · · air jr air p
al j1 · · · al jr al p


Of course you can assume l /∈ {i1, · · · , ir} because there is nothing to prove if the lth row
is one of the chosen ones. The above matrix has determinant 0. This is because if p /∈
{ j1, · · · , jr} then the above would be a submatrix of A which is too large to have non zero
determinant. On the other hand, if p ∈ { j1, · · · , jr} then the above matrix has two columns
which are equal so its determinant is still 0.

Expand the determinant of the above matrix along the last column. Let Ck denote the
cofactor associated with the entry aik p. This is not dependent on the choice of p. Remember,
you delete the column and the row the entry is in and take the determinant of what is left
and multiply by −1 raised to an appropriate power. Let C denote the cofactor associated
with al p. This is given to be nonzero, it being the determinant of the matrix ai1 j1 · · · ai1 jr

...
...

air j1 · · · air jr


Thus 0 = al pC+∑

r
k=1 Ckaik p which implies al p = ∑

r
k=1

−Ck
C aik p ≡ ∑

r
k=1 mkaik p. Since this

is true for every p and since mk does not depend on p, this has shown the lth row is a linear
combination of the i1, i2, · · · , ir rows. ■

Corollary 20.2.16 The determinant rank equals the row rank.

Proof: From Theorem 20.2.15, the row rank is no larger than the determinant rank.
Could the row rank be smaller than the determinant rank? If so, there exist p rows for p < r
such that the span of these p rows equals the row space. But this implies that the r× r sub-
matrix whose determinant is nonzero also has row rank no larger than p which is impossible
if its determinant is to be nonzero because at least one row is a linear combination of the
others. ■

Corollary 20.2.17 If A has determinant rank r, then there exist r columns of the matrix
such that every other column is a linear combination of these r columns. Also the column
rank equals the determinant rank.
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Proof: This follows from the above by considering AT . The rows of AT are the columns
of A and the determinant rank of AT and A are the same. Therefore, from Corollary 20.2.16,
column rank of A = row rank of AT = determinant rank of AT = determinant rank of A. ■

20.2.9 Formula for the Inverse
Note that this gives an easy way to write a formula for the inverse of an n×n matrix.

Theorem 20.2.18 A−1 exists if and only if det(A) ̸= 0. If det(A) ̸= 0, then A−1 =(
a−1

i j

)
where

a−1
i j = det(A)−1 cof(A) ji

for cof(A)i j the i jth cofactor of A.

Proof: By Theorem 20.2.13 and letting (air) = A, if det(A) ̸= 0,

n

∑
i=1

air cof(A)ir det(A)−1 = det(A)det(A)−1 = 1.

Now consider
n

∑
i=1

air cof(A)ik det(A)−1

when k ̸= r. Replace the kth column with the rth column to obtain a matrix Bk whose
determinant equals zero by Corollary 20.2.6. However, expanding this matrix along the kth

column yields

0 = det(Bk)det(A)−1 =
n

∑
i=1

air cof(A)ik det(A)−1

Summarizing,
n

∑
i=1

air cof(A)ik det(A)−1 = δ rk.

Using the other formula in Theorem 20.2.13, and similar reasoning,

n

∑
j=1

ar j cof(A)k j det(A)−1 = δ rk

This proves that if det(A) ̸= 0, then A−1 exists with A−1 =
(

a−1
i j

)
, where

a−1
i j = cof(A) ji det(A)−1 .

Now suppose A−1 exists. Then by Theorem 20.2.10,

1 = det(I) = det
(
AA−1)= det(A)det

(
A−1)

so det(A) ̸= 0. ■
The next corollary points out that if an n×n matrix A has a right or a left inverse, then

it has an inverse.
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Corollary 20.2.19 Let A be an n×n matrix and suppose there exists an n×n matrix B
such that BA = I. Then A−1 exists and A−1 = B. Also, if there exists C an n×n matrix such
that AC = I, then A−1 exists and A−1 =C.

Proof: Since BA = I, Theorem 20.2.10 implies

detBdetA = 1

and so detA ̸= 0. Therefore from Theorem 20.2.18, A−1 exists. Therefore,

A−1 = (BA)A−1 = B
(
AA−1)= BI = B.

The case where CA = I is handled similarly. ■
The conclusion of this corollary is that left inverses, right inverses and inverses are all

the same in the context of n×n matrices.
Theorem 20.2.18 says that to find the inverse, take the transpose of the cofactor matrix

and divide by the determinant. The transpose of the cofactor matrix is called the adjugate
or sometimes the classical adjoint of the matrix A. It is an abomination to call it the adjoint
although you do sometimes see it referred to in this way. In words, A−1 is equal to one over
the determinant of A times the adjugate matrix of A.

20.2.10 The Cayley Hamilton Theorem

Definition 20.2.20 Let A be an n × n matrix. The characteristic polynomial is
defined as

qA (t)≡ det(tI −A)

and the solutions to qA (t) = 0 are called eigenvalues. For A a matrix and p(t) = tn +
an−1tn−1 + · · ·+a1t +a0, denote by p(A) the matrix defined by

p(A)≡ An +an−1An−1 + · · ·+a1A+a0I.

The explanation for the last term is that A0 is interpreted as I, the identity matrix.

The Cayley Hamilton theorem states that every matrix satisfies its characteristic equa-
tion, that equation defined by qA (t) = 0. It is one of the most important theorems in linear
algebra1. The proof in this section is not the most general proof, but works well when the
field of scalars is R or C. The following lemma will help with its proof.

Lemma 20.2.21 Suppose for all |λ | large enough,

A0 +A1λ + · · ·+Amλ
m = 0,

where the Ai are n×n matrices. Then each Ai = 0.

Proof: Suppose some Ai ̸= 0. Let p be the largest index of those which are non zero.
Then multiply by λ

−p.

A0λ
−p +A1λ

−p+1 + · · ·+Ap−1λ
−1 +Ap = 0

Now let λ → ∞. Thus Ap = 0 after all. Hence each Ai = 0. ■
With the lemma, here is a simple corollary.

1A special case was first proved by Hamilton in 1853. The general case was announced by Cayley some time
later and a proof was given by Frobenius in 1878.
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Corollary 20.2.22 Let Ai and Bi be n×n matrices and suppose

A0 +A1λ + · · ·+Amλ
m = B0 +B1λ + · · ·+Bmλ

m

for all |λ | large enough. Then Ai = Bi for all i. If Ai = Bi for each Ai,Bi then one can
substitute an n×n matrix M for λ and the identity will continue to hold.

Proof: Subtract and use the result of the lemma. The last claim is obvious by matching
terms. ■

With this preparation, here is a relatively easy proof of the Cayley Hamilton theorem.

Theorem 20.2.23 Let A be an n × n matrix and let q(λ ) ≡ det(λ I −A) be the
characteristic polynomial. Then q(A) = 0.

Proof: Let C (λ ) equal the transpose of the cofactor matrix of (λ I −A) for |λ | large.
(If |λ | is large enough, then λ cannot be in the finite list of eigenvalues of A and so for such
λ , (λ I −A)−1 exists.) Therefore, by Theorem 20.2.18

C (λ ) = q(λ )(λ I −A)−1 .

Say
q(λ ) = a0 +a1λ + · · ·+λ

n

Note that each entry in C (λ ) is a polynomial in λ having degree no more than n− 1. For
example, you might have something like

C (λ ) =

 λ
2 −6λ +9 3−λ 0
2λ −6 λ

2 −3λ 0
λ −1 λ −1 λ

2 −3λ +2



=

 9 3 0
−6 0 0
−1 −1 2

+λ

 −6 −1 0
2 −3 0
1 1 −3

+λ
2

 1 0 0
0 1 0
0 0 1


Therefore, collecting the terms in the general case,

C (λ ) =C0 +C1λ + · · ·+Cn−1λ
n−1

for C j some n×n matrix. Then

C (λ )(λ I −A) =
(

C0 +C1λ + · · ·+Cn−1λ
n−1
)
(λ I −A) = q(λ ) I

Then multiplying out the middle term, it follows that for all |λ | sufficiently large,

a0I +a1Iλ + · · ·+ Iλ
n =C0λ +C1λ

2 + · · ·+Cn−1λ
n

−
[
C0A+C1Aλ + · · ·+Cn−1Aλ

n−1
]

=−C0A+(C0 −C1A)λ +(C1 −C2A)λ
2 + · · ·+(Cn−2 −Cn−1A)λ

n−1 +Cn−1λ
n

Then, using Corollary 20.2.22, one can replace λ on both sides with A. Then the right side
is seen to equal 0. Hence the left side, q(A) I is also equal to 0. ■
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20.2.11 Cramer’s Rule

In case you are solving a system of equations, Ax= y for x, it follows that if A−1 exists,

x=
(
A−1A

)
x= A−1 (Ax) = A−1y

thus solving the system. Now in the case that A−1 exists, there is a formula for A−1 given
above. Using this formula,

xi =
n

∑
j=1

a−1
i j y j =

n

∑
j=1

1
det(A)

cof(A) ji y j.

By the formula for the expansion of a determinant along a column,

xi =
1

det(A)
det

 ∗ · · · y1 · · · ∗
...

...
...

∗ · · · yn · · · ∗

 ,

where here the ith column of A is replaced with the column vector (y1 · · · ,yn)
T , and the

determinant of this modified matrix is taken and divided by det(A). This formula is known
as Cramer’s rule.

20.3 p Dimensional Parallelepipeds

The determinant is the essential algebraic tool which provides a way to give a unified
treatment of the concept of p dimensional volume of a parallelepiped in RM . Here is the
definition of what is meant by such a thing.

Definition 20.3.1 Let u1, · · · ,up be vectors in RM,M ≥ p. The parallelepiped de-
termined by these vectors will be denoted by P(u1, · · · ,up) and it is defined as

P(u1, · · · ,up)≡

{
p

∑
j=1

s ju j : s j ∈ [0,1]

}
=UQ, Q = [0,1]p

where U =
(
u1 · · · up

)
.The volume of this parallelepiped is defined as

volume of P(u1, · · · ,up)≡ v(P(u1, · · · ,up))≡ (det(G))1/2 .

where Gi j = ui ·u j. This G = UTU is called the metric tensor. If the vectors ui are
dependent, this definition will give the volume to be 0.

First lets observe the last assertion is true. Say ui = ∑ j ̸=i α ju j. Then the ith row of G
is a linear combination of the other rows using the scalars α j and so from the properties
of the determinant, the determinant of this matrix is indeed zero as it should be. Indeed,
ui ·uk = ∑ j ̸=i α ju j ·uk .

A parallelepiped is a sort of a squashed box. Here is a picture which shows
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P

up

w

θ

P = P(u1, · · · ,up−1)

the relationship between P(u1, · · · ,up−1) and
P(u1, · · · ,up). In a sense, we can define the vol-
ume any way desired, but if it is to be reasonable,
the following relationship must hold. The appro-
priate definition of the volume of P(u1, · · · ,up) in
terms of P(u1, · · · ,up−1) is v(P(u1, · · · ,up)) =∣∣up ·w

∣∣v(P(u1, · · · ,up−1)) (20.13)

where w is any unit vector perpendicular to each of
u1, · · · ,up−1. Note

∣∣up ·w
∣∣= ∣∣up

∣∣ |cosθ | from the geometric meaning of the dot product.
In the case where p = 1, the parallelepiped P(v) consists of the single vector and the
one dimensional volume should be |v| =

(
vTv

)1/2
= (v ·v)1/2. Now having made this

definition, I will show that det(G)1/2 is the appropriate definition of v(P(u1, · · · ,up)) for
every p.

As just pointed out, this is the only reasonable definition of volume in the case of one
vector. The next theorem shows that it is the only reasonable definition of volume of a
parallelepiped in the case of p vectors because 20.13 holds.

Theorem 20.3.2 If we desire 20.13 to hold for any w perpendicular to each ui,
then we obtain the definition of 20.3.1 for v(P(u1, · · · ,up)) in terms of determinants.

Proof: So assume we want 20.13 to hold. Suppose the determinant formula holds
for P(u1, · · · ,up−1). It is necessary to show that if w is a unit vector perpendicular to
each u1, · · · ,up−1 then

∣∣up ·w
∣∣v(P(u1, · · · ,up−1)) reduces to det(G)1/2. By the Gram

Schmidt procedure there is (w1, · · · ,wp) an orthonormal basis for span(u1, · · · ,up) such
that span(w1, · · · ,wk) = span(u1, · · · ,uk) for each k ≤ p. We can pick wp =w the given
unit vector perpendicular to each ui. First note that since {wk}p

k=1 is an orthonormal basis
for span(u1, · · · ,up) ,

u j =
p

∑
k=1

(u j ·wk)wk, u j ·ui =
p

∑
k=1

(u j ·wk)(ui ·wk)

Therefore, the i jth entry of the p× p matrix UTU is just

(
UTU

)
i j =

p

∑
r=1

(ui ·wr)(wr ·u j)

which is the product of a p× p matrix M whose r jth entry is wr ·u j with its transpose. The
vector wp is a unit vector perpendicular to each u j for j ≤ p−1 so wp ·u j = 0 if j < p.

Now consider the vector

N ≡ det


w1 · · · wp−1 wp

u1 ·w1 · · · u1 ·wp−1
=0

u1 ·wp
...

...
...

up−1 ·w1 · · · up−1 ·wp−1
=0

up−1 ·wp


which results from formally expanding along the top row. Note you would get the same
thing expanding along the last column because as just noted, the last column on the right
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is 0 except for the top entry, so every cofactor A1k for the 1kth position is ± a determinant
which has a column of zeros. Thus N is a multiple of wp. Hence, for j < p,N ·u j = 0.
From what was just discussed and induction, v(P(u1, · · · ,up−1)) =±A1p =N ·wp. Also
N ·up equals

det


up ·w1 · · · up ·wp−1 up ·wp

u1 ·w1 · · · u1 ·wp−1
=0

u1 ·wp
...

...
...

up−1 ·w1 · · · up−1 ·wp−1
=0

up−1 ·wp

=±det(M)

Thus from induction and expanding along the last column,∣∣up ·wp
∣∣v(P(u1, · · · ,up−1)) =

∣∣N ·up
∣∣= det

(
MT M

)1/2

= det
(
UTU

)1/2
= det(G)1/2 .

Now wp =w the unit vector perpendicular to each u j for j ≤ p− 1. Thus if 20.13, then
the claimed determinant identity holds. ■

The theorem shows that the only reasonable definition of p dimensional volume of a
parallelepiped is the one given in the above definition. Recall that these vectors are in RM .
What is the role of RM? It is just to provide an inner product. That is its only function. If
p = M, then det

(
UTU

)
= det

(
UT
)

det(U) = det(U)2 and so det(G)1/2 = |det(U)|.



Chapter 21

Functions of Many Variables

21.1 Graphs

In general, you really can’t graph functions of many variables because we see in three
dimensions. If you have a function of three variables, you would need four dimensions to
graph it. However, in the case that z = f (x,y) a scalar valued function of two variables, you
can do so fairly well, especially with a computer algebra system. You graph y → f (x,y)
for many values of x and x → f (x,y) for many values of y. This will result in a nice picture
of a surface. For example, consider the graph of z = f (x,y) where f (x,y) = x2 − y2.

-10

4

0

2 4

z=f(x,y)

20

10

0-2 -2
-4 -4

z

To use MATLAB, to draw such a graph, modify the following syntax which was used
for the above problem. Remember to get to a new line, you type shift enter.

[x,y]=meshgrid(-3:.5:3,-3:.5:3);
z=x.ˆ2-y.ˆ2; surf(x,y,z,’LineWidth’,2)

21.2 Review of Limits

Recall the concept of limit of a function of many variables. When f : D(f)→ Rq one can
only consider in a meaningful way limits at limit points of the set D(f).

Definition 21.2.1 Let A denote a nonempty subset of Rp. A point x is said to be a
limit point of the set A if for every r > 0,B(x,r) contains infinitely many points of A.

465
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Example 21.2.2 Let S denote the set
{
(x,y,z) ∈ R3 : x,y,z are all in N

}
. Which points are

limit points?

This set does not have any because any two of these points are at least as far apart as 1.
Therefore, if x is any point of R3,B(x,1/4) contains at most one point.

Example 21.2.3 Let U be an open set in R3. Which points of U are limit points of U?

They all are. From the definition of U being open, if x ∈U , There exists B(x,r)⊆U
for some r > 0. Now consider the line segment x+ tre1 where t ∈ [0,1/2]. This describes
infinitely many points and they are all in B(x,r) because |x+ tre1 −x|= tr < r. Therefore,
every point of U is a limit point of U .

The case where U is open will be the one of most interest, but many other sets have
limit points.

Definition 21.2.4 Let f : D(f)⊆ Rp → Rq where q, p ≥ 1 be a function and let x
be a limit point of D(f). Then

lim
y→x

f (y) =L

if and only if the following condition holds. For all ε > 0 there exists δ > 0 such that if

0 < |y−x|< δ and y ∈ D(f)

then,
|L−f (y)|< ε.

The condition that x must be a limit point of D(f) if you are to take a limit at x is what
makes the limit well defined.

Proposition 21.2.5 Let f : D(f) ⊆ Rp → Rq where q, p ≥ 1 be a function and let x
be a limit point of D(f). Then if limy→xf (y) exists, it must be unique.

Proof: Suppose limy→xf (y) =L1 and limy→xf (y) =L2. Then for ε > 0 given, let
δ i > 0 correspond to Li in the definition of the limit and let δ = min(δ 1,δ 2). Since x is a
limit point, there exists y ∈ B(x,δ )∩D(f). Therefore,

|L1 −L2| ≤ |L1 −f (y)|+ |f (y)−L2|< ε + ε = 2ε.

Since ε > 0 is arbitrary, this shows L1 =L2. ■
The following theorem summarized many important interactions involving continuity.

Most of this theorem has been proved in Theorem 15.8.6 on Page 330.

Theorem 21.2.6 Suppose x is a limit point of D(f) and

lim
y→x

f (y) =L, lim
y→x

g (y) =K

where K and L are vectors in Rp for p ≥ 1. Then if a, b ∈ R,

lim
y→x

af (y)+bg (y) = aL+bK, (21.1)

lim
y→x

f ·g (y) =L ·K (21.2)
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Also, if h is a continuous function defined near L, then

lim
y→x

h◦f (y) = h(L) . (21.3)

For a vector valued function

f (y) = ( f1 (y) , · · · , fq (y))
T ,

limy→xf (y) =L= (L1 · · · ,Lk)
T if and only if

lim
y→x

fk (y) = Lk (21.4)

for each k = 1, · · · , p.
In the case where f and g have values in R3

lim
y→x

f (y)×g (y) =L×K. (21.5)

Also recall Theorem 15.8.7 on Page 331.

Theorem 21.2.7 For f : D(f)→ Rq and x ∈ D(f) such that x is a limit point of
D(f), it follows f is continuous at x if and only if limy→xf (y) = f (x).

21.3 Exercises
1. Sketch the contour graph for f (x,y) = (x−1)2 +(y−2)2. This means you graph

the relation f (x,y) = c for various values of c. In this case, you would be graphing
concentric circles with center at (1,2).

2. Which of the following functions could correspond to the following contour graphs?
z = x2 +3y2,z = 3x2 + y2,z = x2 − y2,z = x+ y.

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

3. Which of the following functions could correspond to the following contour graphs?
z = x2 −3y2,z = y2 +3x2,z = x− y,z = x+ y.

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

4. Which of the following functions could correspond to the following contour graphs?
z = sin(x+ y),z = x+ y,z = (x+ y)2,z = x2 − y.

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

5. Find the following limits if they exist. If they do not exist, explain why.



468 CHAPTER 21. FUNCTIONS OF MANY VARIABLES

(a) lim(x,y)→(0,0)
x2−y2

x2+y2

(b) lim(x,y)→(0,0)
2x3+xy2−x2−2y2

x2+2y2

(c) lim(x,y)→(0,0)
sin(x2+y2)

x2+y2

(d) lim(x,y)→(0,0)
sin(x2+2y2)

x2+2y2

(e) lim(x,y)→(0,0)
sin(x2+2y2)

2x2+y2

(f) lim(x,y)→(0,0)
(x2−y4)

2

(x2+y4)
2

6. Find the following limits if they exist. If they do not exist, tell why.

(a) lim(x,y)→(0,0) x (
x2−y4)

2

(x2+y4)
2

(b) lim(x,y)→(0,0)
xsin(x2+2y2)

2x2+y2

(c) lim(x,y)→(0,0)
xy

x2+y2

(d) lim(x,y)→(1,0)
x3−3x2+3x−1−y2x+y2

x2−2x+1+y2

7. ∗Suppose f is a function defined on a set D and that a ∈ D is not a limit point
of D. Show that if I define the notion of limit in the same way as above, then
limx→a f (x) = 5. Show that it is also the case that limx→a f (x) = 7. In other
words, the concept of limit is totally meaningless. This is why the insistence that the
point a be a limit point of D.

8. ∗Show that the definition of continuity at a ∈ D(f) is not dependent on a being a
limit point of D(f). The concept of limit and the concept of continuity are related at
those points a which are limit points of the domain.

21.4 Directional and Partial Derivatives

21.4.1 The Directional Derivative
The directional derivative is just what its name suggests. It is the derivative of a function in
a particular direction. The following picture illustrates the situation in the case of a function
of two variables.

v
In this picture, v ≡ (v1,v2) is a unit vector shown in the xy plane and x0 ≡ (x0,y0) is a

point in the xy plane with (x0,y0, f (x0,y0)) being the point on the surface where there is a
tangent line. When (x,y) moves in the direction of v, this results in a change in z = f (x,y).



21.4. DIRECTIONAL AND PARTIAL DERIVATIVES 469

The directional derivative in this direction is the slope of the tangent line shown in the
picture defined as

lim
t→0

f (x0 + tv1,y0 + tv2)− f (x0,y0)

t
.

It tells how fast z is changing in this direction. A simple example of this is a person climb-
ing a mountain. He could go various directions, some steeper than others. The directional
derivative is just a measure of the steepness in a given direction. This motivates the follow-
ing general definition of the directional derivative when it is not possible to draw pictures.

Definition 21.4.1 Let f : U → R where U is an open set in Rn and let v be a unit
vector. For x ∈ U, define the directional derivative of f in the direction v, at the point x
as

Dv f (x)≡ lim
t→0

f (x+ tv)− f (x)
t

.

Example 21.4.2 Find the directional derivative of the function f (x,y) = x2y in the direc-
tion of i+j at the point (1,2).

First you need a unit vector which has the same direction as the given vector. This
unit vector is v ≡

(
1√
2
, 1√

2

)
. Then to find the directional derivative from the definition,

write the difference quotient described above. Thus f (x+ tv) =
(

1+ t√
2

)2(
2+ t√

2

)
and

f (x) = 2. Therefore,

f (x+ tv)− f (x)
t

=

(
1+ t√

2

)2(
2+ t√

2

)
−2

t
,

and to find the directional derivative, you take the limit of this as t → 0. However, this dif-
ference quotient equals 1

4

√
2
(

10+4t
√

2+ t2
)

and so, letting t → 0,Dv f (1,2) =
(

5
2

√
2
)
.

There is something you must keep in mind about this. The direction vector must always
be a unit vector1.

21.4.2 Partial Derivatives

There are some special unit vectors which come to mind immediately. These are the vectors
ei where ei = (0, · · · ,0,1,0, · · ·0)T and the 1 is in the ith position. The partial derivatives
are simply directional derivatives taken in these special directions.

Definition 21.4.3 Let U be an open subset of Rn and let f : U → R. Then letting
x= (x1, · · · ,xn)

T be a typical element of Rn, ∂ f
∂xi

(x)≡ Dei f (x) .This is called the partial

1Actually, there is a more general formulation of the notion of directional derivative known as the Gateaux
derivative in which the length of v is not one but it is not considered here. This is actually a fairly old concept
since Euler and Lagrange used something like it in their treatment of necessary conditions for the calculus of
variations. The modern formulation is named after Gateaux who was killed in World War 1. This war killed some
40 million people. When sickness and disease and famine are included, the figure is some 80 million. One out
of 20 French were killed. French soldiers died at the rate of about 900 per day. It is hard to find a reason for this
conflict which would justify such an appalling loss of life.
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derivative of f . Thus,

∂ f
∂xi

(x) ≡ lim
t→0

f (x+tei)− f (x)
t

= lim
t→0

f (x1, · · · ,xi + t, · · ·xn)− f (x1, · · · ,xi, · · ·xn)

t
,

and to find the partial derivative, differentiate with respect to the variable of interest and
regard all the others as constants. Other notation for this partial derivative is fxi , f,i, or
Di f . If y = f (x), the partial derivative of f with respect to xi may also be denoted by ∂y

∂xi
or yxi or Dxi f .

Example 21.4.4 Find ∂ f
∂x ,

∂ f
∂y , and ∂ f

∂ z if f (x,y) = ysinx+ x2y+ z.

From the definition above, ∂ f
∂x = ycosx+2xy, ∂ f

∂y = sinx+x2, and ∂ f
∂ z = 1. Having taken

one partial derivative, there is no reason to stop doing it. Thus, one could take the partial
derivative with respect to y of the partial derivative with respect to x, denoted by ∂ 2 f

∂y∂x or fxy.

In the above example, ∂ 2 f
∂y∂x = fxy = cosx+2x. Also observe that ∂ 2 f

∂x∂y = fyx = cosx+2x.
Higher order partial derivatives are defined by analogy to the above. Thus in the

above example,
fyxx =−sinx+2.

These partial derivatives, fxy are called mixed partial derivatives.
There is an interesting relationship between the directional derivatives and the partial

derivatives under suitable conditions described later.

Definition 21.4.5 Suppose f : U ⊆Rn →R where U is an open set and the partial
derivatives of f all exist. Define the gradient of f denoted ∇ f (x) to be the vector

∇ f (x) = ( fx1 (x) , fx2 (x) , · · · , fxn (x))
T .

Proposition 21.4.6 In the situation of Definition 21.4.5, if the partial derivatives are
continuous, then for v a unit vector Dv f (x) = ∇ f (x) ·v.

This proposition will be proved in a more general setting later. For now, you can use it
to compute directional derivatives.

Example 21.4.7 Find the directional derivative of the function

f (x,y) = sin
(
2x2 + y3)

at (1,1) in the direction
(

1√
2
, 1√

2

)T
.

First find the gradient. ∇ f (x,y) =
(
4xcos

(
2x2 + y3

)
,3y2 cos

(
2x2 + y3

))T
. Therefore,

∇ f (1,1) = (4cos(3) ,3cos(3))T . The directional derivative is therefore,

(4cos(3) ,3cos(3))T ·
(

1√
2
,

1√
2

)T

=
7
2
(cos3)

√
2.

Another important observation is that the gradient gives the direction in which the function
changes most rapidly. The following proposition will be proved later.
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Proposition 21.4.8 In the situation of Definition 21.4.5, suppose ∇ f (x) ̸= 0. Then the
direction in which f increases most rapidly, that is the direction in which the directional
derivative is largest, is the direction of the gradient. Thus v = ∇ f (x)/ |∇ f (x)| is the
unit vector which maximizes Dv f (x) and this maximum value is |∇ f (x)|. Similarly, v =
−∇ f (x)/ |∇ f (x)| is the unit vector which minimizes Dv f (x) and this minimum value is
−|∇ f (x)|.

The concept of a directional derivative for a vector valued function is also easy to
define although the geometric significance expressed in pictures is not.

Definition 21.4.9 Let f : U →Rp where U is an open set in Rn and let v be a unit
vector. For x ∈ U, define the directional derivative of f in the direction v, at the point x
as

Dvf (x)≡ lim
t→0

f (x+ tv)−f (x)

t
.

Example 21.4.10 Let f (x,y) =
(
xy2,yx

)T . Find the directional derivative in the direction
(1,2)T at the point (x,y).

First, a unit vector in this direction is
(

1/
√

5,2/
√

5
)T

and from the definition, the
desired limit is

lim
t→0

((
x+ t

(
1/
√

5
))(

y+ t
(

2/
√

5
))2

− xy2,
(

x+ t
(

1/
√

5
))(

y+ t
(

2/
√

5
))

− xy
)

t

= lim
t→0

(
4
5

xy
√

5+
4
5

xt +
1
5

√
5y2 +

4
5

ty+
4

25
t2
√

5,
2
5

x
√

5+
1
5

y
√

5+
2
5

t
)

=

(
4
5

xy
√

5+
1
5

√
5y2,

2
5

x
√

5+
1
5

y
√

5
)
.

You see from this example and the above definition that all you have to do is to form
the vector which is obtained by replacing each component of the vector with its directional
derivative. In particular, you can take partial derivatives of vector valued functions and use
the same notation.

Example 21.4.11 Find the partial derivative with respect to x of the function f (x,y,z,w)=(
xy2,zsin(xy) ,z3x

)T
.

From the above definition, f x (x,y,z) = D1f (x,y,z) =
(
y2,zycos(xy) ,z3

)T
.

21.5 Exercises
1. Find the directional derivative of f (x,y,z) = x2y+ z4 in the direction of the vector

(1,3,−1) when (x,y,z) = (1,1,1).

2. Find the directional derivative of f (x,y,z) = sin
(
x+ y2

)
+ z in the direction of the

vector (1,2,−1) when (x,y,z) = (1,1,1).
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3. Find the directional derivative of f (x,y,z) = ln
(
x+ y2

)
+ z2 in the direction of the

vector (1,1,−1) when (x,y,z) = (1,1,1).

4. Using the conclusion of Proposition 21.4.6, prove Proposition 21.4.8 from the ge-
ometric description of the dot product, the one which says the dot product is the
product of the lengths of the vectors and the cosine of the included angle which is no
larger than π .

5. Find the largest value of the directional derivative of f (x,y,z) = ln
(
x+ y2

)
+ z2 at

the point (1,1,1).

6. Find the smallest value of the directional derivative of
f (x,y,z) = xsin

(
4xy2

)
+ z2 at the point (1,1,1).

7. An ant falls to the top of a stove having temperature T (x,y) = x2 sin(x+ y) at the
point (2,3). In what direction should the ant go to minimize the temperature? In
what direction should he go to maximize the temperature?

8. Find the partial derivative with respect to y of the function
f (x,y,z,w) =

(
y2,z2 sin(xy) ,z3x

)T
.

9. Find the partial derivative with respect to x of the function
f (x,y,z,w) =

(
wx,zxsin(xy) ,z3x

)T
.

10. Find ∂ f
∂x ,

∂ f
∂y , and ∂ f

∂ z for f =

(a) x2y2z+w
(b) e2 + xy+ z2

(c) sin
(
z2
)
+ cos(xy)

(d) ln
(
x2 + y2 +1

)
+ ez

(e) sin(xyz)+ cos(xy)

11. Find ∂ f
∂x ,

∂ f
∂y , and ∂ f

∂ z for f =

(a) x2y+ cos(xy)+ z3y

(b) ex2+y2
zsin(x+ y)

(c) z2 sin3
(

ex2+y3
)

(d) x2 cos
(
sin
(
tan
(
z2 + y2

)))
(e) xy2+z

12. Suppose

f (x,y) =

{
2xy+6x3+12xy2+18yx2+36y3+sin(x3)+tan(3y3)

3x2+6y2 if (x,y) ̸= (0,0)
0 if (x,y) = (0,0) .

Find ∂ f
∂x (0,0) and ∂ f

∂y (0,0).

13. Why must the vector in the definition of the directional derivative be a unit vector?
Hint: Suppose not. Would the directional derivative be a correct manifestation of
steepness?
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21.6 Mixed Partial Derivatives
Under certain conditions the mixed partial derivatives will always be equal. This aston-
ishing fact may have been known to Euler in 1734.2

Theorem 21.6.1 Suppose f : U ⊆R2 →R where U is an open set on which fx, fy,
fxy and fyx exist. Then if fxy and fyx are continuous at the point (x,y) ∈U, it follows

fxy (x,y) = fyx (x,y) .

Proof: Since U is open, there exists r > 0 such that B((x,y) ,r)⊆U . Now let |t| , |s|<
r/2 and consider

∆(s, t)≡ 1
st
{

h(t)︷ ︸︸ ︷
f (x+ t,y+ s)− f (x+ t,y)−

h(0)︷ ︸︸ ︷
( f (x,y+ s)− f (x,y))}. (21.6)

Note that (x+ t,y+ s) ∈U because

|(x+ t,y+ s)− (x,y)|= |(t,s)|=
(
t2 + s2)1/2 ≤

(
r2

4
+

r2

4

)1/2

=
r√
2
< r.

As implied above, h(t) ≡ f (x+ t,y+ s)− f (x+ t,y). Therefore, by the mean value theo-
rem from calculus and the (one variable) chain rule,

∆(s, t) =
1
st
(h(t)−h(0)) =

1
st

h′ (αt) t

=
1
s
( fx (x+αt,y+ s)− fx (x+αt,y))

for some α ∈ (0,1). Applying the mean value theorem again,

∆(s, t) = fxy (x+αt,y+β s)

where α,β ∈ (0,1).
If the terms f (x+ t,y) and f (x,y+ s) are interchanged in 21.6, ∆(s, t) is also un-

changed and the above argument shows there exist γ,δ ∈ (0,1) such that

∆(s, t) = fyx (x+ γt,y+δ s) .

Letting (s, t)→ (0,0) and using the continuity of fxy and fyx at (x,y) ,

lim
(s,t)→(0,0)

∆(s, t) = fxy (x,y) = fyx (x,y) .■

The following is obtained from the above by simply fixing all the variables except for
the two of interest.

2Leonhard Euler 15 April 1707 - 18 September 1783 was the most prolific mathematician ever to have lived.
His contributions also included fundamental work in fluid mechanics and engineering. For example, the formula
for the stiffness of a beam which involves a moment of inertia is due to him. He wrote about 30,000 pages. He
even wrote on music and theology. With Lagrange, he invented calculus of variations in which one looks for an
unknown function maximizing a functional.

Euler had the ability to do huge computations in his head. He also had a memory which allowed him to
memorize entire works of literature such as the Aeneid. He is also remembered for his work in logic, number
theory, and graph theory. The notation π and e are due to him as is Euler’s formula discussed earlier.

He was a kind and generous man and a devout Christian who believed the Bible was inspired. For the last part
of his life, he was essentially blind. They didn’t know how to treat things like cataracts back then.
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Corollary 21.6.2 Suppose U is an open subset of Rn and f : U → R has the property
that for two indices k, l, fxk , fxl , fxlxk , and fxkxl exist on U and fxkxl and fxlxk are both
continuous at x ∈U. Then fxkxl (x) = fxlxk (x).

It is necessary to assume the mixed partial derivatives are continuous in order to assert
they are equal. The following is a well known example [3].

Example 21.6.3 Let

f (x,y) =

{
xy(x2−y2)

x2+y2 if (x,y) ̸= (0,0)
0 if (x,y) = (0,0)

Here is a picture of the graph of this function. It looks innocuous but isn’t.

From the definition of partial derivatives it follows immediately that
fx (0,0) = fy (0,0) = 0. Using the standard rules of differentiation, for (x,y) ̸= (0,0),

fx = y
x4 − y4 +4x2y2

(x2 + y2)2 , fy = x
x4 − y4 −4x2y2

(x2 + y2)2

Now

fxy (0,0)≡ lim
y→0

fx (0,y)− fx (0,0)
y

= lim
y→0

−y4

(y2)2 =−1

while

fyx (0,0)≡ lim
x→0

fy (x,0)− fy (0,0)
x

= lim
x→0

x4

(x2)2 = 1

showing that, although the mixed partial derivatives do exist at (0,0), they are not equal
there.

21.7 Partial Differential Equations
Partial differential equations are equations which involve the partial derivatives of some
function. The most famous partial differential equations involve the Laplacian, named
after Laplace3.

Definition 21.7.1 Let u be a function of n variables. Then

∆u ≡
n

∑
k=1

uxkxk

This is also written as ∇
2u. The symbol ∆ or ∇

2 is called the Laplacian. When ∆u = 0
the function u is called harmonic. Laplace’s equation is ∆u = 0. The heat equation is
ut −∆u = 0 and the wave equation is utt −∆u = 0.

3Laplace was a great physicist and mathematician of the 1700’s. He made fundamental contributions to me-
chanics and astronomy.
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Example 21.7.2 Find the Laplacian of u(x,y) = x2 − y2.

uxx = 2 while uyy = −2. Therefore, ∆u = uxx + uyy = 2− 2 = 0. Thus this function is
harmonic, ∆u = 0.

Example 21.7.3 Find ut −∆u where u(t,x,y) = e−t cosx.

In this case, ut = −e−t cosx while uyy = 0 and uxx = −e−t cosx therefore, ut −∆u = 0
and so u solves the heat equation ut −∆u = 0.

Example 21.7.4 Let u(t,x) = sin t cosx. Find utt −∆u.

In this case, utt =−sin t cosx while ∆u =−sin t cosx. Therefore, u is a solution of the
wave equation utt −∆u = 0.

21.8 Exercises
1. Find fx, fy, fz, fxy, fyx, fxz, fzx, fzy, fyz for the following. Verify the mixed partial der-

ivatives are equal.

(a) x2y3z4 + sin(xyz)

(b) sin(xyz)+ x2yz

(c) z ln
∣∣x2 + y2 +1

∣∣
(d) ex2+y2+z2

(e) tan(xyz)

2. Suppose f is a continuous function and f : U → R where U is an open set and
suppose that x ∈U has the property that for all y near x, f (x) ≤ f (y). Prove that
if f has all of its partial derivatives at x, then fxi (x) = 0 for each xi. Hint: This is
just a repeat of the usual one variable theorem seen in beginning calculus. You just
do this one variable argument for each variable to get the conclusion.

3. As an important application of Problem 2 consider the following. Experiments are
done at n times, t1, t2, · · · , tn and at each time there results a collection of numerical
outcomes. Denote by {(ti,xi)}p

i=1 the set of all such pairs and try to find numbers a
and b such that the line x = at + b approximates these ordered pairs as well as pos-
sible in the sense that out of all choices of a and b, ∑

p
i=1 (ati +b− xi)

2 is as small
as possible. In other words, you want to minimize the function of two variables
f (a,b) ≡ ∑

p
i=1 (ati +b− xi)

2. Find a formula for a and b in terms of the given or-
dered pairs. You will be finding the formula for the least squares regression line.

4. Show that if v(x,y) = u(αx,βy), then vx = αux and vy = βuy. State and prove a
generalization to any number of variables.

5. Let f be a function which has continuous derivatives. Show that u(t,x) = f (x− ct)
solves the wave equation utt − c2uxx = 0. What about u(x, t) = f (x+ ct)?
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6. D’Alembert found a formula for the solution to the wave equation utt = c2uxx along
with the initial conditions u(x,0) = f (x) ,ut (x,0) = g(x). Here is how he did it. He
looked for a solution of the form u(x, t) = h(x+ ct)+k (x− ct) and then found h and
k in terms of the given functions f and g. He ended up with something like

u(x, t) =
1
2c

∫ x+ct

x−ct
g(r)dr+

1
2
( f (x+ ct)+ f (x− ct)) .

Fill in the details.

7. Determine which of the following functions satisfy Laplace’s equation.

(a) x3 −3xy2

(b) 3x2y− y3

(c) x3 −3xy2 +2x2 −2y2

(d) 3x2y− y3 +4xy

(e) 3x2 − y3 +4xy

(f) 3x2y− y3 +4y

(g) x3 −3x2y2 +2x2 −2y2

8. Show that z =
√

x2 + y2 is a solution to x ∂ z
∂x + y ∂ z

∂y = z.

9. Show that if ∆u = λu where u is a function of only x, then eλ tu solves the heat
equation ut −∆u = 0.

10. Show that if a,b are scalars and u,v are functions which satisfy Laplace’s equation
then au+bv also satisfies Laplace’s equation. Verify a similar statement for the heat
and wave equations.

11. Show that u(x, t) = 1√
t e−

1
4c2t

x2
solves the heat equation ut = c2uxx.



Chapter 22

Derivative of a Functions of Many
Variables

Linear functions were just discussed. The derivative of a nonlinear function of many vari-
ables is a linear approximation to the function which is valid locally. You have f : U →Rm

where U is an open subset of Rn and the derivative at some point is T ∈ L (Rn,Rm) such
that near the point x, f (x+v) is close to T (v)+f (x). This is the main idea.

22.1 The Derivative of Functions of One Variable
First consider the notion of the derivative of a function of one variable.

Observation 22.1.1 Suppose a function f of one variable has a derivative at x. Then

lim
h→0

| f (x+h)− f (x)− f ′ (x)h|
|h|

= 0.

This observation follows from the definition of the derivative of a function of one variable,
namely

f ′ (x)≡ lim
h→0

f (x+h)− f (x)
h

.

Thus

lim
h→0

| f (x+h)− f (x)− f ′ (x)h|
|h|

= lim
h→0

∣∣∣∣ f (x+h)− f (x)
h

− f ′ (x)
∣∣∣∣= 0

Definition 22.1.2 A vector valued function of a vector v is called o(v) (referred
to as “little o of v”) if

lim
|v|→0

o(v)

|v|
= 0. (22.1)

Thus for a function of one variable, the function f (x+h)− f (x)− f ′ (x)h is o(h).
When we say a function is o(h), it is used like an adjective. It is like saying the function is
white or black or green or fat or thin. The term is used very imprecisely. Thus in general,

o(v) = o(v)+o(v) , o(v) = 45×o(v) , o(v) = o(v)−o(v) ,etc.

477
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When you add two functions with the property of the above definition, you get another one
having that same property. When you multiply by 45, the property is also retained, as it
is when you subtract two such functions. How could something so sloppy be useful? The
notation is useful precisely because it prevents you from obsessing over things which are
not relevant and should be ignored.

Theorem 22.1.3 Let f : (a,b)→R be a function of one variable. Then f ′ (x) exists
if and only if there exists p such that

f (x+h)− f (x) = ph+o(h) (22.2)

In this case, p = f ′ (x).

Proof: From the above observation it follows that if f ′ (x) does exist, then 22.2 holds.
Suppose then that 22.2 is true. Then

f (x+h)− f (x)
h

− p =
o(h)

h
.

Taking a limit, you see that

p = lim
h→0

f (x+h)− f (x)
h

and that in fact this limit exists which shows that p = f ′ (x). ■
This theorem shows that one way to define f ′ (x) is as the number p, if there is one,

which has the property that

f (x+h) = f (x)+ ph+o(h) .

You should think of p as the linear transformation resulting from multiplication by the 1×1
matrix (p).

Example 22.1.4 Let f (x) = x3. Find f ′ (x).

f (x+h) = (x+h)3 = x3 +3x2h+3xh2 +h3 = f (x)+3x2h+
(
3xh+h2)h.

Since
(
3xh+h2

)
h = o(h), it follows f ′ (x) = 3x2.

Example 22.1.5 Let f (x) = sin(x). Find f ′ (x). f (x+h)− f (x) =

sin(x+h)− sin(x) = sin(x)cos(h)+ cos(x)sin(h)− sin(x)

= cos(x)sin(h)+ sin(x)
(cos(h)−1)

h
h

= cos(x)h+ cos(x)
(sin(h)−h)

h
h+ sinx

(cos(h)−1)
h

h.

Now

cos(x)
(sin(h)−h)

h
h+ sinx

(cos(h)−1)
h

h = o(h) . (22.3)
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Remember the fundamental limits which allowed you to find the derivative of sin(x) were

lim
h→0

sin(h)
h

= 1, lim
h→0

cos(h)−1
h

= 0. (22.4)

These same limits are what is needed to verify 22.3.

How can you tell whether a function of two variables (u,v) is o

(
u
v

)
? In general,

there is no substitute for the definition, but you can often identify this property by observing
that the expression involves only “higher order terms”. These are terms like u2v,uv,v4, etc.
If you sum the exponents on the u and the v you get something larger than 1. For example,∣∣∣∣ vu√

u2 + v2

∣∣∣∣≤ 1
2
(
u2 + v2) 1√

u2 + v2
=

1
2

√
u2 + v2

and this converges to 0 as (u,v)→ (0,0). This follows from the inequality |uv| ≤ 1
2

(
u2 + v2

)
which you can verify from (u− v)2 ≥ 0. Similar considerations apply in higher dimensions
also. In general, this is a hard question because it involves a limit of a function of many
variables. Furthermore, there is really no substitute for answering this question, because
its resolution involves the definition of whether a function is differentiable. That may be
why we spend most of our time on one dimensional considerations which involve taking
the partial derivatives. The following exercises should help give you an idea of how to
determine whether something is o.

22.2 The Derivative
The way of thinking about the derivative in Theorem 22.1.3 is exactly what is needed to
define the derivative of a function of n variables. One can argue that it is also the right way
to define the derivative of a function of one variable in order to reduce confusion later on.

As observed by Deudonne, “...In the classical teaching of Calculus, this idea (that the
derivative is a linear transformation) is immediately obscured by the accidental fact that,
on a one-dimensional vector space, there is a one-to-one correspondence between linear
forms and numbers, and therefore the derivative at a point is defined as a number instead
of a linear form. This slavish subservience to the shibboleth1 of numerical interpretation at
any cost becomes much worse when dealing with functions of several variables...”

In fact, the derivative is a linear transformation and it is useless to pretend otherwise.
This is the main reason for including the introductory material on linear algebra in this
book.

Recall the following definition.

Definition 22.2.1 A function T which maps Rn to Rp is called a linear transforma-
tion if for every pair of scalars, a,b and vectors x,y ∈ Rn, it follows that T (ax+by) =
aT (x)+bT (y).

1In the Bible, there was a battle between Ephraimites and Gilleadites during the time of Jepthah, the judge
who sacrificed his daughter to Jehovah, one of several instances of human sacrifice in the Bible. The cause of
this battle was very strange. However, the Ephramites lost and when they tried to cross a river to get back home,
they had to say shibboleth. If they said “sibboleth” they were killed because their inability to pronounce the “sh”
sound identified them as Ephramites. They usually don’t tell this story in Sunday school. The word has come to
signify something which is arbitrary and no longer important.
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Recall that from the properties of matrix multiplication, if A is a p× n matrix, and if
x,y are vectors in Rn, then A(ax+by) = aA(x)+ bA(y). Thus you can define a linear
transformation by multiplying by a matrix. Of course the simplest example is that of a 1×1
matrix or number. You can think of the number 3 as a linear transformation T mapping R to
R according to the rule T x= 3x. It satisfies the properties needed for a linear transformation
because 3(ax+by) = a3x+b3y = aT x+bTy. The case of the derivative of a scalar valued
function of one variable is of this sort. You get a number for the derivative. However, you
can think of this number as a linear transformation and this is the way you must think of it
for a function of n variables. First there is a useful lemma.

Lemma 22.2.2 Let T ∈ L (Rn,Rm). Then there is a constant C such that |Tx| ≤C |v|.

Proof: Let A be the matrix of T . Then, using the Cauchy Schwarz inequality Lemma
13.5.4, the following computation shows the desired result.

|Tx|= |Ax|=

(
m

∑
j=1

∣∣∣(Ax) j

∣∣∣2)1/2

=

 m

∑
j=1

∣∣∣∣∣ n

∑
k=1

A jkxk

∣∣∣∣∣
2
1/2

≤

 m

∑
j=1

∣∣∣∣∣∣
(

n

∑
k=1

(
A jk
)2

)1/2( n

∑
k=1

|xk|2
)1/2

∣∣∣∣∣∣
2


1/2

= |x|

 m

∑
j=1

∣∣∣∣∣∣
(

n

∑
k=1

(
A jk
)2

)1/2
∣∣∣∣∣∣
2


1/2

■

Definition 22.2.3 Let f : U →Rp where U is an open set in Rn for n, p ≥ 1 and let
x ∈U be given. Then f is defined to be differentiable at x ∈U if and only if there exists a
linear transformation T such that,

f (x+h) = f (x)+Th+o(h) . (22.5)

The derivative of the function f, denoted by Df (x), is this linear transformation. Thus

f (x+h) = f (x)+Df (x)h+o(h)

If h= x−x0, this takes the form

f (x) = f (x0)+Df (x0)(x−x0)+o(x−x0)

If you deleted the o(x−x0) term and considered the function of x given by what is
left, this is called the linear approximation to the function at the point x0. In the case where
x ∈ R2 and f has values in R one can draw a picture to illustrate this.

Of course the first and most obvious question is whether the linear
transformation is unique. Otherwise, the definition of the derivative
Df (x) would not be well defined.
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Theorem 22.2.4 Suppose f is differentiable, as given above in 22.5. Then T is
uniquely determined. Furthermore, the matrix of T is the following p×n matrix(

∂f(x)
∂x1

· · · ∂f(x)
∂xn

)
where

∂f

∂xi
(x)≡ lim

h→0

f (x+tei)−f (x)

t
,

the kth partial derivative of f .

Proof: Suppose T1 is another linear transformation which works. Thus, letting t be a
small positive real number,

f (x+th) = f (x)+Tth+o(th) , f (x+th) = f (x)+T1th+o(th)

Now o(th) = o(t) and so, subtracting these yields Tth−T1th= o(t) . Divide both sides
by t to obtain Th− T1 h= o(t)

t . It follows on letting t → 0 that Th = T1h. Since h is
arbitrary, this shows that T = T1. Thus the derivative is well defined. So what is the matrix
of this linear transformation? From Theorem 18.1.6, this is the matrix whose ith column is
Tei. However, from the definition of T, letting t ̸= 0,

f (x+ tei)−f (x)

t
=

1
t
(T (tei)+o(tei)) = T (ei)+

o(tei)

t
= T (ei)+

o(t)
t

Then letting t → 0, it follows that Tei =
∂f
∂xi

(x) . Recall from theorem 18.1.6 this shows
that the matrix of the linear transformation is as claimed. ■

Other notations which are often used for this matrix or the linear transformation are
f ′ (x) ,J (x), and even ∂f

∂x
or df

dx . Also, the above definition can now be written in the form

f (x+v) = f (x)+
p

∑
j=1

∂f (x)

∂x j
v j +o(v)

or
f (x+v)−f (x) =

(
∂f(x)

∂x1
· · · ∂f(x)

∂xn

)
v+o(v)

Here is an example of a scalar valued nonlinear function.

Example 22.2.5 Suppose f (x,y) =
√

xy. Find the approximate change in f if x goes from
1 to 1.01 and y goes from 4 to 3.99.

We can do this by noting that

f (1.01,3.99)− f (1,4) ≈ fx (1,2)(.01)+ fy (1,2)(−.01)

= 1(.01)+
1
4
(−.01) = 7.5×10−3.

Of course the exact value is√
(1.01)(3.99)−

√
4 = 7.4610831×10−3.
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Notation 22.2.6 When f is a scalar valued function of n variables, the following is often
written to express the idea that a small change in f due to small changes in the variables
can be expressed in the form

d f (x) = fx1 (x)dx1 + · · ·+ fxn (x)dxn

where the small change in xi is denoted as dxi. As explained above, d f is the approximate
change in the function f . Sometimes d f is referred to as the differential of f .

Let f : U → Rq where U is an open subset of Rp and f is differentiable. It was just
shown that

f (x+v) = f (x)+
(

∂f(x)
∂x1

· · · ∂f(x)
∂xp

)
v+o(v) .

Taking the ith coordinate of the above equation yields

fi (x+v) = fi (x)+
p

∑
j=1

∂ fi (x)

∂x j
v j +o(v) ,

and it follows that the term with a sum is nothing more than the ith component of J (x)v
where J (x) is the q× p matrix

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xp

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xp

...
...

. . .
...

∂ fq
∂x1

∂ fq
∂x2

· · · ∂ fq
∂xp

 .

Thus
f (x+v) = f (x)+ J (x)v+o(v) , (22.6)

and to reiterate, the linear transformation which results by multiplication by this q × p
matrix is known as the derivative.

Sometimes x,y,z is written instead of x1,x2, and x3. This is to save on notation and is
easier to write and to look at although it lacks generality. When this is done it is understood
that x = x1,y = x2, and z = x3. Thus the derivative is the linear transformation determined
by  f1x f1y f1z

f2x f2y f2z
f3x f3y f3z

 .

Example 22.2.7 Let A be a constant m×n matrix and consider f (x) = Ax. Find Df (x)
if it exists.

f (x+h)−f (x) = A(x+h)−A(x) = Ah= Ah+o(h) .

In fact in this case, o(h) = 0. Therefore, Df (x) = A. Note that this looks the same as the
case in one variable, f (x) = ax.

Example 22.2.8 Let f (x,y,z) = xy+ z2x. Find D f (x,y,z).
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Consider f (x+h,y+ k,z+ l)− f (x,y,z). This is something which is easily computed
from the definition of the function. It equals

(x+h)(y+ k)+(z+ l)2 (x+h)−
(
xy+ z2x

)
Multiply everything together and collect the terms. This yields(

z2 + y
)

h+ xk+2zxl +
(
hk++2zlh+ l2x+ l2h

)
It follows easily the last term at the end is o(h,k, l) and so the derivative of this function is
the linear transformation coming from multiplication by the matrix

((
z2 + y

)
,x,2zx

)
and

so this is the derivative. It follows from this and the description of the derivative in terms
of partial derivatives that

∂ f
∂x

(x,y,z) = z2 + y,
∂ f
∂y

(x,y,z) = x,
∂ f
∂ z

(x,y,z) = 2xz.

Of course you could compute these partial derivatives directly.
Given a function of many variables, how can you tell if it is differentiable? In other

words, when you make the linear approximation, how can you tell easily that what is left
over is o(v). Sometimes you have to go directly to the definition and verify it is differen-
tiable from the definition. For example, here is an interesting example of a function of one
variable.

Example 22.2.9 Let f (x) =
{

x2 sin
( 1

x

)
if x ̸= 0

0 if x = 0
. Find D f (0).

f (h)− f (0) = 0h+h2 sin
(

1
h

)
= o(h) ,

and so D f (0) = 0. If you find the derivative for x ̸= 0, it is totally useless information if
what you want is D f (0). This is because the derivative turns out to be discontinuous. Try
it. Find the derivative for x ̸= 0 and try to obtain D f (0) from it. You see, in this example
you had to revert to the definition to find the derivative.

It isn’t really too hard to use the definition even for more ordinary examples.

Example 22.2.10 Let f (x,y) =
(

x2y+ y2

y3x

)
. Find Df (1,2).

First of all, note that the thing you are after is a 2×2 matrix.

f (1,2) =
(

6
8

)
.

Then

f (1+h1,2+h2)−f (1,2) =
(

(1+h1)
2 (2+h2)+(2+h2)

2

(2+h2)
3 (1+h1)

)
−
(

6
8

)
after some simplification,

=

(
4 5
8 12

)(
h1
h2

)
+

(
2h1h2 +2h2

1 +h2
1h2 +h2

2
12h1h2 +6h2

2 +6h2
2h1 +h3

2 +h3
2h1

)
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=

(
4 5
8 12

)(
h1
h2

)
+o(h) .

Therefore, the matrix of the derivative is
(

4 5
8 12

)
. You let the o(h) terms be the higher

order terms, polynomials in the components of h which have higher degree than 1.

Example 22.2.11 Let f (x,y) =
(

x3y+ y2

xy2 +1

)
. Find Df (x,y) .

Simple computations show that the matrix of this linear transformation is

Df (x,y) =
(

f1x (x,y) f1y (x,y)
f2x (x,y) f2y (x,y)

)
=

(
3x2y x3 +2y
y2 2xy

)
provided the function is differentiable. It is left as an exercise to verify that this does indeed
serve as the derivative. A little later, a theorem is given which shows that, since the function
is a C1 function, it is indeed differentiable.

Example 22.2.12 Consider the open set O in the space of p× p matrices consisting of
those which have an inverse. Let φ (A)≡ det(A) . Then have a look at Problem 39 on Page
447 to see a description of Dφ (F).

22.3 Exercises
1. Determine which of the following functions are o(h).

(a) h2

(b) hsin(h)

(c) |h|3/2 ln(|h|)
(d) h2x+ yh3

(e) sin
(
h2
)

(f) sin(h)

(g) xhsin
(√

|h|
)
+ x5h2

(h) exp
(
−1/ |h|2

)
2. Here are some scalar valued functions of several variables. Determine which of these

functions are o(v). Here v is a vector in Rn, v = (v1, · · · ,vn).

(a) v1v2

(b) v2 sin(v1)

(c) v2
1 + v2

(d) v2 sin(v1 + v2)

(e) v1 (v1 + v2 + xv3)

(f) (ev1 −1− v1)

(g) (x ·v) |v|

3. Here are some vector valued functions of v ∈ Rn. Determine which ones are o(v).

(a) (x ·v)v

(b) sin(v1)v

(c)
√
|(x ·v)| |v|2/3

(d)
√
|(x ·v)| |v|1/2

(e)
(

sin
(√

|x ·v|
)
−
√
|x ·v|

)
·

|v|−1/4
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(f) exp
(
−1/ |v|2

)
(g) vT Av where A is an n×n matrix.

4. Show that if f (x) = o(x), then f ′ (0) = 0.

5. Show that if limh→0 f (x) = 0 then x f (x) = o(x).

6. Show that if f ′ (0) exists and f (0) = 0, then f (|x|p) = o(x) whenever p > 1.

7. Use the definition of the derivative to find the 1×1 matrix which is the derivative of
the following functions.

(a) f (t) = t2 + t.

(b) f (t) = t3.

(c) f (t) = t sin(t).

(d) f (t) = ln
(
t2 +1

)
.

(e) f (t) = t |t|.

8. Show that if f is a real valued function defined on (a,b) and it achieves a local
maximum at x ∈ (a,b), then D f (x) = 0.

9. Use the above definition of the derivative to prove the product rule for functions of 1
variable.

10. Let f (x,y) = xsin(y). Compute the derivative directly from the definition.

11. Let f (x,y) = x2 sin(y). Compute the derivative directly from the definition.

12. Let f (x,y) =
(

x2 + y
y2

)
. Compute the derivative directly from the definition.

13. Let f (x,y) =
(

x2y
x+ y2

)
. Compute the derivative directly from the definition.

14. Let f (x,y) = xα yβ . Show D f (x,y) =
(

αxα−1yβ xα βyβ−1
)
.

15. Let f (x,y) =
(

x2 sin(y)
x2 + y

)
. Find Df (x,y).

16. Let f (x,y) =
√

x 3
√

y. Find the approximate change in f when (x,y) goes from (4,8)
to (4.01,7.99).

17. Suppose f is differentiable and g is also differentiable, g having values in R3 and f
having values in R. Find D( fg) directly from the definition. Assume both functions
are defined on an open subset of Rn.

18. Show, using the above definition, that if f is differentiable, then so is t → f (t)n for
any positive integer and in fact the derivative of this function is n f (t)n−1 f ′ (t).

19. Suppose f is a scalar valued function of two variables which is differentiable. Show
that (x,y)→ ( f (x,y))n is also differentiable and its derivative equals

n f (x,y)n−1 D f (x,y)
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20. Let f (x,y) be defined on R2 as follows. f
(
x,x2

)
= 1 if x ̸= 0. Define f (0,0) = 0,

and f (x,y) = 0 if y ̸= x2. Show that f is not continuous at (0,0) but that

lim
h→0

f (ha,hb)− f (0,0)
h

= 0

for (a,b) an arbitrary unit vector. Thus the directional derivative exists at (0,0) in
every direction, but f is not even continuous there.

22.4 C1 Functions
Most of the time, there is an easier way to conclude that a derivative exists and to find it. It
involves the notion of a C1 function.

Definition 22.4.1 When f : U → Rp for U an open subset of Rn and the vector
valued functions ∂f

∂xi
are all continuous, (equivalently each ∂ fi

∂x j
is continuous), the function

is said to be C1 (U). If all the partial derivatives up to order k exist and are continuous,
then the function is said to be Ck.

It turns out that for a C1 function, all you have to do is write the matrix described in
Theorem 22.2.4 and this will be the derivative. There is no question of existence for the
derivative for such functions. This is the importance of the next theorem.

Theorem 22.4.2 Suppose f : U → Rp where U is an open set in Rn. Suppose also
that all partial derivatives of f exist on U and are continuous. Then f is differentiable at
every point of U.

Proof: If you fix all the variables but one, you can apply the fundamental theorem of
calculus as follows.

f (x+vkek)−f (x) =
∫ 1

0

∂f

∂xk
(x+ tvkek)vkdt. (22.7)

Here is why. Let h(t) = f (x+ tvkek). Then

h(t +h)−h(t)
h

=
f (x+ tvkek +hvkek)−f (x+ tvkek)

hvk
vk

and so, taking the limit as h → 0 yields

h′ (t) =
∂f

∂xk
(x+ tvkek)vk

Therefore,

f (x+vkek)−f (x) = h(1)−h(0) =
∫ 1

0
h′ (t)dt =

∫ 1

0

∂f

∂xk
(x+ tvkek)vkdt.

Now I will use this observation to prove the theorem. Let v = (v1, · · · ,vn) with |v|
sufficiently small. Thus v = ∑

n
k=1 vkek. For the purposes of this argument, define

n

∑
k=n+1

vkek ≡ 0.
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Then with this convention,

f (x+v)−f (x) =
n

∑
i=1

(
f

(
x+

n

∑
k=i

vkek

)
−f

(
x+

n

∑
k=i+1

vkek

))

=
n

∑
i=1

∫ 1

0

∂f

∂xi

(
x+

n

∑
k=i+1

vkek + tviei

)
vidt

=
n

∑
i=1

∫ 1

0

(
∂f

∂xi

(
x+

n

∑
k=i+1

vkek + tviei

)
vi −

∂f

∂xi
(x)vi

)
dt

+
n

∑
i=1

∫ 1

0

∂f

∂xi
(x)vidt =

n

∑
i=1

∂f

∂xi
(x)vi

+
n

∑
i=1

∫ 1

0

(
∂f

∂xi

(
x+

n

∑
k=i+1

vkek + tviei

)
− ∂f

∂xi
(x)

)
vidt =

n

∑
i=1

∂f

∂xi
(x)vi +o(v)

and this shows f is differentiable at x.
Some explanation of the step to the last line is in order. The messy thing at the end is

o(v) because of the continuity of the partial derivatives. To see this, consider one term. By
Proposition 16.2.2, ∣∣∣∣∣

∫ 1

0

(
∂f

∂xi

(
x+

n

∑
k=i+1

vkek + tviei

)
− ∂f

∂xi
(x)

)
vidt

∣∣∣∣∣
≤ √

p
∫ 1

0

∣∣∣∣∣∂f∂xi

(
x+

n

∑
k=i+1

vkek + tviei

)
− ∂f

∂xi
(x)

∣∣∣∣∣dt |v|

Thus, dividing by |v| and taking a limit as |v| → 0, this converges to 0 due to continuity
of the partial derivatives of f . The messy term is thus a finite sum of o(v) terms and is
therefore o(v). ■

Here is an example to illustrate.

Example 22.4.3 Let f (x,y) =
(

x2y+ y2

y3x

)
. Find Df (x,y).

From Theorem 22.4.2 this function is differentiable because all possible partial deriva-
tives are continuous. Thus

Df (x,y) =
(

2xy x2 +2y
y3 3y2x

)
.

In particular,

Df (1,2) =
(

4 5
8 12

)
.

Here is another example.

Example 22.4.4 Let f (x1,x2,x3) =

 x2
1x2 + x2

2
x2x1 + x3

sin(x1x2x3)

. Find Df (x1,x2,x3).
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All possible partial derivatives are continuous, so the function is differentiable. The
matrix for this derivative is therefore the following 3×3 matrix 2x1x2 x2

1 +2x2 0
x2 x1 1

x2x3 cos(x1x2x3) x1x3 cos(x1x2x3) x1x2 cos(x1x2x3)


Example 22.4.5 Suppose f (x,y,z) = xy+ z2. Find D f (1,2,3).

Taking the partial derivatives of f , fx = y, fy = x, fz = 2z. These are all continuous.
Therefore, the function has a derivative and fx (1,2,3) = 1, fy (1,2,3) = 2, and fz (1,2,3) =
6. Therefore, D f (1,2,3) is given by D f (1,2,3) = (1,2,6) . Also, for (x,y,z) close to
(1,2,3),

f (x,y,z) ≈ f (1,2,3)+1(x−1)+2(y−2)+6(z−3)
= 11+1(x−1)+2(y−2)+6(z−3) =−12+ x+2y+6z

When a function is differentiable at x0, it follows the function must be continuous there.
This is the content of the following important lemma.

Lemma 22.4.6 Let f : U → Rq where U is an open subset of Rp. If f is differentiable
at x, then f is continuous at x. In fact, there is a constant C such that if |v| is sufficiently
small, then |f (x+v)−f (x)| ≤C |v|.

Proof: From the definition of what it means to be differentiable and Lemma 22.2.2, if
|v| is small enough,

|f (x+v)−f (x)|= |Df (x)(v)+o(v)| ≤ |Df (x)(v)|+ |v| ≤ C̃ |v|+ |v| ≡C |v| ■

Note that this also says that if |v| is small enough, then

|f (x+v)−f (x)|
|v|

≤C (22.8)

There have been quite a few terms defined. First there was the concept of continuity.
Next the concept of partial or directional derivative. Next there was the concept of differ-
entiability and the derivative being a linear transformation determined by a certain matrix.
Finally, it was shown that if a function is C1, then it has a derivative. To give a rough idea
of the relationships of these topics, here is a picture.

Continuous
|x|+ |y|

Partial derivatives
xy

x2+y2

derivative

C1

You might ask whether there are examples of functions which are differentiable but
not C1. Of course there are. In fact, Example 22.2.9 is just such an example as explained
earlier. Then you should verify that f ′ (x) exists for all x ∈ R but f ′ fails to be continuous
at x = 0. Thus the function is differentiable at every point of R but fails to be C1 because
the derivative is not continuous at 0.
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Example 22.4.7 Find an example of a function which is not differentiable at (0,0) even
though both partial derivatives exist at this point and the function is continuous at this
point.

Here is a simple example.

f (x,y)≡

{
xsin

(
1
xy

)
if xy ̸= 0

0 if xy = 0

To see this works, note that f is defined everywhere and | f (x,y)| ≤ |x| so clearly f is
continuous at (0,0).

f (x,0)− f (0,0)
x

=
0−0

x
= 0,

f (0,y)− f (0,0)
y

=
0−0

y
= 0

and so fx (0,0) = 0 and fy (0,0) = 0. Thus the partial derivatives exist. However, the
function is not differentiable at (0,0) because

lim
(x,y)→(0,0)

xsin
(

1
xy

)
|(x,y)|

does not even exist, much less equals 0. To see this, let x = y and let x → 0.

22.5 The Chain Rule

22.5.1 The Chain Rule for Functions of One Variable

First recall the chain rule for a function of one variable. Consider the following picture.

I
g→ J

f→ R

Here I and J are open intervals and it is assumed that g(I)⊆ J. The chain rule says that if
f ′ (g(x)) exists and g′ (x) exists for x ∈ I, then the composition, f ◦g also has a derivative
at x and

( f ◦g)′ (x) = f ′ (g(x))g′ (x) .

Recall that f ◦g is the name of the function defined by f ◦g(x)≡ f (g(x)). In the notation
of this chapter, the chain rule is written as

D f (g(x))Dg(x) = D( f ◦g)(x) . (22.9)

22.5.2 The Chain Rule for Functions of Many Variables

Let U ⊆Rn and V ⊆Rp be open sets and let f be a function defined on V having values in
Rq while g is a function defined on U such that g (U)⊆V as in the following picture.

U
g→V

f→ Rq
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The chain rule says that if the linear transformations (matrices) on the left in 22.9 both exist
then the same formula holds in this more general case. Thus

Df (g (x))Dg (x) = D(f ◦g)(x)

Note this all makes sense because Df (g (x)) is a q× p matrix and Dg (x) is a p×n matrix.
Remember it is all right to do (q× p)(p×n). The middle numbers match.

It turns out that the chain rule is an easy computation once you have the following
lemma. The rough idea is as follows. Here g is differentiable at x.

|o(g (x+v)−g (x))|
|v|

=

→0 as v→0︷ ︸︸ ︷
|o(g (x+v)−g (x))|
|g (x+v)−g (x)|

bounded by 22.8︷ ︸︸ ︷
|g (x+v)−g (x)|

|v|

Lemma 22.5.1 Let g : U → Rp where U is an open set in Rn and suppose g has a
derivative at x ∈U. Then o(g (x+v)−g (x)) = o(v).

Proof: Let

H (v)≡

{
|o(g(x+v)−g(x))|
|g(x+v)−g(x)| if g (x+v)−g (x) ̸= 0

0 if g (x+v)−g (x) = 0

Then limv→0 H (v) = 0 because of continuity of g at x and from 22.8,

|o(g (x+v)−g (x))|
|v|

= H (v)
|g (x+v)−g (x)|

|v|
≤CH (v)

Therefore,

lim
v→0

|o(g (x+v)−g (x))|
|v|

= 0. ■

Now with this lemma, the chain rule is as follows.

Theorem 22.5.2 (Chain rule) Let U be an open set in Rn, let V be an open set in
Rp, let g : U → Rp be such that g (U)⊆V , and let f : V → Rq. Suppose Dg (x) exists for
some x ∈U and that Df (g (x)) exists. Then D(f ◦g)(x) exists and furthermore,

D(f ◦g)(x) = Df (g (x))Dg (x) . (22.10)

In particular,
∂ (f ◦g)(x)

∂x j
=

p

∑
i=1

∂f (g (x))

∂yi

∂gi (x)

∂x j
. (22.11)

Proof: From the assumption that Df (g (x)) exists,

f (g (x+v)) = f (g (x))+Df (g (x))(g (x+v)−g (x))+o(g (x+v)−g (x))

= f (g (x))+Df (g (x))(Dg (x)v+o(v))+o(g (x+v)−g (x))

which by Lemma 22.5.1 equals

= f (g (x))+Df (g (x))Dg (x)v+Df (g (x))o(v)+o(v)

= f (g (x))+Df (g (x))Dg (x)v+o(v)
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and this shows
D(f ◦g)(x) = Df (g (x))Dg (x)

from the definition of the derivative and its uniqueness established in Theorem 22.2.4 on
Page 481. ■

There is an easy way to remember this in terms of the repeated index summation con-
vention presented earlier. Let y = g (x) and z = f (y). Then the above says

∂z

∂yi

∂yi

∂xk
=

∂z

∂xk
. (22.12)

Remember there is a sum on the repeated index. In particular, for each index r,

∂ zr

∂yi

∂yi

∂xk
=

∂ zr

∂xk
.

The proof of this major theorem will be given later. It will include the chain rule for
functions of one variable as a special case. First here are some examples.

Example 22.5.3 Let f (u,v) = sin(uv) and let u(x,y, t) = t sinx+ cosy and v(x,y, t,s) =
s tanx+ y2 + ts. Letting z = f (u,v) where u,v are as just described, find ∂ z

∂ t and ∂ z
∂x .

From 22.12, ∂ z
∂ t =

∂ z
∂u

∂u
∂ t +

∂ z
∂v

∂v
∂ t = vcos(uv)sin(x)+uscos(uv) . Here y1 = u,y2 = v, t =

xk. Also,

∂ z
∂x

=
∂ z
∂u

∂u
∂x

+
∂ z
∂v

∂v
∂x

= vcos(uv) t cos(x)+ussec2 (x)cos(uv) .

Clearly you can continue in this way, taking partial derivatives with respect to any of the
other variables.

Example 22.5.4 Let w = f (u1,u2) = u2 sin(u1) and u1 = x2y + z,u2 = sin(xy). Find
∂w
∂x ,

∂w
∂y , and ∂w

∂ z .

The derivative of f is of the form (wx,wy,wz) and so it suffices to find the derivative of
f using the chain rule. You need to find D f (u1,u2)Dg (x,y,z) where

g (x,y) =
(

x2y+ z
sin(xy)

)
.

Then

Dg (x,y,z) =
(

2xy x2 1
ycos(xy) xcos(xy) 0

)
.

Also D f (u1,u2) = (u2 cos(u1) ,sin(u1)). Therefore, the derivative is

D f (u1,u2)Dg (x,y,z) = (u2 cos(u1) ,sin(u1))

(
2xy x2 1

ycos(xy) xcos(xy) 0

)

=
(
2u2 (cosu1)xy+(sinu1)ycosxy,u2 (cosu1)x2 +(sinu1)xcosxy,u2 cosu1)

= (wx,wy,wz)
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Thus

∂w
∂x

= 2u2 (cosu1)xy+(sinu1)ycosxy = 2(sin(xy))
(
cos
(
x2y+ z

))
xy

+
(
sin
(
x2y+ z

))
ycosxy.

Similarly, you can find the other partial derivatives of w in terms of substituting in for u1
and u2 in the above. Note

∂w
∂x

=
∂w
∂u1

∂u1

∂x
+

∂w
∂u2

∂u2

∂x
.

In fact, in general if you have
w = f (u1,u2)

and g (x,y,z) =
(

u1 (x,y,z)
u2 (x,y,z)

)
, then D( f ◦g)(x,y,z) is of the form

(
wu1 wu2

)( u1x u1y u1z
u2x u2y u2z

)
=

(
wu1ux +wu2 u2x wu1uy +wu2 u2y wu1uz +wu2u2z

)
.

Example 22.5.5 Let w = f (u1,u2,u3) = u2
1 +u3 +u2 and

g (x,y,z) =

 u1
u2
u3

=

 x+2yz
x2 + y
z2 + x


Find ∂w

∂x and ∂w
∂ z

By the chain rule,

(wx,wy,wz) =
(

wu1 wu2 wu3

) u1x u1y u1z
u2x u2y u2z
u3x u3y u3z

=

(
wu1u1x +wu2u2x +wu3u3x,wu1u1y +wu2u2y +wu3u3y,

wu1u1z +wu2u2z +wu3u3z
)

Note the pattern,

wx = wu1u1x +wu2u2x +wu3u3x,

wy = wu1u1y +wu2u2y +wu3u3y,

wz = wu1u1z +wu2u2z +wu3u3z.

Therefore,

wx = 2u1 (1)+1(2x)+1(1) = 2(x+2yz)+2x+1 = 4x+4yz+1
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and
wz = 2u1 (2y)+1(0)+1(2z) = 4(x+2yz)y+2z = 4yx+8y2z+2z.

Of course to find all the partial derivatives at once, you just use the chain rule. Thus you
would get

(
wx wy wz

)
=
(

2u1 1 1
) 1 2z 2y

2x 1 0
1 0 2z


=

(
2u1 +2x+1 4u1z+1 4u1y+2z

)
=

(
4x+4yz+1 4zx+8yz2 +1 4yx+8y2z+2z

)
Example 22.5.6 Let f (u1,u2) =

(
u2

1 +u2
sin(u2)+u1

)
and

g (x1,x2,x3) =

(
u1 (x1,x2,x3)
u2 (x1,x2,x3)

)
=

(
x1x2 + x3
x2

2 + x1

)
.

Find D(f ◦g)(x1,x2,x3).

To do this,

Df (u1,u2) =

(
2u1 1
1 cosu2

)
,Dg (x1,x2,x3) =

(
x2 x1 1
1 2x2 0

)
.

Then

Df (g (x1,x2,x3)) =

(
2(x1x2 + x3) 1

1 cos
(
x2

2 + x1
) )

and so by the chain rule,

D(f ◦g)(x1,x2,x3)

=

Df(g(x))︷ ︸︸ ︷(
2(x1x2 + x3) 1

1 cos
(
x2

2 + x1
) )

Dg(x)︷ ︸︸ ︷(
x2 x1 1
1 2x2 0

)
=

(
(2x1x2 +2x3)x2 +1 (2x1x2 +2x3)x1 +2x2 2x1x2 +2x3
x2 + cos

(
x2

2 + x1
)

x1 +2x2
(
cos
(
x2

2 + x1
))

1

)
Therefore, in particular,

∂ f1 ◦g
∂x1

(x1,x2,x3) = (2x1x2 +2x3)x2 +1,

∂ f2 ◦g
∂x3

(x1,x2,x3) = 1,
∂ f2 ◦g

∂x2
(x1,x2,x3) = x1 +2x2

(
cos
(
x2

2 + x1
))

.

etc.

In different notation, let
(

z1
z2

)
= f (u1,u2) =

(
u2

1 +u2
sin(u2)+u1

)
. Then

∂ z1

∂x1
=

∂ z1

∂u1

∂u1

∂x1
+

∂ z1

∂u2

∂u2

∂x1
= 2u1x2 +1 = 2(x1x2 + x3)x2 +1.
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Example 22.5.7 Let

f (u1,u2,u3) =

 z1
z2
z3

=

 u2
1 +u2u3
u2

1 +u3
2

ln
(
1+u2

3
)


and let

g (x1,x2,x3,x4) =

 u1
u2
u3

=

 x1 + x2
2 + sin(x3)+ cos(x4)

x2
4 − x1

x2
3 + x4

 .

Find (f ◦g)′ (x).

Df (u) =

 2u1 u3 u2
2u1 3u2

2 0
0 0 2u3

(1+u2
3)


Similarly,

Dg (x) =

 1 2x2 cos(x3) −sin(x4)
−1 0 0 2x4
0 0 2x3 1

 .

Then by the chain rule, D(f ◦g)(x)=Df (u)Dg (x) where u= g (x) as described above.
Thus D(f ◦g)(x) = 2u1 u3 u2

2u1 3u2
2 0

0 0 2u3
(1+u2

3)


 1 2x2 cos(x3) −sin(x4)

−1 0 0 2x4
0 0 2x3 1



=

 2u1 −u3 4u1x2 2u1 cosx3 +2u2x3 −2u1 sinx4 +2u3x4 +u2
2u1 −3u2

2 4u1x2 2u1 cosx3 −2u1 sinx4 +6u2
2x4

0 0 4 u3
1+u2

3
x3 2 u3

1+u2
3

 (22.13)

where each ui is given by the above formulas. Thus ∂ z1
∂x1

equals

2u1 −u3 = 2
(
x1 + x2

2 + sin(x3)+ cos(x4)
)
−
(
x2

3 + x4
)

= 2x1 +2x2
2 +2sinx3 +2cosx4 − x2

3 − x4.

while ∂ z2
∂x4

equals

−2u1 sinx4 +6u2
2x4 =−2

(
x1 + x2

2 + sin(x3)+ cos(x4)
)

sin(x4)+6
(
x2

4 − x1
)2

x4.

If you wanted ∂z
∂x2

it would be the second column of the above matrix in 22.13. Thus ∂z
∂x2

equals 
∂ z1
∂x2
∂ z2
∂x2
∂ z3
∂x2

=

 4u1x2
4u1x2

0

=

 4
(
x1 + x2

2 + sin(x3)+ cos(x4)
)

x2
4
(
x1 + x2

2 + sin(x3)+ cos(x4)
)

x2
0


I hope that by now it is clear that all the information you could desire about various partial
derivatives is available and it all reduces to matrix multiplication and the consideration of
entries of the matrix obtained by multiplying the two derivatives.
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22.6 Exercises

1. Let z = f (x1, · · · ,xn) be as given and let xi = gi (t1, · · · , tm) as given. Find ∂ z
∂ ti

which
is indicated.

(a) z = x3
1 + x2, x1 = sin(t1)+ cos(t2) ,x2 = t1t2

2 . Find ∂ z
∂ t1

(b) z = x1x2
2, x1 = t1t2

2 t3,x2 = t1t2
2 . Find ∂ z

∂ t1
.

(c) z = x1x2
2, x1 = t1t2

2 t3,x2 = t1t2
2 . Find ∂ z

∂ t1
.

(d) z = x1x2
2, x1 = t1t2

2 t3,x2 = t1t2
2 . Find ∂ z

∂ t3
.

(e) z = x2
1x2

2, x1 = t1t2
2 t3,x2 = t1t2

2 . Find ∂ z
∂ t2

.

(f) z = x2
1x2 + x2

3, x1 = t1t2,x2 = t1t2t4,x3 = sin(t3). Find ∂ z
∂ t2

.

(g) z = x2
1x2 + x2

3, x1 = t1t2,x2 = t1t2t4,x3 = sin(t3). Find ∂ z
∂ t3

.

(h) z = x2
1x2 + x2

3, x1 = t1t2,x2 = t1t2t4,x3 = sin(t3). Find ∂ z
∂ t1

.

2. Let z = f (y) =
(
y2

1 + siny2 + tany3
)

and

y = g (x)≡

 x1 + x2
x2

2 − x1 + x2
x2

2 + x1 + sinx2

 .

Find D( f ◦g)(x). Use to write ∂ z
∂xi

for i = 1,2.

3. Let z = f (y) =
(
y2

1 + coty2 + siny3
)

and y = g (x) ≡

 x1 + x4 + x3
x2

2 − x1 + x2
x2

2 + x1 + sinx4

. Find

D( f ◦g)(x). Use to write ∂ z
∂xi

for i = 1,2,3,4.

4. Let z = f (y) =
(
y2

1 + y2
2 + siny3 + y4

)
, y = g (x)≡


x1 + x4 + x3
x2

2 − x1 + x2
x2

2 + x1 + sinx4
x4 + x2

. Find the

derivative of the composition D( f ◦g)(x). Use to write ∂ z
∂xi

for i = 1,2,3,4.

5. Let

z = f (y) =

(
y2

1 + siny2 + tany3
y2

1y2 + y3

)

and y = g (x) ≡

 x1 + x2
x2

2 − x1 + x2
x2

2 + x1 + sinx2

. Find D(f ◦g)(x). Use to write ∂ zk
∂xi

for

i = 1,2 and k = 1,2. Recall this will be of the form
(

z1x1 z1x2 z1x3
z2x1 z2x2 z2x3

)
.
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6. Let z = f (y) =

 y2
1 + siny2 + tany3

y2
1y2 + y3

cos
(
y2

1
)
+ y3

2y3

 and

y = g (x)≡

 x1 + x4
x2

2 − x1 + x3
x2

3 + x1 + sinx2

 .

Find D(f ◦g)(x). Use to write ∂ zk
∂xi

for i = 1,2,3,4 and k = 1,2,3.

7. Give a version of the chain rule which involves three functions f,g,h.

8. If f :U →V and f−1 : V →U for U,V open sets such that f,f−1 are both differen-
tiable, show that

det
(
Df
(
f−1 (y)

))
det
(
Df−1 (y)

)
= 1

22.6.1 Related Rates Problems
Sometimes several variables are related and, given information about how one variable is
changing, you want to find how the others are changing.

Example 22.6.1 Bernoulli’s law states that in an incompressible fluid,

v2

2g
+ z+

P
γ
=C

In Bernoulli’s law above, each of v,z, and P are functions of (x,y,z), the position of a point
in the fluid. Find a formula for ∂P

∂x in terms of the partial derivatives of the other variables.

This is an example of the chain rule. Differentiate both sides with respect to x.

v
g

vx + zx +
1
γ

Px = 0

and so

Px =−
(

vvx + zxg
g

)
γ

Example 22.6.2 Suppose a level curve is of the form f (x,y) =C and that near a point on
this level curve y is a differentiable function of x. Find dy

dx .

This is an example of the chain rule. Differentiate both sides with respect to x. This
gives

fx + fy
dy
dx

= 0.

Solving for dy
dx gives

dy
dx

=
− fx (x,y)

fy (x,y)
.

Example 22.6.3 Suppose a level surface is of the form f (x,y,z) =C. and that near a point
(x,y,z) on this level surface, z is a C1 function of x and y. Find a formula for zx.
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This is an example of the use of the chain rule. Differentiate both sides of the equation
with respect to x. Since yx = 0, fx + fzzx = 0. Then solving for zx,

zx =
− fx (x,y,z)

fz (x,y,z)

Example 22.6.4 Polar coordinates are

x = r cosθ , y = r sinθ . (22.14)

Thus if f is a C1 scalar valued function you could ask to express fx in terms of the variables
r and θ . Do so.

This is an example of the chain rule. Abusing notation slightly, regard f as a function
of position in the plane. This position can be described with any set of coordinates. Thus
f (x,y) = f (r,θ) and so

fx = frrx + fθ θ x.

This will be done if you can find rx and θ x. However you must find these in terms of r and
θ , not in terms of x and y. Using the chain rule on the two equations for the transformation
in 22.14,

1 = rx cosθ − (r sinθ)θ x, 0 = rx sinθ +(r cosθ)θ x

Solving these using Cramer’s rule,

rx = cos(θ) , θ x =
−sin(θ)

r

Hence fx in polar coordinates is

fx = fr (r,θ)cos(θ)− fθ (r,θ)
(

sin(θ)
r

)

22.6.2 The Derivative of the Inverse Function
Example 22.6.5 Let f : U → V where U and V are open sets in Rnand f is one to one
and onto. Suppose also that f and f−1 are both differentiable. How are Df−1 and Df
related?

This can be done as follows. From the assumptions, x = f−1 (f (x)). Let Ix= x.
Then by Example 22.2.7 on Page 482 DI = I. By the chain rule,

I = DI = Df−1 (f (x))(Df (x)) , I = DI = Df
(
f−1 (y)

)
Df−1 (y)

Letting y = f (x), the second yields

I = Df (x)Df−1 (f (x)) .

Therefore,
Df (x)−1 = Df−1 (f (x)) .

This is equivalent to
Df
(
f−1 (y)

)−1
= Df−1 (y)
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or
Df (x)−1 = Df−1 (y) ,y = f (x) .

This is just like a similar situation for functions of one variable. Remember(
f−1)′ ( f (x)) = 1/ f ′ (x) .

Suppose y = f (x) so that x= f−1 (y). Then the using the repeated index convention,
the above can be written as

δ i j =
∂xi

∂yk
(f (x))

∂yk

∂x j
(x) .

22.7 Exercises
1. Suppose f : U → Rq and let x ∈ U and v be a unit vector. Show that Dvf (x) =

Df (x)v. Recall that

Dvf (x)≡ lim
t→0

f (x+ tv)−f (x)

t
.

2. Let f (x,y) =
{

xysin
( 1

x

)
if x ̸= 0

0 if x = 0
. Find where f is differentiable and compute the

derivative at all these points.

3. Let

f (x,y) =
{

x if |y|> |x|
−x if |y| ≤ |x| .

Show that f is continuous at (0,0) and that the partial derivatives exist at (0,0) but
the function is not differentiable at (0,0).

4. Let

f (x,y,z) =
(

x2 siny+ z3

sin(x+ y)+ z3 cosx

)
.

Find Df (1,2,3).

5. Let

f (x,y,z) =
(

x tany+ z3

cos(x+ y)+ z3 cosx

)
.

Find Df (x,y,z).

6. Let

f (x,y,z) =

 xsiny+ z3

sin(x+ y)+ z3 cosx
x5 + y2

 .

Find Df (x,y,z).
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7. Let

f (x,y) =

 (x2−y4)
2

(x2+y4)
2 if (x,y) ̸= (0,0)

1 if (x,y) = (0,0)
.

Show that all directional derivatives of f exist at (0,0), and are all equal to zero but
the function is not even continuous at (0,0). Therefore, it is not differentiable. Why?

8. In the example of Problem 7 show that the partial derivatives exist but are not con-
tinuous.

9. A certain building is shaped like the top half of the ellipsoid, x2

900 +
y2

900 +
z2

400 = 1
determined by letting z ≥ 0. Here dimensions are measured in feet. The building
needs to be painted. The paint, when applied is about .005 feet thick. About how
many cubic feet of paint will be needed. Hint: This is going to replace the numbers,
900 and 400 with slightly larger numbers when the ellipsoid is fattened slightly by
the paint. The volume of the top half of the ellipsoid, x2/a2+y2/b2+z2/c2 ≤ 1,z≥ 0
is (2/3)πabc.

10. Suppose r1 (t) = (cos t,sin t, t) ,r2 (t) = (t,2t,1), and r3 (t) = (1, t,1). Find the rate
of change with respect to t of the volume of the parallelepiped determined by these
three vectors when t = 1.

11. A trash compactor is compacting a rectangular block of trash. The width is changing
at the rate of −1 inches per second, the length is changing at the rate of −2 inches
per second and the height is changing at the rate of −3 inches per second. How fast
is the volume changing when the length is 20, the height is 10, and the width is 10?

12. A trash compactor is compacting a rectangular block of trash. The width is changing
at the rate of −2 inches per second, the length is changing at the rate of −1 inches
per second and the height is changing at the rate of −4 inches per second. How fast
is the surface area changing when the length is 20, the height is 10, and the width is
10?

13. The ideal gas law is PV = kT where k is a constant which depends on the number of
moles and on the gas being considered. If V is changing at the rate of 2 cubic cm.
per second and T is changing at the rate of 3 degrees Kelvin per second, how fast is
the pressure changing when T = 300 and V equals 400 cubic cm.?

14. Let S denote a level surface of the form f (x1,x2,x3) = C. Show that any smooth
curve in the level surface is perpendicular to the gradient.

15. Suppose f is a C1 function which maps U , an open subset of Rn one to one and onto
V , an open set in Rm such that the inverse map, f−1 is also C1. What must be true of
m and n? Why? Hint: Consider Example 22.6.5 on Page 497. Also you can use the
fact that if A is an m×n matrix which maps Rn onto Rm, then m ≤ n.

16. Finish Example 22.6.4 by finding fy in terms of θ ,r. Show that fy = sin(θ) fr +
cos(θ)

r fθ .
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17. ∗Think of ∂x as a differential operator which takes functions and differentiates them
with respect to x. Thus ∂x f ≡ fx. In the context of Example 22.6.4, which is on polar
coordinates, and Problem 16, explain how

∂x = cos(θ)∂r −
sin(θ)

r
∂θ

∂y = sin(θ)∂r +
cos(θ)

r
∂θ

The Laplacian of a function u is defined as ∆u = uxx+uyy. Use the above observation
to give a formula ∆u in terms of r and θ . You should get urr +

1
r ur +

1
r2 uθθ . This is

the formula for the Laplacian in polar coordinates.

22.8 The Gradient
Here we review the concept of the gradient and the directional derivative and prove the
formula for the directional derivative discussed earlier.

Let f : U → R where U is an open subset of Rn and suppose f is differentiable on U .
Thus if x ∈U ,

f (x+v) = f (x)+
n

∑
j=1

∂ f (x)
∂xi

vi +o(v) . (22.15)

Now we can prove the formula for the directional derivative in terms of the gradient.

Proposition 22.8.1 If f is differentiable at x and for v a unit vector

Dv f (x) = ∇ f (x) ·v. (22.16)

Proof:

f (x+tv)− f (x)
t

=
1
t

(
f (x)+

n

∑
j=1

∂ f (x)
∂xi

tvi +o(tv)− f (x)

)

=
1
t

(
n

∑
j=1

∂ f (x)
∂xi

tvi +o(tv)

)
=

n

∑
j=1

∂ f (x)
∂xi

vi +
o(tv)

t

Now limt→0
o(tv)

t = 0 and so

Dv f (x) = lim
t→0

f (x+tv)− f (x)
t

=
n

∑
j=1

∂ f (x)
∂xi

vi = ∇ f (x) ·v

as claimed. ■

Example 22.8.2 Let f (x,y,z) = x2 + sin(xy)+ z. Find Dv f (1,0,1) where

v =

(
1√
3
,

1√
3
,

1√
3

)
.
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Note this vector which is given is already a unit vector. Therefore, from the above, it is
only necessary to find ∇ f (1,0,1) and take the dot product.

∇ f (x,y,z) = (2x+(cosxy)y,(cosxy)x,1) .

Therefore, ∇ f (1,0,1) = (2,1,1). Therefore, the directional derivative is

(2,1,1) ·
(

1√
3
,

1√
3
,

1√
3

)
=

4
3

√
3.

Because of 22.16 it is easy to find the largest possible directional derivative and the
smallest possible directional derivative. That which follows is a more algebraic treatment
of an earlier result with the trigonometry removed.

Proposition 22.8.3 Let f : U → R be a differentiable function and let x ∈U. Then

max{Dv f (x) : |v|= 1}= |∇ f (x)| (22.17)

and
min{Dv f (x) : |v|= 1}=−|∇ f (x)| . (22.18)

Furthermore, the maximum in 22.17 occurs when v = ∇ f (x)/ |∇ f (x)| and the minimum
in 22.18 occurs when v =−∇ f (x)/ |∇ f (x)|.

Proof: From 22.16 and the Cauchy Schwarz inequality,

|Dv f (x)| ≤ |∇ f (x)|

and so for any choice of v with |v|= 1,

−|∇ f (x)| ≤ Dv f (x)≤ |∇ f (x)| .

The proposition is proved by noting that if v =−∇ f (x)/ |∇ f (x)|, then

Dv f (x) = ∇ f (x) · (−∇ f (x)/ |∇ f (x)|) =−|∇ f (x)|2 / |∇ f (x)|=−|∇ f (x)|

while if v = ∇ f (x)/ |∇ f (x)|, then

Dv f (x) = ∇ f (x) · (∇ f (x)/ |∇ f (x)|) = |∇ f (x)|2 / |∇ f (x)|= |∇ f (x)| . ■

For a different approach to the proposition, see Problem 7 which follows.
The conclusion of the above proposition is important in many physical models. For

example, consider some material which is at various temperatures depending on location.
Because it has cool places and hot places, it is expected that the heat will flow from the
hot places to the cool places. Consider a small surface having a unit normal n. Thus n is
a normal to this surface and has unit length. If it is desired to find the rate in calories per
second at which heat crosses this little surface in the direction of n it is defined as J ·nA
where A is the area of the surface and J is called the heat flux. It is reasonable to suppose
the rate at which heat flows across this surface will be largest when n is in the direction of
greatest rate of decrease of the temperature. In other words, heat flows most readily in the
direction which involves the maximum rate of decrease in temperature. This expectation
will be realized by taking J = −K∇u where K is a positive scalar function which can
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depend on a variety of things. The above relation between the heat flux and ∇u is usually
called the Fourier heat conduction law and the constant K is known as the coefficient of
thermal conductivity. It is a material property, different for iron than for aluminum. In
most applications, K is considered to be a constant but this is wrong. Experiments show
that this scalar should depend on temperature. Nevertheless, things get very difficult if this
dependence is allowed. The constant can depend on position in the material or even on
time.

An identical relationship is usually postulated for the flow of a diffusing species. In this
problem, something like a pollutant diffuses. It may be an insecticide in ground water for
example. Like heat, it tries to move from areas of high concentration toward areas of low
concentration. In this case J =−K∇c where c is the concentration of the diffusing species.
When applied to diffusion, this relationship is known as Fick’s law. Mathematically, it is
indistinguishable from the problem of heat flow.

Note the importance of the gradient in formulating these models.

22.9 The Gradient and Tangent Planes
Let S ≡ {x ∈ Rp : g(x) = 0} be a level surface. We assume ∇g(y) ̸= 0 for some y ∈ S.
Then a plane tangent to this level surface at y will be of the form {x ∈ Rp : n·(x−y) = 0} .
The problem is to find n which is a vector which is perpendicular to every vector from y
to x and we want this to be a real tangent plane. The way you can achieve this is to require
that n be perpendicular to the direction vector of every smooth curve through y which lies
in S. One such n is obtained from ∇g(y) . Indeed, if t → x(t) is a curve through y such
that x(0) = y, then g(x(t)) = 0 and so from the chain rule, ∇g(y) ·x′ (0) = 0. Thus a
suitable choice for n will be ∇g(y). Of course, this is a specious argument without the
implicit function theorem which gives existence of such smooth curves in the level surface.
See the appendix for this major theorem.

Example 22.9.1 Find the equation of the tangent plane to the level surface

f (x,y,z,w) = 6

of the function f (x,y,z) = x2 +2y2 +3z2 +w at the point (1,1,1,0).

First note that (1,1,1,0) is a point on this level surface. To find the desired plane it
suffices to find the normal vector to the proposed plane. But ∇ f (x,y,z,w) = (2x,4y,6z,1)
and so ∇ f (1,1,1,0) = (2,4,6,1). Therefore, from this problem, the equation of the plane
is (2,4,6,1) · (x−1,y−1,z−1,w) = 0 or in other words, 2x−12+4y+6z+w = 0. Note
that this is a three dimensional plane because there are three free variables. Indeed, it is of
the form w = 12−4y−6z−2x.

Example 22.9.2 The point
(√

3,1,4
)

is on both the surfaces, z = x2 + y2 and z = 8 −(
x2 + y2

)
. Find the cosine of the angle between the two tangent planes at this point.

Recall this is the same as the angle between two normal vectors. Of course there is
some ambiguity here because if n is a normal vector, then so is −n and replacing n with
−n in the formula for the cosine of the angle will change the sign. We agree to look for
the acute angle and its cosine rather than the obtuse angle. The normals are

(
2
√

3,2,−1
)

and
(
2
√

3,2,1
)
. Therefore, the cosine of the angle desired is (2

√
3)

2
+4−1

17 = 15
17 .
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Example 22.9.3 The point
(
1,
√

3,4
)

is on the surface z = x2 + y2. Find the line perpen-
dicular to the surface at this point.

All that is needed is a direction vector for this line. The surface is the level surface
x2 + y2 − z = 0. The normal to this surface is given by the gradient at this point. Thus the
desired line is

(
1,
√

3,4
)
+ t
(
2,2

√
3,−1

)
.

22.10 Exercises
1. Find the gradient at the indicated point if f =

(a) x2y+ z3, (1,1,2)
(b) zsin

(
x2y
)
+2x+y, (1,1,0)

(c) u ln
(
x+ y+ z2 +w

)
, (x,y,z,w,u)

= (1,1,1,1,2)

(d) sin(xy)+ z3, (1,π,1)

(e) ln
(
x+ y2

)
z

(f) z ln(4+ sin(xy)), (0,π,1)

2. Find the directional derivatives of f at the indicated point in the direction
(

1
2 ,

1
2 ,

1√
2

)
.

(a) x2y+ z3 at (1,1,1)
(b) zsin

(
x2y
)
+2x+y at (1,1,0)

(c) xy+ z2 +1 at (1,2,3)
(d) sin(xy)+ z at (0,1,1)

(e) xy + z at (1,1,1).

(f) sin(sin(x+ y)) + z at the point
(1,0,1).

3. Find the directional derivatives of the given function at the indicated point in the
indicated direction.

(a) sin
(
x2 + y

)
+ z2 at (0,π/2,1) in direction of (1,1,2).

(b) x(x+y)+ sin(zx) at (1,0,0) in the direction of (2,−1,0).

(c) zsin(x)+ y at (0,1,1) in the direction of (1,1,3).

4. Find the tangent plane to the indicated level surface at the indicated point.

(a) x2y+ z3 = 2 at (1,1,1)

(b) zsin
(
x2y
)
+2x+y = 2sin1+4 at (1,1,2)

(c) cos(x)+ zsin(x+ y) = 1 at
(
−π, 3π

2 ,2
)

5. The point
(

1,1,
√

2
)

is a point on the level surface x2 + y2 + z2 = 4. Find the line
perpendicular to the surface at this point.

6. The level surfaces x2 +y2 + z2 = 4 and z+x2 +y2 = 4 have the point
(√

2
2 ,

√
2

2 ,1
)

in
the curve formed by the intersection of these surfaces. Find a direction vector for this
curve at this point. Hint: Recall the gradients of the two surfaces are perpendicular
to the corresponding surfaces at this point. A direction vector for the desired curve
should be perpendicular to both of these gradients.
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7. For v a unit vector, recall that Dv f (x) = ∇ f (x) ·v. It was shown above that the
largest directional derivative is in the direction of the gradient and the smallest in the
direction of −∇ f . Establish the same result using the geometric description of the
dot product, the one which says the dot product is the product of the lengths of the
vectors times the cosine of the included angle.

8. ∗ Suppose f1 (x,y,z) = 0 and f2 (x,y,z) = 0 are two level surfaces which intersect
in a curve which has parametrization, (x(t) ,y(t) ,z(t)). Find a system of differen-
tial equations for (x(t),y(t),z(t)) where the point determined by (x(t),y(t),z(t)) as t
varies, moves over the curve.



Chapter 23

Optimization

23.1 Local Extrema
The following definition describes what is meant by a local maximum or local minimum.

Definition 23.1.1 Suppose f : D( f )→ R where D( f )⊆ Rp. A point x ∈ D( f )⊆
Rp is called a local minimum if f (x) ≤ f (y) for all y ∈ D( f ) sufficiently close to x. A
point x ∈ D( f ) is called a local maximum if f (x) ≥ f (y) for all y ∈ D( f ) sufficiently
close to x. A local extremum is a point of D( f ) which is either a local minimum or a local
maximum. The plural for extremum is extrema. The plural for minimum is minima and the
plural for maximum is maxima.

Procedure 23.1.2 To find candidates for local extrema which are interior points of
D( f ) where f is a differentiable function, you simply identify those points where ∇ f equals
the zero vector.

To locate candidates for local extrema, for the function f , take ∇ f and find where this
vector equals 0.

Let v be any vector in Rp and suppose x is a local maximum (minimum) for f . Then
consider the real valued function of one variable, h(t) ≡ f (x+ tv) for small |t|. Since
f has a local maximum (minimum), it follows that h is a differentiable function of the
single variable t for small t which has a local maximum (minimum) when t = 0. Therefore,
h′ (0) = 0.

h(∆t)−h(0) = f (x+∆tv)− f (x)

= D f (x)∆tv+o(∆t)

Now divide by ∆t and let ∆t → 0 to obtain

0 = h′ (0) = D f (x)v

and since v is arbitrary, it follows D f (x) = 0. However,

D f (x) =
(

fx1 (x) · · · fxp (x)
)

and so ∇ f (x) = 0. This proves the following theorem.

505
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Theorem 23.1.3 Suppose U is an open set contained in D( f ) such that f is dif-
ferentiable on U and suppose x ∈ U is a local minimum or local maximum for f . Then
∇ f (x) = 0.

Definition 23.1.4 A singular point for f is a point x where ∇ f (x) = 0. This is
also called a critical point. By analogy with the one variable case, a point where the
gradient does not exist will also be called a critical point.

Example 23.1.5 Find the critical points for the function f (x,y)≡ xy− x− y for x,y > 0.

Note that here D( f ) is an open set and so every point is an interior point. Where is the
gradient equal to zero? fx = y−1 = 0, fy = x−1 = 0, and so there is exactly one critical
point (1,1).

Example 23.1.6 Find the volume of the smallest tetrahedron made up of the coordinate
planes in the first octant and a plane which is tangent to the sphere x2 + y2 + z2 = 4.

The normal to the sphere at a point (x0,y0,z0) of the sphere is(
x0,y0,

√
4− x2

0 − y2
0

)
and so the equation of the tangent plane at this point is

x0 (x− x0)+ y0 (y− y0)+
√

4− x2
0 − y2

0

(
z−
√

4− x2
0 − y2

0

)
= 0

When x = y = 0, z = 4√
(4−x2

0−y2
0)

. When z = 0 = y, x = 4
x0

, and when z = x = 0, y = 4
y0

.

Therefore, the function to minimize is

f (x,y) =
1
6

64

xy
√
(4− x2 − y2)

This is because in beginning calculus it was shown that the volume of a pyramid is 1/3 the
area of the base times the height. Therefore, you simply need to find the gradient of this
and set it equal to zero. Thus upon taking the partial derivatives, you need to have

−4+2x2 + y2

x2y(−4+ x2 + y2)
√
(4− x2 − y2)

= 0,

and
−4+ x2 +2y2

xy2 (−4+ x2 + y2)
√
(4− x2 − y2)

= 0.

Therefore, x2 +2y2 = 4 and 2x2 + y2 = 4. Thus x = y and so x = y = 2√
3
. It follows from

the equation for z that z = 2√
3

also. How do you know this is not the largest tetrahedron?

Example 23.1.7 An open box is to contain 32 cubic feet. Find the dimensions which will
result in the least surface area.
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Let the height of the box be z and the length and width be x and y respectively. Then
xyz = 32 and so z = 32/xy. The total area is xy+ 2xz+ 2yz and so in terms of the two
variables x and y, the area is A = xy+ 64

y + 64
x . To find best dimensions you note these must

result in a local minimum.

Ax =
yx2 −64

x2 = 0, Ay =
xy2 −64

y2 .

Therefore, yx2 − 64 = 0 and xy2 − 64 = 0 so xy2 = yx2. For sure the answer excludes the
case where any of the variables equals zero. Therefore, x = y and so x = 4 = y. Then z = 2
from the requirement that xyz = 32. How do you know this gives the least surface area?
Why is this not the largest surface area?

23.2 Exercises
1. Find the points where possible local minima or local maxima occur in the following

functions.

(a) x2 −2x+5+ y2 −4y

(b) −xy+ y2 − y+ x

(c) 3x2 −4xy+2y2 −2y+2x

(d) cos(x)+ sin(2y)

(e) x4 −4x3y+6x2y2 −4xy3 + y4 + x2 −2x

(f) y2x2 −2xy2 + y2

2. Find the volume of the largest box which can be inscribed in a sphere of radius a.

3. Find in terms of a,b,c the volume of the largest box which can be inscribed in the
ellipsoid x2

a2 +
y2

b2 +
z2

c2 = 1.

4. Find three numbers which add to 36 whose product is as large as possible.

5. Find three numbers x,y,z such that x2+y2+z2 = 1 and x+y+z is as large as possible.

6. Find three numbers x,y,z such that x2 + y2 + z2 = 4 and xyz is as large as possible.

7. A feeding trough in the form of a trapezoid with equal base angles is made from a
long rectangular piece of metal of width 24 inches by bending up equal strips along
both sides. Find the base angles and the width of these strips which will maximize
the volume of the feeding trough.

8. An open box (no top) is to contain 40 cubic feet. The material for the bottom costs
twice as much as the material for the sides. Find the dimensions of the box which is
cheapest.
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9. The function f (x,y) = 2x2+y2 is defined on the disk x2+y2 ≤ 1. Find its maximum
value.

10. Find the point on the surface z = x2 + y+1 which is closest to (0,0,0).

11. Let L1 = (t,2t,3− t) and L2 = (2s,s+2,4− s) be two lines. Find a pair of points,
one on the first line and the other on the second such that these two points are closer
together than any other pair of points on the two lines.

12. ∗Let

f (x,y) =


−1 if y = x2,x ̸= 0(
y− x2

)2 if y ̸= x2

0 if (x,y) = (0,0)

Show that ∇ f (0,0) = 0. Now show that if (a,b) is any nonzero unit vector, the
function t → f (ta, tb) has a local minimum of 0 when t = 0. Thus in every direction,
this function has a local minimum at (0,0) but the function f does not have a local
minimum at (0,0).

23.3 The Second Derivative Test
There is a version of the second derivative test in the case that the function and its first and
second partial derivatives are all continuous.

Definition 23.3.1 The matrix H (x) whose i jth entry at the point x is ∂ 2 f
∂xi∂x j

(x) is
called the Hessian matrix. The eigenvalues of H (x) are the solutions λ to the equation
det(λ I −H (x)) = 0.

The following theorem says that if all the eigenvalues of the Hessian matrix at a critical
point are positive, then the critical point is a local minimum. If all the eigenvalues of the
Hessian matrix at a critical point are negative, then the critical point is a local maximum.
Finally, if some of the eigenvalues of the Hessian matrix at the critical point are positive and
some are negative then the critical point is a saddle point. The following picture illustrates
the situation.

Theorem 23.3.2 Let f : U → R for U an open set in Rp and let f be a C2 function
and suppose that at some x ∈U, ∇ f (x) = 0. Also let µ and λ be respectively, the largest
and smallest eigenvalues of the matrix H (x). If λ > 0 then f has a local minimum at x.
If µ < 0 then f has a local maximum at x. If either λ or µ equals zero, the test fails. If
λ < 0 and µ > 0 there exists a direction in which when f is evaluated on the line through
the critical point having this direction, the resulting function of one variable has a local
minimum and there exists a direction in which when f is evaluated on the line through
the critical point having this direction, the resulting function of one variable has a local
maximum. This last case is called a saddle point.
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Here is an example.

Example 23.3.3 Let f (x,y) = 10xy+ y2. Find the critical points and determine whether
they are local minima, local maxima or saddle points.

First ∇
(
10xy+ y2

)
= (10y,10x+2y) and so there is one critical point at the point (0,0).

What is it? The Hessian matrix is (
0 10

10 2

)
and the eigenvalues are of different signs. Therefore, the critical point (0,0) is a saddle
point. Here is a graph drawn by Matlab.

Here is another example.

Example 23.3.4 Let f (x,y) = 2x4 −4x3 +14x2 +12yx2 −12yx−12x+2y2 +4y+2. Find
the critical points and determine whether they are local minima, local maxima, or saddle
points.

fx (x,y) = 8x3 −12x2 +28x+24yx−12y−12 and fy (x,y) = 12x2 −12x+4y+4. The
points at which both fx and fy equal zero are

( 1
2 ,−

1
4

)
,(0,−1), and (1,−1).

The Hessian matrix is(
24x2 +28+24y−24x 24x−12

24x−12 4

)
and the thing to determine is the sign of its eigenvalues evaluated at the critical points.

First consider the point
( 1

2 ,−
1
4

)
. The Hessian matrix is

(
16 0
0 4

)
and its eigenvalues

are 16,4 showing that this is a local minimum.

Next consider (0,−1) at this point the Hessian matrix is
(

4 −12
−12 4

)
and the

eigenvalues are 16,−8. Therefore, this point is a saddle point. To determine this, find the
eigenvalues.

det
(

λ

(
1 0
0 1

)
−
(

4 −12
−12 4

))
= λ

2 −8λ −128 = (λ +8)(λ −16)

so the eigenvalues are −8 and 16 as claimed.

Finally consider the point (1,−1). At this point the Hessian is
(

4 12
12 4

)
and the

eigenvalues are 16,−8 so this point is also a saddle point.
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Below is a graph of this function which illustrates the behavior near saddle points.

Or course sometimes the second derivative test is inadequate to determine what is going
on. This should be no surprise since this was the case even for a function of one variable.
For a function of two variables, a nice example is the monkey saddle.

Example 23.3.5 Suppose f (x,y) = 6xy2 − 2x3 − 3y4. Show that (0,0) is a critical point
for which the second derivative test gives no information.

Before doing anything it might be interesting to look at the graph of this function of
two variables plotted using a computer algebra system.

This picture should indicate why this is called a monkey saddle. It is because the
monkey can sit in the saddle and have a place for his tail. Now to see (0,0) is a critical point,
note that fx (0,0) = fy (0,0) = 0 because fx (x,y) = 6y2 −6x2, fy (x,y) = 12xy−12y3 and
so (0,0) is a critical point. So are (1,1) and (1,−1). Now fxx (0,0) = 0 and so are fxy (0,0)
and fyy (0,0). Therefore, the Hessian matrix is the zero matrix and clearly has only the zero
eigenvalue. Therefore, the second derivative test is totally useless at this point.

However, suppose you took x = t and y = t and evaluated this function on this line. This
reduces to h(t) = f (t, t) = 4t3 − 3t4), which is strictly increasing near t = 0. This shows
the critical point (0,0) of f is neither a local max. nor a local min. Next let x = 0 and y = t.
Then p(t) ≡ f (0, t) = −3t4. Therefore, along the line, (0, t), f has a local maximum at
(0,0).

Example 23.3.6 Find the critical points of the following function of three variables and
classify them as local minimums, local maximums or saddle points.

f (x,y,z) =
5
6

x2 +4x+16− 7
3

xy−4y− 4
3

xz+12z+
5
6

y2 − 4
3

zy+
1
3

z2

First you need to locate the critical points. This involves taking the gradient.
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∇

(
5
6

x2 +4x+16− 7
3

xy−4y− 4
3

xz+12z+
5
6

y2 − 4
3

zy+
1
3

z2
)

=

(
5
3

x+4− 7
3

y− 4
3

z,−7
3

x−4+
5
3

y− 4
3

z,−4
3

x+12− 4
3

y+
2
3

z
)

Next you need to set the gradient equal to zero and solve the equations. This yields y =
5,x = 3,z = −2. Now to use the second derivative test, you assemble the Hessian matrix
which is  5

3 − 7
3 − 4

3
− 7

3
5
3 − 4

3
− 4

3 − 4
3

2
3

 .

Note that in this simple example, the Hessian matrix is constant and so all that is left
is to consider the eigenvalues. Writing the characteristic equation and solving yields the
eigenvalues are 2,−2,4. Thus the given point is a saddle point.

Remember that all you care about is the sign of the eigenvalues. You don’t have to find
them exactly.

23.4 Exercises
1. Use the second derivative test on the critical points (1,1), and (1,−1) for Example

23.3.5. The function is 6xy2 −2x3 −3x4.

2. Show the points
( 1

2 ,−
21
4

)
,(0,−4) , and (1,−4) are critical points of the following

function of two variables and classify them as local minima, local maxima or saddle
points.

f (x,y) =−x4 +2x3 +39x2 +10yx2 −10yx−40x− y2 −8y−16.

3. Show the points
( 1

2 ,−
53
12

)
,(0,−4) , and (1,−4) are critical points of the following

function of two variables and classify them according to whether they are local min-
ima, local maxima or saddle points.

f (x,y) =−3x4 +6x3 +37x2 +10yx2 −10yx−40x−3y2 −24y−48.

4. Show the points
( 1

2 ,
37
20

)
,(0,2) , and (1,2) are critical points of the following function

of two variables and classify them according to whether they are local minima, local
maxima or saddle points.

f (x,y) = 5x4 −10x3 +17x2 −6yx2 +6yx−12x+5y2 −20y+20.

5. Show the points
( 1

2 ,−
17
8

)
,(0,−2) , and (1,−2) are critical points of the following

function of two variables and classify them according to whether they are local min-
ima, local maxima or saddle points.

f (x,y) = 4x4 −8x3 −4yx2 +4yx+8x−4x2 +4y2 +16y+16.

6. Find the critical points of the following function of three variables and classify them
according to whether they are local minima, local maxima or saddle points.

f (x,y,z) = 1
3 x2 + 32

3 x+ 4
3 −

16
3 yx− 58

3 y− 4
3 zx− 46

3 z+ 1
3 y2 − 4

3 zy− 5
3 z2.
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7. Find the critical points of the following function of three variables and classify them
according to whether they are local minima, local maxima or saddle points.

f (x,y,z) =− 5
3 x2 + 2

3 x− 2
3 +

8
3 yx+ 2

3 y+ 14
3 zx− 28

3 z− 5
3 y2 + 14

3 zy− 8
3 z2.

8. Find the critical points of the following function of three variables and classify them
according to whether they are local minima, local maxima or saddle points.

f (x,y,z) =− 11
3 x2 + 40

3 x− 56
3 + 8

3 yx+ 10
3 y− 4

3 zx+ 22
3 z− 11

3 y2 − 4
3 zy− 5

3 z2.

9. Find the critical points of the following function of three variables and classify them
according to whether they are local minima, local maxima or saddle points.

f (x,y,z) =− 2
3 x2 + 28

3 x+ 37
3 + 14

3 yx+ 10
3 y− 4

3 zx− 26
3 z− 2

3 y2 − 4
3 zy+ 7

3 z2.

10. ∗Show that if f has a critical point and some eigenvalue of the Hessian matrix is
positive, then there exists a direction in which when f is evaluated on the line through
the critical point having this direction, the resulting function of one variable has a
local minimum. State and prove a similar result in the case where some eigenvalue
of the Hessian matrix is negative.

11. Suppose µ = 0 but there are negative eigenvalues of the Hessian at a critical point.
Show by giving examples that the second derivative tests fails.

12. Show that the points
( 1

2 ,−
9
2

)
,(0,−5), and (1,−5) are critical points of the following

function of two variables and classify them as local minima, local maxima or saddle
points.

f (x,y) = 2x4 −4x3 +42x2 +8yx2 −8yx−40x+2y2 +20y+50.

13. Show that the points
(
1,− 11

2

)
,(0,−5), and (2,−5) are critical points of the follow-

ing function of two variables and classify them as local minima, local maxima or
saddle points.

f (x,y) = 4x4 −16x3 −4x2 −4yx2 +8yx+40x+4y2 +40y+100.

14. Show that the points
( 3

2 ,
27
20

)
,(0,0), and (3,0) are critical points of the following

function of two variables and classify them as local minima, local maxima or saddle
points.

f (x,y) = 5x4 −30x3 +45x2 +6yx2 −18yx+5y2.

15. Find the critical points of the following function of three variables and classify them
as local minima, local maxima or saddle points.

f (x,y,z) = 10
3 x2 − 44

3 x+ 64
3 − 10

3 yx+ 16
3 y+ 2

3 zx− 20
3 z+ 10

3 y2 + 2
3 zy+ 4

3 z2.

16. Find the critical points of the following function of three variables and classify them
as local minima, local maxima or saddle points.

f (x,y,z) =− 7
3 x2 − 146

3 x+ 83
3 + 16

3 yx+ 4
3 y− 14

3 zx+ 94
3 z− 7

3 y2 − 14
3 zy+ 8

3 z2.

17. Find the critical points of the following function of three variables and classify them
as local minima, local maxima or saddle points.

f (x,y,z) = 2
3 x2 +4x+75− 14

3 yx−38y− 8
3 zx−2z+ 2

3 y2 − 8
3 zy− 1

3 z2.
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18. Find the critical points of the following function of three variables and classify them
as local minima, local maxima or saddle points.

f (x,y,z) = 4x2 −30x+510−2yx+60y−2zx−70z+4y2 −2zy+4z2.

19. Show that the critical points of the following function are points of the form, (x,y,z)=(
t,2t2 −10t,−t2 +5t

)
for t ∈ R and classify them as local minima, local maxima or

saddle points.

f (x,y,z) =− 1
6 x4 + 5

3 x3 − 25
6 x2 + 10

3 yx2 − 50
3 yx+ 19

3 zx2 − 95
3 zx− 5

3 y2 − 10
3 zy− 1

6 z2.

20. Show that the critical points of the following function are

(0,−3,0) ,(2,−3,0) ,and
(

1,−3,−1
3

)
and classify them as local minima, local maxima or saddle points.

f (x,y,z) =− 3
2 x4 +6x3 −6x2 + zx2 −2zx−2y2 −12y−18− 3

2 z2.

21. Show that the critical points of the function f (x,y,z) =−2yx2 −6yx−4zx2 −12zx+
y2+2yz. are points of the form, (x,y,z) =

(
t,2t2 +6t,−t2 −3t

)
for t ∈R and classify

them as local minima, local maxima or saddle points.

22. Show that the critical points of the function

f (x,y,z) =
1
2

x4 −4x3 +8x2 −3zx2 +12zx+2y2 +4y+2+
1
2

z2.

are (0,−1,0) ,(4,−1,0), and (2,−1,−12) and classify them as local minima, local
maxima or saddle points.

23. Suppose f (x,y), a function of two variables defined on all Rp has all directional
derivatives at (0,0) and they are all equal to 0 there. Suppose also that for h(t) ≡
f (tu, tv) and (u,v) a unit vector, it follows that h′′ (0) > 0. By the one variable
second derivative test, this implies that along every straight line through (0,0) the
function restricted to this line has a local minimum at (0,0). Can it be concluded that
f has a local minimum at (0,0). In other words, can you conclude a point is a local
minimum if it appears to be so along every straight line through the point? Hint:
Consider f (x,y) = x2 + y2 for (x,y) not on the curve y = x2 for x ̸= 0 and on this
curve, let f =−1.

23.5 Lagrange Multipliers
Lagrange multipliers are used to solve extremum problems for a function defined on a level
set of another function. This is the typical situation in optimization. You have a constraint
on the variables and subject to this constraint, you are trying to maximize of minimize some
function. It is the constraint which makes the problem interesting. For example, suppose
you want to maximize xy given that x+ y = 4. Solve for one of the variables say y, in the
constraint equation x+ y = 4 or x+ y− 4 = 0 to find y = 4− x. Then substitute this in to
the function you are trying to maximize and take a derivative. The difficulty comes when
you can’t solve for one of the variables in the constraint or perhaps you could, but it would
be inconvenient to do so.
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In general, you want to maximize (minimize) f (x,y,z) subject to the constraint

g(x,y,z) = 0.

Just because you can’t algebraically solve for one of the variables, doesn’t mean the relation
does not define one of the variables in terms of the others. Say z = z(x,y) near a point
(x0,y0,z0) on the constraint surface where the maximum or minimum exists. Then you
could consider the unconstrained problem

(x,y)→ f (x,y,z(x,y))

and you would expect its partial derivatives to be 0 at the point of interest. By the chain
rule (never mind the mathematical questions on existence), at this special point,

fx + fzzx = 0, fy + fzzy = 0

By the process of implicit differentiation applied to g(x,y,z) = 0,

zx =−gx

gz
, zy =−

gy

gz

Thus,

fx = fz
gx

gz
=

(
fz

gz

)
gx, fy = fz

gy

gz
=

(
fz

gz

)
gy, fz =

(
fz

gz

)
gz

So letting λ = fz(x0,y0,z0)
gz(x0,y0,z0)

, it follows that at this point

∇ f (x0,y0,z0) = λ∇g(x0,y0,z0)

The situation in which it is x or y that is a function of the other variables is exactly similar.
Also, if there are more or fewer variables there is no difference in the argument. This λ is
called a Lagrange multiplier after Lagrange who considered such problems in the 1700’s.

Example 23.5.1 Maximize xyz subject to x2 + y2 + z2 = 27.

Here f (x,y,z) = xyz while g(x,y,z) = x2 + y2 + z2 −27. Then ∇g(x,y,z) = (2x,2y,2z)
and ∇ f (x,y,z) = (yz,xz,xy). Then at the point which maximizes this function1,

(yz,xz,xy) = λ (2x,2y,2z) .

Therefore, each of 2λx2,2λy2,2λ z2 equals xyz. It follows that at any point which maxi-
mizes xyz, |x|= |y|= |z|. Therefore, the only candidates for the point where the maximum
occurs are

(3,3,3) ,(−3,−3,3)(−3,3,3)

etc. The maximum occurs at (3,3,3) which can be verified by plugging in to the function
which is being maximized.

The method of Lagrange multipliers allows you to consider maximization of functions
defined on closed and bounded sets. Recall that any continuous function defined on a
closed and bounded set has a maximum and a minimum on the set. Candidates for the
extremum on the interior of the set can be located by setting the gradient equal to zero. The
consideration of the boundary can then sometimes be handled with the method of Lagrange
multipliers.

1There exists such a point because the sphere is closed and bounded.
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Example 23.5.2 Maximize f (x,y) = xy+ y subject to the constraint, x2 + y2 ≤ 1.

Here I know there is a maximum because the set is the closed disk, a closed and bounded
set. Therefore, it is just a matter of finding it. Look for singular points on the interior of the
circle. ∇ f (x,y) = (y,x+1) = (0,0). There are no points on the interior of the circle where
the gradient equals zero. Therefore, the maximum occurs on the boundary of the circle.
That is, the problem reduces to maximizing xy+ y subject to x2 + y2 = 1. From the above,

(y,x+1)−λ (2x,2y) = 0.

Hence y2 −2λxy = 0 and x(x+1)−2λxy = 0 so y2 = x(x+1). Therefore from the con-
straint, x2 + x(x+1) = 1 and the solution is x = −1,x = 1

2 . Then the candidates for a

solution are (−1,0) ,
(

1
2 ,

√
3

2

)
,
(

1
2 ,

−
√

3
2

)
. Then

f (−1,0) = 0, f

(
1
2
,

√
3

2

)
=

3
√

3
4

, f

(
1
2
,−

√
3

2

)
=−3

√
3

4
.

It follows the maximum value of this function is 3
√

3
4 and it occurs at

(
1
2 ,

√
3

2

)
. The mini-

mum value is − 3
√

3
4 and it occurs at

(
1
2 ,−

√
3

2

)
.

Example 23.5.3 Find candidates for the maximum and minimum values of the function
f (x,y) = xy− x2 on the set

{
(x,y) : x2 +2xy+ y2 ≤ 4

}
.

First, the only point where ∇ f equals zero is (x,y) = (0,0) and this is in the desired set.
In fact it is an interior point of this set. This takes care of the interior points. What about
those on the boundary x2+2xy+y2 = 4? The problem is to maximize xy−x2 subject to the
constraint, x2 + 2xy+ y2 = 4. The Lagrangian is xy− x2 −λ

(
x2 +2xy+ y2 −4

)
and this

yields the following system.

y−2x−λ (2x+2y) = 0
x−2λ (x+ y) = 0
x2 +2xy+ y2 = 4

From the first two equations,

(2+2λ )x− (1−2λ )y = 0, (1−2λ )x−2λy = 0

Since not both x and y equal zero, it follows

det
(

2+2λ 2λ −1
1−2λ −2λ

)
= 0

which yields λ = 1/8. Therefore, y = 3x. From the constraint equation x2 + 2x(3x) +
(3x)2 = 4 and so x = 1

2 or − 1
2 . Now since y = 3x, the points of interest on the boundary of

this set are (
1
2
,

3
2

)
, and

(
−1

2
,−3

2

)
. (23.1)

f
(

1
2
,

3
2

)
=

(
1
2

)(
3
2

)
−
(

1
2

)2

=
1
2
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f
(
−1

2
,−3

2

)
=

(
−1

2

)(
−3

2

)
−
(
−1

2

)2

=
1
2

Thus the candidates for maximum and minimum are
( 1

2 ,
3
2

)
,(0,0), and

(
− 1

2 ,−
3
2

)
. There-

fore it appears that (0,0) yields a minimum and either
( 1

2 ,
3
2

)
or
(
− 1

2 ,−
3
2

)
yields a max-

imum. However, this is a little misleading. How do you even know a maximum or a
minimum exists? The set x2 + 2xy+ y2 ≤ 4 is an unbounded set which lies between the
two lines x + y = 2 and x + y = −2. In fact there is no minimum. For example, take
x = 100,y = −98. Then xy− x2 = x(y− x) = 100(−98−100) which is a large negative
number much less than 0, the answer for the point (0,0).

There are no magic bullets here. It was still required to solve a system of nonlinear
equations to get the answer. However, it does often help to do it this way.

A nice observation in the case that the function f , which you are trying to maximize,
and the function g, which defines the constraint, are functions of two or three variables is
the following.

At points of interest,
∇ f ×∇g = 0

This follows from the above because at these points,

∇ f = λ∇g

so the angle between the two vectors ∇ f and ∇g is either 0 or π . Therefore, the sine of this
angle equals 0. By the geometric description of the cross product, this implies the cross
product equals 0. Here is an example.

Example 23.5.4 Minimize f (x,y) = xy− x2 on the set{
(x,y) : x2 +2xy+ y2 = 4

}
Using the observation about the cross product, and letting f (x,y,z) = f (x,y) with a

similar convention for g, ∇ f = (y−2x,x,0) ,∇g = (2x+2y,2x+2y,0) and so

(y−2x,x,0)× (2x+2y,2x+2y,0)
= (0,0,(y−2x)(2x+2y)− x(2x+2y)) = 0

Thus there are two equations, x2+2xy+y2 = 4 and 4xy−2y2+6x2 = 0. Solving these two
yields the points of interest

(
− 1

2 ,−
3
2

)
,
( 1

2 ,
3
2

)
. Both give the same value for f a maximum.

The above generalizes to a general procedure which is described in the following major
Theorem. All correct proofs of this theorem will involve some appeal to the implicit func-
tion theorem or to fundamental existence theorems from differential equations. A complete
proof is very fascinating but it will not come cheap. Good advanced calculus books will
usually give a correct proof. If you are interested, there is a complete proof later. First here
is a simple definition explaining one of the terms in the statement of this theorem.

Definition 23.5.5 Let A be an m×n matrix. A submatrix is any matrix which can
be obtained from A by deleting some rows and some columns.

Theorem 23.5.6 Let U be an open subset of Rn and let f : U →R be a C1 function.
Then if x0 ∈U, has the property that

gi (x0) = 0, i = 1, · · · ,m, gi a C1 function, (23.2)
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and x0 is either a local maximum or local minimum of f on the intersection of the level
sets just described, and if some m×m submatrix of

Dg (x0)≡

 g1x1 (x0) g1x2 (x0) · · · g1xn (x0)
...

...
...

gmx1 (x0) gmx2 (x0) · · · gmxn (x0)


has nonzero determinant, then there exist scalars, λ 1, · · · ,λ m such that fx1 (x0)

...
fxn (x0)

= λ 1

 g1x1 (x0)
...

g1xn (x0)

+ · · ·+λ m

 gmx1 (x0)
...

gmxn (x0)

 (23.3)

holds.

To help remember how to use 23.3, do the following. First write the Lagrangian,

L = f (x)−
m

∑
i=1

λ igi (x)

and then proceed to take derivatives with respect to each of the components of x and also
derivatives with respect to each λ i and set all of these equations equal to 0. The formula
23.3 is what results from taking the derivatives of L with respect to the components of x.
When you take the derivatives with respect to the Lagrange multipliers, and set what results
equal to 0, you just pick up the constraint equations. This yields n+m equations for the
n+m unknowns x1, · · · ,xn,λ 1, · · · ,λ m. Then you proceed to look for solutions to these
equations. Of course these might be impossible to find using methods of algebra, but you
just do your best and hope it will work out.

Example 23.5.7 Minimize xyz subject to the constraints x2 + y2 + z2 = 4 and x−2y = 0.

Form the Lagrangian,

L = xyz−λ
(
x2 + y2 + z2 −4

)
−µ (x−2y)

and proceed to take derivatives with respect to every possible variable, leading to the fol-
lowing system of equations.

yz−2λx−µ = 0
xz−2λy+2µ = 0

xy−2λ z = 0
x2 + y2 + z2 = 4

x−2y = 0

Now you have to find the solutions to this system of equations. In general, this could be
very hard or even impossible. If λ = 0, then from the third equation, either x or y must
equal 0. Therefore, from the first two equations, µ = 0 also. If µ = 0 and λ ̸= 0, then from
the first two equations, xyz = 2λx2 and xyz = 2λy2 and so either x = y or x = −y, which
requires that both x and y equal zero thanks to the last equation. But then from the fourth
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equation, z =±2 and now this contradicts the third equation. Thus µ and λ are either both
equal to zero or neither one is and the expression, xyz equals zero in this case. However, I

know this is not the best value for a minimizer because I can take x = 2
√

3
5 ,y =

√
3
5 , and

z = −1. This satisfies the constraints and the product of these numbers equals a negative
number. Therefore, both µ and λ must be non zero. Now use the last equation eliminate x
and write the following system.

5y2 + z2 = 4
y2 −λ z = 0

yz−λy+µ = 0
yz−4λy−µ = 0

From the last equation, µ = (yz−4λy). Substitute this into the third and get

5y2 + z2 = 4
y2 −λ z = 0

yz−λy+ yz−4λy = 0

y = 0 will not yield the minimum value from the above example. Therefore, divide the last
equation by y and solve for λ to get λ = (2/5)z. Now put this in the second equation to
conclude

5y2 + z2 = 4
y2 − (2/5)z2 = 0

,

a system which is easy to solve. Thus y2 = 8/15 and z2 = 4/3. Therefore, candidates for

minima are
(

2
√

8
15 ,
√

8
15 ,±

√
4
3

)
, and

(
−2
√

8
15 ,−

√
8
15 ,±

√
4
3

)
, a choice of 4 points to

check. Clearly the one which gives the smallest value is(
2

√
8

15
,

√
8

15
,−
√

4
3

)

or
(
−2
√

8
15 ,−

√
8
15 ,−

√
4
3

)
and the minimum value of the function subject to the con-

straints is − 2
5

√
30− 2

3

√
3.

You should rework this problem first solving the second easy constraint for x and then
producing a simpler problem involving only the variables y and z.

23.6 Exercises
1. Maximize x+ y+ z subject to the constraint x2 + y2 + z2 = 3.

2. Minimize 2x− y+ z subject to the constraint 2x2 + y2 + z2 = 36.

3. Minimize x+ 3y− z subject to the constraint 2x2 + y2 − 2z2 = 36 if possible. Note
there is no guaranty this function has either a maximum or a minimum. Determine
whether there exists a minimum also.

4. Find the dimensions of the largest rectangle which can be inscribed in a circle of
radius r.
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5. Maximize 2x+ y subject to the condition that x2

4 + y2

9 ≤ 1.

6. Maximize x+2y subject to the condition that x2 + y2

9 ≤ 1.

7. Maximize x+ y subject to the condition that x2 + y2

9 + z2 ≤ 1.

8. Minimize x+ y+ z subject to the condition that x2 + y2

9 + z2 ≤ 1.

9. Find the points on y2x = 16 which are closest to (0,0).

10. Find the points on
√

2y2x = 1 which are closest to (0,0).

11. Find points on xy = 4 farthest from (0,0) if any exist. If none exist, tell why. What
does this say about the method of Lagrange multipliers?

12. A can is supposed to have a volume of 36π cubic centimeters. Find the dimensions
of the can which minimizes the surface area.

13. A can is supposed to have a volume of 36π cubic centimeters. The top and bottom of
the can are made of tin costing 4 cents per square centimeter and the sides of the can
are made of aluminum costing 5 cents per square centimeter. Find the dimensions of
the can which minimizes the cost.

14. Minimize and maximize ∑
n
j=1 x j subject to the constraint ∑

n
j=1 x2

j = a2. Your answer
should be some function of a which you may assume is a positive number.

15. Find the point (x,y,z) on the level surface 4x2+y2−z2 = 1which is closest to (0,0,0).

16. A curve is formed from the intersection of the plane, 2x+ y+ z = 3 and the cylinder
x2 + y2 = 4. Find the point on this curve which is closest to (0,0,0).

17. A curve is formed from the intersection of the plane, 2x+3y+ z = 3 and the sphere
x2 + y2 + z2 = 16. Find the point on this curve which is closest to (0,0,0).

18. Find the point on the plane, 2x+3y+ z = 4 which is closest to the point (1,2,3).

19. Let A = (Ai j) be an n× n matrix which is symmetric. Thus Ai j = A ji and recall
(Ax)i =Ai jx j where as usual, sum over the repeated index. Show that ∂

∂xk
(Ai jx jxi) =

2Ai jx j. Show that when you use the method of Lagrange multipliers to maximize
the function Ai jx jxi subject to the constraint, ∑

n
j=1 x2

j = 1, the value of λ which
corresponds to the maximum value of this functions is such that Ai jx j = λxi. Thus
Ax= λx. Thus λ is an eigenvalue of the matrix A.

20. Here are two lines.
x= (1+2t,2+ t,3+ t)T

and x= (2+ s,1+2s,1+3s)T . Find points p1 on the first line and p2 on the second
with the property that |p1 −p2| is at least as small as the distance between any other
pair of points, one chosen on one line and the other on the other line.

21. ∗ Find points on the circle of radius r for the largest triangle which can be inscribed
in it.
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22. Find the point on the intersection of z = x2 + y2 and x+ y+ z = 1 which is closest to
(0,0,0).

23. Minimize xyz subject to the constraints x2 + y2 + z2 = r2 and x− y = 0.

24. Let n be a positive integer. Find n numbers whose sum is 8n and the sum of the
squares is as small as possible.

25. Find the point on the level surface 2x2 + xy+ z2 = 16 which is closest to (0,0,0).

26. Find the point on x2 + y2 + z2 = 1 closest to the plane x+ y+ z = 10.

27. Find the point on x2

4 + y2

9 + z2 = 1 closest to the plane x+ y+ z = 10.

28. Let x1, · · · ,x5 be 5 positive numbers. Maximize their product subject to the constraint
that

x1 +2x2 +3x3 +4x4 +5x5 = 300.

29. Let f (x1, · · · ,xn) = xn
1xn−1

2 · · ·x1
n. Then f achieves a maximum on the set S ≡{

x ∈ Rn :
n

∑
i=1

ixi = 1,each xi ≥ 0

}

If x ∈ S is the point where this maximum is achieved, find x1/xn.

30. ∗ Let (x,y) be a point on the ellipse, x2/a2 +y2/b2 = 1 which is in the first quadrant.
Extend the tangent line through (x,y) till it intersects the x and y axes and let A(x,y)
denote the area of the triangle formed by this line and the two coordinate axes. Find
the minimum value of the area of this triangle as a function of a and b.

31. Maximize ∏
n
i=1 x2

i
(≡ x2

1 × x2
2 × x2

3 ×·· ·× x2
n)

subject to the constraint, ∑
n
i=1 x2

i = r2. Show that the maximum is
(
r2/n

)n. Now
show from this that (

n

∏
i=1

x2
i

)1/n

≤ 1
n

n

∑
i=1

x2
i

and finally, conclude that if each number xi ≥ 0, then(
n

∏
i=1

xi

)1/n

≤ 1
n

n

∑
i=1

xi

and there exist values of the xi for which equality holds. This says the “geometric
mean” is always smaller than the arithmetic mean.

32. Maximize x2y2 subject to the constraint

x2p

p
+

y2q

q
= r2
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where p,q are real numbers larger than 1 which have the property that

1
p
+

1
q
= 1

show that the maximum is achieved when x2p = y2q and equals r2. Now conclude
that if x,y > 0, then

xy ≤ xp

p
+

yq

q

and there are values of x and y where this inequality is an equation.

33. The area of the ellipse x2/a2 + y2/b2 ≤ 1 is πab which is given to equal π . The

length of the ellipse is
∫ 2π

0

√
a2 sin2 (t)+b2 cos2 (t)dt. Find a,b such that the ellipse

having this volume is as short as possible.

34. Consider the closed region in the xy plane which lies between the curve y =
√

1− x2

and y = 0. Find the maximum and minimum values of the function x2+x+y2−y on
this region. Hint: First observe that there is a solution because the region is compact.
Next look for candidates for the extreme point on the interior. When this is done, look
for candidates on the boundary. Note that the boundary of the region does not come
as the level surface of a C1 function. The method does not apply to the corners of this
region, the points (1,0) and (−1,0). Therefore, you need to consider these points
also.

35. To see why the method works with more than one constraint, suppose you have the
problem to maximize f (x,y,z) with the constraints

g1 (x,y,z) = 0,g2 (x,y,z) = 0

Then the two constraints likely define a curve of intersection. Say z = z(x) ,y = y(x).
At the point where a maximum or minimum occurs, explain why

fx + fyyx + fzzx = 0
g1x +g1yyx +g1zzx = 0
g2x +g2yyx +g2zzx = 0

This is a system of equations having nonzero solution (1,yx,zx). Thus the matrix of
coefficients has no inverse. Thus the rows are dependent. If ∇g1,∇g2 are indepen-
dent, ∇ f = λ 1∇g1 +λ 2∇g2 for some scalars λ i. Other situations are similar but to
do this in full generality, see the appendix on implicit function theorem.

36. Suppose you wish to maximize(minimize) f (x) subject to g(x) = 0 where x ∈
Rn,n ≥ 1. Say x= (x1, · · · ,xn−1,xn) and at a point x0 where the minimum of max-
imum occurs, you have xn = xn (x1, · · · ,xn−1) ,gxn ̸= 0. The situation is the same if
g(x) = 0 defines one of the other variables as a function of the remaining variables.
Then, assuming all functions are C1,(See appendix on implicit function theorem for
this.) explain why you have for each xi, i ≤ n−1 at the point x0

fxi + fxn
∂xn
∂xi

= 0
gxi +gxn

∂xn
∂xi

= 0
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Thus

fxi =− fxn

(
−gxi

gxn

)
=

(
fxn

gxn

)
gxi

Explain why the gradient of f equals a multiple of the gradient of g at the point where
the local extreme value occurs.

23.7 Proof of the Second Derivative Test∗

A version of the following theorem is due to Lagrange, about 1790. The proof is given
earlier. See 5.15.1 on Page 152. It is stated here for convenience.

Theorem 23.7.1 Suppose f has n+ 1 derivatives on an interval (a,b) and let c ∈
(a,b) . Then if x ∈ (a,b) , there exists ξ between c and x such that

f (x) = f (c)+
n

∑
k=1

f (k) (c)
k!

(x− c)k +
f (n+1) (ξ )

(n+1)!
(x− c)n+1 .

(In this formula, the symbol ∑
0
k=1 ak will denote the number 0.)

Definition 23.7.2 The matrix
(

∂ 2 f
∂xi∂x j

(x)
)

is called the Hessian matrix, denoted

by H (x).

Now recall the Taylor formula with the Lagrange form of the remainder.

Theorem 23.7.3 Let h : (−δ ,1+δ )→R have m+1 derivatives. Then there exists
t ∈ (0,1) such that

h(1) = h(0)+
m

∑
k=1

h(k) (0)
k!

+
h(m+1) (t)
(m+1)!

.

Now let f : U → R where U is an open subset of Rp. Suppose f ∈C2 (U). Let x ∈U
and let r > 0 be such that

B(x,r)⊆U.

Then for ||v||< r consider
f (x+tv)− f (x)≡ h(t)

for t ∈ [0,1]. Then from Taylor’s theorem for the case where m = 2 and the chain rule,

h′ (t) = ∑
i

∂ f
∂xi

(x+ tv)vi,h′′ (t) = ∑
j
∑

i

∂ 2 f
∂x j∂xi

(x+ tv)viv j.

Thus
h′′ (t) = vT H (x+ tv)v.

From Theorem 23.7.3 there exists t ∈ (0,1) such that

f (x+v) = f (x)+
∂ f
∂xi

(x)vi +
1
2
vT H (x+ tv)v
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By the continuity of the second partial derivative

f (x+v) = f (x)+∇ f (x) ·v+1
2
vT H (x)v+

1
2
(
vT (H (x+tv)−H (x))v

)
(23.4)

where the last term satisfies

lim
|v|→0

1
2

(
vT (H (x+tv)−H (x))v

)
|v|2

= 0 (23.5)

because of the continuity of the entries of H (x).

Theorem 23.7.4 Suppose x is a critical point for f . That is, suppose ∂ f
∂xi

(x) = 0
for each i. Then if H (x) has all positive eigenvalues, x is a local minimum. If H (x) has all
negative eigenvalues, then x is a local maximum. If H (x) has a positive eigenvalue, then
there exists a direction in which f has a local minimum at x, while if H (x) has a negative
eigenvalue, there exists a direction in which f has a local maximum at x.

Proof: Since ∇ f (x) = 0, formula 23.4 implies

f (x+v) = f (x)+
1
2
vT H (x)v+

1
2
(
vT (H (x+tv)−H (x))v

)
(23.6)

and by continuity of the second derivatives, these mixed second derivatives are equal and so
H (x) is a symmetric matrix. Thus, by Theorem 19.8.6, H (x) has all real eigenvalues and
can be diagonalized with an orthogonal matrix U . Suppose first that H (x) has all positive
eigenvalues and that all are larger than δ

2 > 0.

uT H (x)u= uTUDUTu= (Uu)T D(Uu)≥ δ
2 |Uu|2 = δ

2 |u|2

By continuity of H, if v is small enough,

f (x+v)≥ f (x)+
1
2

δ
2 |v|2 − 1

4
δ

2 |v|2 = f (x)+
δ

2

4
|v|2 .

This shows the first claim of the theorem. The second claim follows from similar reasoning
or applying the above to − f .

Suppose H (x) has a positive eigenvalue λ
2. Then let v be an eigenvector for this

eigenvalue. Then from (23.6), replacing v with sv and letting t depend on s,

f (x+sv) = f (x)+
1
2

s2vT H (x)v+

1
2

s2 (vT (H (x+tsv)−H (x))v
)

which implies

f (x+sv) = f (x)+
1
2

s2
λ

2 |v|2 + 1
2

s2 (vT (H (x+tsv)−H (x))v
)

≥ f (x)+
1
4

s2
λ

2 |v|2

whenever s is small enough. Thus in the direction v the function has a local minimum at
x. The assertion about the local maximum in some direction follows similarly. ■
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Chapter 24

Implicit Function Theorem*

This chapter can be skipped and returned to later if desired. It contains the theoretical
background for the method of Lagrange multipliers and other items.

First is the version involving the case where f is a function of two scalar variables and
has values in R. The partial derivatives D1 f ,D2 f are just derivatives obtained from fixing
y in the first case and x in the second. Thus D1 f (x,y) ≡ limh→0

f (x+h,y)− f (x,y)
h , similar for

D2 f (x,y) . Continuity means that if xn → x, and yn → y, then f (xn,yn)→ f (x,y).

Theorem 24.0.1 Let (x0,y0) ∈ I × J where I,J are open intervals and suppose
f (x0,y0) = 0 where D1 f ,D2 f , f are continuous on I × J. Also suppose D1 f (x0,y0) ̸= 0.
Then there exist open intervals Î ⊆ I, Ĵ ⊆ J with (x0,y0) ∈ Î × Ĵ and a unique function
x : Ĵ → Î which has continuous derivative such that f (x(y) ,y) = 0 for all y ∈ Ĵ.

Proof: There exist Ĩ, J̃ closed intervals contained in I,J respectively such that x0 is in
the interior of Ĩ,y0 is in the interior of J̃ and D1 f (x,y) ,D2 (x,y) are both nonzero on Ĩ × J̃.
This is by continuity of the partial derivatives. Then fixing y ∈ J̃, if f (x1,y) = f (x2,y) = 0,
you would have, by the mean value theorem, D1 (z,y)(x1 − x2) = 0 for some z between x1
and x2. Hence D1 f (z,y) = 0 which does not happen. Hence there is at most one x for
which f (x,y) = 0 for each y ∈ J̃.

claim: There exists open Ĵ ⊆ J̃ such that Ĵ contains y0 and for y ∈ Ĵ, the minimum of
x → f 2 (x,y) on Ĩ × Ĵ occurs at an interior point of Ĩ.

Proof of claim: If not, there exists yn → y0 and xn an endpoint of Ĩ such that the min-
imum of x → f 2 (x,y) occurs at xn. One of these endpoints occurs infinitely often and
so there is a subsequence, still called xn which converges to an endpoint w of Ĩ. Then
f 2 (x0,yn) ≥ f 2 (xn,yn) and so, by continuity, f 2 (x0,y0) ≥ f 2 (w,y0) and so, there are two
different points of Ĩ namely x0,w with f (x0,y0) = f (w,y0) = 0. This was just shown im-
possible. This proves the claim.

Let Ĵ be as just described and let x(y) be the point of Ĩ for which f (x(y) ,y) minimizes
x → f 2 (x,y). Then fixing y,2 f (x(y) ,y)D1 f (x(y) ,y) = 0 and so, f (x(y) ,y) = 0. It re-
mains to verify that y → x(y) is differentiable. If y ∈ Ĵ, then if |h| is small enough, both
y,y+h are in Ĵ. Considering such small h,

0 = f (x(y+h) ,y+h)− f (x(y) ,y)

= f (x(y+h) ,y+h)− f (x(y) ,y+h)+ f (x(y) ,y+h)− f (x(y) ,y)

= D1 f (z(h) ,y+h)(x(y+h)− x(y))+D2 f (x(y) ,y+wh)h

525
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where wh is between 0 and h and z(h) is between x(y) and x(y+h) . This is by the mean
value theorem. Thus, the term on the right converges to 0 as h → 0 and so it is also true
that x(y+h)− x(y) → 0 so y → x(y) is continuous. Then z(h) → x(y) also and so, by
continuity you can take the limit as h → 0 in

x(y+h)− x(y)
h

=−D2 f (x(y) ,y+wh)

D1 f (z(h) ,y+h)

and obtain x′ (y) exists and equals −D2 f (x(y),y)
D1 f (x(y),y) which shows also that y → x′ (y) is continu-

ous by continuity of D2 and D1. Now let Î ≡ x
(
Ĵ
)
. This smaller interval contains x0 since

x(y0) = x0 and is an open interval because y → x(y) is one to one and continuous. ■
The following is the implicit function theorem for functions of many variables. It is

one of the greatest theorems in mathematics. The proof given here is like one found in one
of Caratheodory’s books on the calculus of variations and is a generalization of the above
simpler case. I think this theorem was known to Weierstrass because it is used in a book
by Bolza which is based on his lectures. The proof follows the easier one above and is
not as elegant as some of the others which are based on a contraction mapping principle
but it may be more accessible. However, it is an advanced topic. Don’t waste your time
with it unless you have first read and understood the earlier material on linear algebra. You
will also need the extreme value theorem for a function of n variables and the chain rule of
multi-variable calculus. First is an interesting proposition.

Proposition 24.0.2 Suppose

g : B(x0,δ )×B(y0,η0)→ [0,∞)

is continuous and g(x0,y0) = 0 and if x ̸= x0,g(x,y0) > 0. Then there exists η < η0
such that if y ∈ B(y0,η) , then the function x→ g(x,y) achieves its minimum on the open
set B(x0,δ ).

Proof: If not, then there is a sequence yk → y0 but the minimum of x→ g(x,yk) for
x ∈ B(x0,δ ) happens on ∂B(x0,δ ) ≡ ∂B ≡ {x : |x−x0|= δ} at xk. Now ∂B is closed
and bounded and so compact. Hence there is a subsequence, still denoted with subscript k
such that xk → x ∈ ∂B and yk → y0.

By uniform continuity on the compact set and assumption, if k is large enough, for all
x̂ ∈ B(x0,δ )

max
{
|g(x̂,y0)−g (x̂,yk)| : x̂ ∈ B(x0,δ )

}
≤ 1

2
min{|g(x̂,y0)| : x̂ ∈ ∂B} ≤ 1

2
g(x,y0)

Then

g(x0,yk)≥ g(xk,yk)> g(xk,y0)−
1
2

g(x,y0)

Letting k → ∞,0 ≥ 1
2 g(x,y0) contrary to x̂→ g(x̂,y0) is only 0 at x0. ■

Definition 24.0.3 Suppose U is an open set in Rn ×Rm and (x,y) will denote a
typical point of Rn ×Rm with x ∈ Rn and y ∈ Rm. Let f : U → Rp be in C1 (U) . Then
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define

D1f (x,y) ≡

 f1,x1 (x,y) · · · f1,xn (x,y)
...

...
fp,x1 (x,y) · · · fp,xn (x,y)

 ,

D2f (x,y) ≡

 f1,y1 (x,y) · · · f1,ym (x,y)
...

...
fp,y1 (x,y) · · · fp,ym (x,y)

 .

Theorem 24.0.4 (implicit function theorem) Suppose U is an open set in Rn ×Rm.
Let f : U → Rn be in C1 (U) and suppose

f (x0,y0) = 0, D1f (x0,y0)
−1 exists. (24.1)

Then there exist positive constants, δ ,η , such that for every y ∈ B(y0,η) there exists a
unique x(y) ∈ B(x0,δ ) such that

f (x(y) ,y) = 0. (24.2)

Furthermore, the mapping, y → x(y) is in C1 (B(y0,η)).

Proof: Let

f (x,y) =
(

f1 (x,y) f2 (x,y) · · · fn (x,y)
)T

.

Define for
(
x1, · · · ,xn

)
∈ B(x0,δ )

n
and y ∈ B(y0,η) the following matrix.

J
(
x1, · · · ,xn,y

)
≡

 f1,x1

(
x1,y

)
· · · f1,xn

(
x1,y

)
...

...
fn,x1 (x

n,y) · · · fn,xn (x
n,y)

 . (*)

Then by the assumption of continuity of all the partial derivatives, there exists r > 0 and
δ 0,η0 > 0 such that if δ ≤ δ 0 and η ≤η0, it follows that for all

(
x1, · · · ,xn

)
∈B(x0,δ )

n ≡
B(x0,δ )×B(x0,δ )×·· ·×B(x0,δ ), and y ∈ B(y0,η),∣∣det

(
J
(
x1, · · · ,xn,y

))∣∣> r > 0. (24.3)

and B(x0,δ 0)× B(y0,η0)⊆U . By continuity of all the partial derivatives and the extreme
value theorem, it can also be assumed there exists a constant, K such that for all (x,y) ∈
B(x0,δ 0)× B(y0,η0) and i = 1,2, · · · ,n, the ith row of D2f (x,y) , given by D2 fi (x,y)
satisfies

|D2 fi (x,y)|< K, (24.4)

and for all
(
x1, · · · ,xn

)
∈ B(x0,δ 0)

n
and y ∈ B(y0,η0) the ith row of the matrix,

J
(
x1, · · · ,xn,y

)−1

which equals eT
i

(
J
(
x1, · · · ,xn,y

)−1
)

satisfies∣∣∣eT
i

(
J
(
x1, · · · ,xn,y

)−1
)∣∣∣< K. (24.5)
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(Recall that ei is the column vector consisting of all zeros except for a 1 in the ith position.)
To begin with it is shown that for a given y ∈ B(y0,η) ,η ≤ η0, there is at most one

x ∈ B(x0,δ 0) such that f (x,y) = 0.
Pick y ∈ B(y0,η) and suppose there exist x,z ∈ B(x0,δ ) such that

f (x,y) = f (z,y) = 0

Consider fi and let
h(t)≡ fi (x+ t (z−x) ,y) .

Then h(1) = h(0) and so by the mean value theorem, h′ (ti) = 0 for some ti ∈ (0,1) . There-
fore, from the chain rule and for this value of ti,

h′ (ti) =
n

∑
j=1

∂

∂x j
fi (x+ ti (z−x) ,y)(z j − x j) = 0. (24.6)

Then denote by xi the vector, x+ ti (z−x) . It follows from 24.6 that

J
(
x1, · · · ,xn,y

)
(z−x) = 0

and so from 24.3 z−x= 0. (The matrix, in the above is invertible since its determinant
is nonzero.) Now it will be shown that if η is chosen sufficiently small, then for all y ∈
B(y0,η) , there exists a unique x(y) ∈ B(x0,δ ) such that f (x(y) ,y) = 0.

Claim: If η is small enough, then the function, x→ hy (x) ≡ |f (x,y)|2 achieves its
minimum value on B(x0,δ ) at a point of B(x0,δ ) . This is Proposition 24.0.2.

Choose η < η0 and also small enough that the above claim holds and let x(y) denote
a point of B(x0,δ ) at which the minimum of hy on B(x0,δ ) is achieved. Since x(y) is an
interior point, you can consider hy (x(y)+ tv) for |t| small and conclude this function of t
has a zero derivative at t = 0. Now

hy (x(y)+ tv) =
n

∑
i=1

f 2
i (x(y)+ tv,y)

and so from the chain rule,

d
dt

hy (x(y)+ tv) =
n

∑
i=1

n

∑
j=1

2 fi (x(y)+ tv,y)
∂ fi (x(y)+ tv,y)

∂x j
v j.

Therefore, letting t = 0, it is required that for every v,

n

∑
i=1

n

∑
j=1

2 fi (x(y) ,y)
∂ fi (x(y) ,y)

∂x j
v j = 0.

In terms of matrices this reduces to 0 = 2f (x(y) ,y)T D1f (x(y) ,y)v for every vector
v. Therefore, 0 = f (x(y) ,y)T D1f (x(y) ,y) . From 24.3, it follows f (x(y) ,y) = 0.
This proves the existence of the function y → x(y) such that f (x(y) ,y) = 0 for all y ∈
B(y0,η) .

It remains to verify this function is a C1 function. To do this, let y1 and y2 be points of
B(y0,η) . Then as before, consider the ith component of f and consider the same argument
using the mean value theorem to write

0 = fi (x(y1) ,y1)− fi (x(y2) ,y2)
= fi (x(y1) ,y1)− fi (x(y2) ,y1)+ fi (x(y2) ,y1)− fi (x(y2) ,y2)
= D1 fi

(
xi,y1

)
(x(y1)−x(y2))+D2 fi

(
x(y2) ,y

i
)
(y1 −y2) .

(24.7)
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where yi is a point on the line segment joining y1 and y2. Thus from 24.4 and the Cauchy-
Schwarz inequality, ∣∣D2 fi

(
x(y2) ,y

i)(y1 −y2)
∣∣≤ K |y1 −y2| .

Therefore, letting M
(
y1, · · · ,yn

)
≡ M denote the matrix having the ith row equal to

D2 fi
(
x(y2) ,y

i) ,
it follows

|M (y1 −y2)| ≤

(
∑

i
K2 |y1 −y2|

2

)1/2

=
√

mK |y1 −y2| . (24.8)

Also, from 24.7,

J
(
x1, · · · ,xn,y1

)
(x(y1)−x(y2)) =−M (y1 −y2) (24.9)

and so from 24.8, 24.5,

|x(y1)−x(y2)| =
∣∣∣J (x1, · · · ,xn,y1

)−1
M (y1 −y2)

∣∣∣
=

(
n

∑
i=1

∣∣∣eT
i J
(
x1, · · · ,xn,y1

)−1
M (y1 −y2)

∣∣∣2)1/2

≤

(
n

∑
i=1

K2 |M (y1 −y2)|
2

)1/2

≤

(
n

∑
i=1

K2 (√mK |y1 −y2|
)2

)1/2

= K2√mn |y1 −y2|

Thus y → x(y) is continuous near y0.
Now let y2 = y,y1 = y+hek for small h. Then M depends on h and

lim
h→0

M (h) = D2f (x(y) ,y)

thanks to the continuity of y → x(y) just shown. Also,

x(y+hek)−x(y)

h
=−J

(
x1 (h) , · · · ,xn (h) ,y+hek

)−1
M (h)ek

Passing to a limit and using the formula for the inverse of a matrix in terms of the cofactor
matrix, and the continuity of y → x(y) shown above, this yields

∂x

∂yk
=−D1f (x(y) ,y)−1 D2 fi (x(y) ,y)ek

Then continuity of y → x(y) and the assumed continuity of the partial derivatives of f
shows that each partial derivative of y → x(y) exists and is continuous. ■

This implies the inverse function theorem given next.
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Theorem 24.0.5 (inverse function theorem) Let x0 ∈U, an open set in Rn , and let
f : U → Rn. Suppose

f is C1 (U) , and Df(x0)
−1 exists. (24.10)

Then there exist open sets W, and V such that

x0 ∈W ⊆U, (24.11)

f : W →V is one to one and onto, (24.12)

f−1 is C1, (24.13)

Proof: Apply the implicit function theorem to the function F (x,y)≡ f (x)−y where
y0 ≡ f (x0). Thus the function y → x(y) defined in that theorem is f−1. Now let W ≡
B(x0,δ )∩f−1 (B(y0,η)) and V ≡ B(y0,η) . This proves the theorem. ■

24.1 More Continuous Partial Derivatives
The implicit function theorem will now be improved slightly. If f is Ck, it follows that
the function which is implicitly defined is also Ck, not just C1, meaning all mixed partial
derivatives of f up to order k are continuous. Since the inverse function theorem comes
as a case of the implicit function theorem, this shows that the inverse function also inherits
the property of being Ck. First some notation is convenient. Let α = (α1, · · · ,αn) where
each α i is a nonnegative integer. Then letting |α|= ∑i α i,

Dαf (x)≡ ∂ |α|f

∂ α1∂ α2 · · ·∂ αn
(x) , D0f (x)≡ f (x)

Theorem 24.1.1 (implicit function theorem) Suppose U is an open set in Fn ×Fm.
Let f : U → Fn be in Ck (U) and suppose

f (x0,y0) = 0, D1f (x0,y0)
−1 ∈ L (Fn,Fn) . (24.14)

Then there exist positive constants δ ,η , such that for every y ∈ B(y0,η) there exists a
unique x(y) ∈ B(x0,δ ) such that

f (x(y) ,y) = 0. (24.15)

Furthermore, the mapping y → x(y) is in Ck (B(y0,η)).

Proof: From the implicit function theorem y → x(y) is C1. It remains to show that it
is Ck for k > 1 assuming that f is Ck. From 24.15

∂x

∂yl =−D1f (x,y)−1 ∂f

∂yl .

Thus the following formula holds for q = 1 and |α|= q.

Dαx(y) = ∑
|β |≤q

Mβ (x,y)Dβf (x,y) (24.16)
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where Mβ is a matrix whose entries are differentiable functions of Dγx for |γ| < q and
Dτf (x,y) for |τ| ≤ q. This follows easily from the description of D1f (x,y)−1 in terms of
the cofactor matrix and the determinant of D1f (x,y). Suppose 24.16 holds for |α|= q< k.
Then by induction, this yields x is Cq. Then

∂Dαx(y)

∂yp = ∑
|β |≤|α|

∂Mβ (x,y)

∂yp Dβf (x,y)+Mβ (x,y)
∂Dβf (x,y)

∂yp .

By the chain rule
∂Mβ (x,y)

∂yp is a matrix whose entries are differentiable functions of

Dτf (x,y)

for |τ| ≤ q+ 1 and Dγx for |γ| < q+ 1. It follows, since yp was arbitrary, that for any
|α|= q+1, a formula like 24.16 holds with q being replaced by q+1. By induction, x is
Ck. ■

As a simple corollary, this yields the inverse function theorem. You just let F (x,y) =
y−f (x) and apply the implicit function theorem.

Theorem 24.1.2 (inverse function theorem) Let x0 ∈ U ⊆ Fn and let f : U → Fn.
Suppose for k a positive integer,

f is Ck (U) , and Df(x0)
−1 ∈ L (Fn,Fn). (24.17)

Then there exist open sets W, and V such that

x0 ∈W ⊆U, (24.18)

f : W →V is one to one and onto, (24.19)

f−1 is Ck. (24.20)

24.2 The Method of Lagrange Multipliers
As an application of the implicit function theorem, consider the method of Lagrange mul-
tipliers. Recall the problem is to maximize or minimize a function subject to equality
constraints. Let f : U → R be a C1 function where U ⊆ Rn and let

gi (x) = 0, i = 1, · · · ,m (24.21)

be a collection of equality constraints with m < n. Now consider the system of nonlinear
equations

f (x) = a

gi (x) = 0, i = 1, · · · ,m.

Recall x0 is a local maximum if f (x0) ≥ f (x) for all x near x0 which also satisfies the
constraints 24.21. A local minimum is defined similarly. Let F : U ×R→ Rm+1 be defined
by

F (x,a)≡


f (x)−a
g1 (x)

...
gm (x)

 . (24.22)
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Now consider the m+1×n matrix
fx1 (x0) · · · fxn (x0)

g1x1 (x0) · · · g1xn (x0)
...

...
gmx1 (x0) · · · gmxn (x0)

 .

If this matrix has rank m+1 then some m+1×m+1 submatrix has nonzero determinant.
See Theorem 20.2.15. It follows from the implicit function theorem, there exists m+ 1
variables xi1 , · · · ,xim+1 such that the system

F (x,a) = 0 (24.23)

specifies these m+ 1 variables as a function of the remaining n− (m+1) variables and a
in an open set of Rn−m. Thus there is a solution (x,a) to 24.23 for some x close to x0
whenever a is in some open interval. Therefore, x0 cannot be either a local minimum or
a local maximum. It follows that if x0 is either a local maximum or a local minimum,
then the above matrix must have rank less than m+1. It follows that some row is a linear
combination of the others. Thus there exist m scalars,

λ 1, · · · ,λ m,

and a scalar µ , not all zero such that

µ

 fx1 (x0)
...

fxn (x0)

= λ 1

 g1x1 (x0)
...

g1xn (x0)

+ · · ·+λ m

 gmx1 (x0)
...

gmxn (x0)

 . (24.24)

If the rank of the matrix  g1x1 (x0) · · · gmx1 (x0)
...

...
g1xn (x0) · · · gmxn (x0)

 (24.25)

is m, then we can choose µ = 1 because the columns span Rm. Thus there are scalars λ i
such that fx1 (x0)

...
fxn (x0)

= λ 1

 g1x1 (x0)
...

g1xn (x0)

+ · · ·+λ m

 gmx1 (x0)
...

gmxn (x0)

 (24.26)

at every point x0 which is either a local maximum or a local minimum. This proves the
following theorem.

Theorem 24.2.1 Let U be an open subset of Rn and let f : U →R be a C1 function.
Then if x0 ∈U is either a local maximum or local minimum of f subject to the constraints
24.21, then 24.24 must hold for some scalars µ,λ 1, · · · ,λ m not all equal to zero. If the
rank of the matrix in 24.25 is m, it follows 24.26 holds for some choice of the λ i.



Chapter 25

Line Integrals

The concept of the integral can be extended to functions which are not defined on an interval
of the real line but on some curve in Rp. This is done by defining things in such a way that
the more general concept reduces to the earlier notion. The arc length was discussed in the
first part of this book which was on calculus of functions of one variable as was the notion
of orientation of a curve.

25.1 Line Integrals and Work
Let C be a smooth curve contained in Rp. A curve C is an “oriented curve” if the only
parameterizations considered are those which lie in exactly one of the two equivalence
classes, each of which is called an “orientation”. In simple language, orientation specifies
a direction over which motion along the curve is to take place. Thus, it specifies the order in
which the points of C are encountered. The pair of concepts consisting of the set of points
making up the curve along with a direction of motion along the curve is called an oriented
curve.

Definition 25.1.1 Suppose F (x)∈Rp is given for each x∈C where C is a smooth
oriented curve and suppose x→ F (x) is continuous. The mapping x→ F (x) is called a
vector field. In the case that F (x) is a force, it is called a force field.

Next the concept of work done by a force field F on an object as it moves along the
curve C, in the direction determined by the given orientation of the curve will be defined.
This is new. Earlier the work done by a force which acts on an object moving in a straight
line was discussed but here the object moves over a curve. In order to define what is meant
by the work, consider the following picture.

x(t)

F (x(t))

x(t +h)

533
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In this picture, the work done by a constant force F on an object which moves from the
point x(t) to the point x(t +h) along the straight line shown would equal

F · (x(t +h)−x(t))

It is reasonable to assume this would be a good approximation to the work done in moving
along the curve joining x(t) and x(t +h) provided h is small enough. Also, provided h is
small,

x(t +h)−x(t)≈ x′ (t)h

where the wriggly equal sign indicates the two quantities are close. In the notation of
Leibniz, one writes dt for h and

dW = F (x(t)) ·x′ (t)dt

or in other words,
dW
dt

= F (x(t)) ·x′ (t) .

Defining the total work done by the force at t = 0, corresponding to the first endpoint of
the curve, to equal zero, the work would satisfy the following initial value problem.

dW
dt

= F (x(t)) ·x′ (t) , W (a) = 0.

This motivates the following definition of work.

Definition 25.1.2 Let F (x) be given above. Then the work done by this force
field on an object moving over the curve C in the direction determined by the specified
orientation is defined as ∫

C
F ·d R≡

∫ b

a
F (x(t)) ·x′ (t) dt

where the function x is one of the allowed parameterizations of C in the given orientation
of C. In other words, there is an interval [a,b] and as t goes from a to b, x(t) moves in the
direction determined from the given orientation of the curve.

Theorem 25.1.3 The symbol
∫

C F ·dR, is well defined in the sense that every par-
ametrization in the given orientation of C gives the same value for

∫
C F ·dR.

Proof: Suppose g : [c,d]→ C is another allowed parametrization. Thus g−1 ◦f is an
increasing function φ . Then since φ is increasing, it follows from the change of variables
formula that ∫ d

c
F (g (s)) ·g′ (s) ds =

∫ b

a
F (g (φ (t))) ·g′ (φ (t))φ

′ (t) dt

=
∫ b

a
F (f (t)) · d

dt

(
g
(
g−1 ◦f (t)

))
dt =

∫ b

a
F (f (t)) ·f ′ (t) dt.■

Regardless the physical interpretation of F, this is called the line integral. When F
is interpreted as a force, the line integral measures the extent to which the motion over
the curve in the indicated direction is aided by the force. If the net effect of the force on
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the object is to impede rather than to aid the motion, this will show up as the work being
negative.

Does the concept of work as defined here coincide with the earlier concept of work
when the object moves over a straight line when acted on by a constant force? If it doesn’t,
then the above is not a good definition because it will contradict earlier and more basic
constructions. Math is not like sectarian religions which are typically replete with incon-
sistencies and blatant contradictions.

Let p and q be two points in Rn and suppose F is a constant force acting on an
object which moves from p to q along the straight line joining these points. Then the
work done is F · (q−p). Is the same thing obtained from the above definition? Let
x(t) ≡ p+t (q−p) , t ∈ [0,1] be a parametrization for this oriented curve, thestraight line
in the direction from p to q. Then x′ (t) = q−p and F (x(t)) = F. Therefore, the above
definition yields

∫ 1
0 F · (q−p) dt = F · (q−p) . Therefore, the new definition adds to but

does not contradict the old one. Therefore, it is not unreasonable to use this as the defini-
tion.

Example 25.1.4 Suppose for t ∈ [0,π] the position of an object is given by r (t) = ti+
cos(2t)j+ sin(2t)k. Also suppose there is a force field defined on R3,F (x,y,z)≡ 2xyi+
x2j + k. Find

∫
C F · dR where C is the curve traced out by this object which has the

orientation determined by the direction of increasing t.

To find this line integral use the above definition and write∫
C
F ·dR=

∫
π

0

(
2t (cos(2t)) , t2,1

)
· (1,−2sin(2t) ,2cos(2t)) dt

In evaluating this replace the x in the formula for F with t, the y in the formula for F
with cos(2t) and the z in the formula for F with sin(2t) because these are the values of
these variables which correspond to the value of t. Taking the dot product, this equals the
following integral. ∫

π

0

(
2t cos2t −2(sin2t) t2 +2cos2t

)
dt = π

2

Example 25.1.5 Let C denote the oriented curve obtained by r (t) =
(
t,sin t, t3

)
where the

orientation is determined by increasing t for t ∈ [0,2]. Also let

F = (x,y,xz+ z)

Find
∫

C F ·dR.

You use the definition.∫
C
F ·dR=

∫ 2

0

(
t,sin(t) ,(t +1) t3) · (1,cos(t) ,3t2)dt

=
∫ 2

0

(
t + sin(t)cos(t)+3(t +1) t5

)
dt =

1251
14

− 1
2

cos2 (2) .

Suppose you have a curve specified by r (s) = (x(s) ,y(s) ,z(s)) and it has the property
that |r′ (s)| = 1 for all s ∈ [0,b]. Then the length of this curve for s between 0 and s1
is
∫ s1

0 |r′ (s)|ds =
∫ s1

0 1ds = s1. This parameter is therefore called arc length because the
length of the curve up to s equals s. Now you can always change the parameter to be arc
length.
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Proposition 25.1.6 Suppose C is an oriented smooth curve parameterized by r (t) for
t ∈ [a,b]. Then letting l denote the total length of C, there exists R(s), s ∈ [0, l] another
parametrization for this curve which preserves the orientation and such that

∣∣R′ (s)
∣∣ = 1

so that s is arc length.

Prove: Let φ (t)≡
∫ t

a |r′ (τ)|dτ ≡ s. Then s is an increasing function of t because

ds
dt

= φ
′ (t) =

∣∣r′ (t)∣∣> 0.

Now define R(s)≡ r
(
φ
−1 (s)

)
. Then

R′ (s) = r′
(
φ
−1 (s)

)(
φ
−1)′ (s) = r′

(
φ
−1 (s)

)∣∣r′ (φ−1 (s)
)∣∣

and so
∣∣R′ (s)

∣∣= 1 as claimed. R(l) = r
(
φ
−1 (l)

)
= r

(
φ
−1
(∫ b

a |r′ (τ)|dτ

))
= r (b) and

R(0) = r
(
φ
−1 (0)

)
= r (a) and R delivers the same set of points in the same order as r

because ds
dt > 0. ■

The arc length parameter is just like any other parameter, in so far as considerations
of line integrals are concerned, because it was shown above that line integrals are inde-
pendent of parametrization. However, when things are defined in terms of the arc length
parametrization, it is clear they depend only on geometric properties of the curve itself and
for this reason, the arc length parametrization is important in differential geometry.

Definition 25.1.7 Recall piecewise smooth curves are just smooth curves joined
together at a succession of points p1,p2, · · · ,pm. If C is such a curve which goes from p1
then to p2 then to p3 etc. one defines∫

C
F ·d R≡

∫
Cp1p2

F ·d R+
∫

Cp2p3

F ·d R+ · · ·+
∫

Cp(n−1)n

F ·dR

25.2 Conservative Fields and Notation
Conservative vector fields are the gradient of some scalar function.

Proposition 25.2.1 Suppose C is a piecewise smooth curve which goes from p to q.
Also suppose that F (x) = ∇φ (x) . Then

∫
C F ·dR= φ (q)−φ (p) .

Proof: Say r (t) , t ∈ [ai,bi] is a parametrization for C going from xi−1 to xi and r is
a parameterization for the smooth curve from xi−1 to xi with x0 = p and xm = q. Then,
from the chain rule,∫

C
F ·dR =

m

∑
i=1

∫ bi

ai

∇φ (ri (r)) ·r′i (t)dt =
m

∑
i=1

∫ bi

ai

d
dt

(φ (ri (t)))dt

=
m

∑
i=1

φ (xi)−φ (xi−1) = φ (q)−φ (p) ■

Note how this says that the integral is path independent, depending only on the values
of the function φ , called a potential function, at the end points.
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Definition 25.2.2 Let F (x,y,z) = (P(x,y,z) ,Q(x,y,z) ,R(x,y,z)) and let C be an
oriented curve. Then another way to write

∫
C F ·dR is

∫
C Pdx+Qdy+Rdz

This last is referred to as the integral of a differential form, Pdx+Qdy+Rdz. The
study of differential forms is important. Formally, d R= (dx,dy,dz) and so the integrand
in the above is formally F ·dR. Other occurrences of this notation are handled similarly in
2 or higher dimensions.

25.3 Exercises
1. Let r (t) =

(
ln(t) , t2

2 ,
√

2t
)

for t ∈ [1,2]. Find the length of this curve.

2. Let r (t) =
( 2

3 t3/2, t, t
)

for t ∈ [0,1]. Find the length of this curve.

3. Let r (t) = (t,cos(3t) ,sin(3t)) for t ∈ [0,1]. Find the length of this curve.

4. Suppose for t ∈ [0,π] the position of an object is given by r (t) = ti+ cos(2t)j+
sin(2t)k. Also suppose there is a force field defined on R3,

F (x,y,z)≡ 2xyi+
(
x2 +2zy

)
j+ y2k

Find the work ∫
C
F ·dR

where C is the curve traced out by this object having the orientation determined by
the direction of increasing t.

5. In the following, a force field is specified followed by the parametrization of a curve.
Find the work.

(a) F = (x,y,z) ,r (t) =
(
t, t2, t +1

)
, t ∈ [0,1]

(b) F = (x− y,y+ z,z) ,r (t) = (cos(t) , t,sin(t)) , t ∈ [0,π]

(c) F =
(
x2,y2,z+ x

)
,r (t) =

(
t,2t, t + t2

)
, t ∈ [0,1]

(d) F = (z,y,x) ,r (t) =
(
t2,2t, t

)
, t ∈ [0,1]

6. The curve consists of straight line segments which go from (0,0,0) to (1,1,1) and
finally to (1,2,3). Find the work done if the force field is

(a) F =
(
2xy,x2 +2y,1

)
(b) F =

(
yz2,xz2,2xyz+1

)
(c) F = (cosx,−siny,1)

(d) F =
(
2xsiny,x2 cosy,1

)
7. Show the vector fields in the preceding problems are respectively

∇
(
x2y+ y2 + z

)
,∇
(
xyz2 + z

)
,∇(sinx+ cosy+ z−1)

and ∇
(
x2 siny+ z

)
. Thus each of these vector fields is of the form ∇ f where f is

a function of three variables. Use Proposition 25.2.1 to evaluate each of the line
integrals. Compare with what you get by doing it directly.



538 CHAPTER 25. LINE INTEGRALS

8. Suppose for t ∈ [0,1] the position of an object is given by r (t) = ti+ tj + tk.
Also suppose there is a force field defined on R3,F (x,y,z)≡ yzi+ xzj+ xyk. Find∫

C F · dR where C is the curve traced out by this object which has the orientation de-
termined by the direction of increasing t. Repeat the problem for r (t)= ti+t2j+tk.
Verify a scalar potential is φ (x,y,z) = xyz.

9. Here is a vector field
(
y,x+ z2,2yz

)
and here is the parametrization of a curve C.

R(t) = (cos2t,2sin2t, t) where t goes from 0 to π/4. Find
∫

C F ·dR.

10. If f and g are both increasing functions, show that f ◦ g is an increasing function
also. Assume anything you like about the domains of the functions.

11. Suppose for t ∈ [0,3] the position of an object is given by r (t) = ti+ tj + tk.
Also suppose there is a force field defined on R3,F (x,y,z)≡ yzi+ xzj+ xyk. Find∫

C F · dR where C is the curve traced out by this object which has the orientation de-
termined by the direction of increasing t. Repeat the problem for r (t)= ti+t2j+tk.

12. Suppose for t ∈ [0,1] the position of an object is given by r (t) = ti+ tj + tk.
Also suppose there is a force field defined on R3,F (x,y,z) ≡ zi+ xzj+ xyk. Find∫

C F ·dR where C is the curve traced out by this object which has the orientation de-
termined by the direction of increasing t. Repeat the problem for r (t)= ti+t2j+tk.

13. Let F (x,y,z) be a given force field and suppose it acts on an object having mass m
on a curve with parametrization, (x(t) ,y(t) ,z(t)) for t ∈ [a,b]. Show directly that
the work done equals the difference in the kinetic energy. Hint:∫ b

a
F (x(t) ,y(t) ,z(t)) ·

(
x′ (t) ,y′ (t) ,z′ (t)

)
dt

=
∫ b

a
m
(
x′′ (t) ,y′′ (t) ,z′′ (t)

)
·
(
x′ (t) ,y′ (t) ,z′ (t)

)
dt,

14. Suppose for t ∈ [0,2π] the position of an object is given by

r (t) = 2ti+ cos(t)j+ sin(t)k.

Also suppose there is a force field defined on R3,

F (x,y,z)≡ 2xyi+
(
x2 +2zy

)
j+ y2k.

Find the work
∫

C F ·dR where C is the curve traced out by this object which has the
orientation determined by the direction of increasing t.

15. Here is a vector field
(
y,x2 + z,2yz

)
and here is the parametrization of a curve C.

R(t) = (cos2t,2sin2t, t) where t goes from 0 to π/4. Find
∫

C F ·dR.



Chapter 26

The Riemannn Integral on Rp

26.1 Methods for Double Integrals
This chapter is on the Riemannn integral for a function of p variables. It begins by in-
troducing the basic concepts and applications of the integral. The general considerations
including the definition of the integral and proofs of theorems are left till later. These are
very difficult topics and are likely better considered in the context of the Lebesgue integral.
Consider the following region which is labeled R.

R

a b

y = t(x)

y = b(x)

y

x

We will consider the following iterated integral which makes sense for any continuous
function f (x,y) . ∫ b

a

∫ t(x)

b(x)
f (x,y)dydx

It means just exactly what the notation suggests it does. You fix x and then you do the
inside integral ∫ t(x)

b(x)
f (x,y)dy

This yields a function of x which will end up being continuous. You then do
∫ b

a dx to this
continuous function.

What was it about the above region which made it possible to set up such an iterated
integral? It was just this: You have a curve on the top y = t (x) , and a curve on the bottom
y = b(x) for x ∈ [a,b]. You could have set up a similar iterated integral if you had a region
in which there was a curve on the left and a curve on the right for y in some interval. Here
is an example.

Example 26.1.1 Suppose t (x) = 4−x2,b(x) = 0 and a =−2,b = 2. Compute the iterated
integral described above for f (x,y) = xy+ y.

539
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Consider the graphs of these functions.
4

-2 2

x =
√

4− yx =−
√

4− y

Filling in the limits as above, we obtain∫ 2

−2

∫ 4−x2

0
(xy+ y)dydx =

∫ 2

−2

1
2
(
x2 −4

)2
(x+1)dx =

256
15

Of course one could do the iterated integral in the other order for this example. In this case,
you would be considering a curve on the left x =−

√
4− y, a curve on the right x =

√
4− y,

and y ∈ [0,4] . Thus this iterated integral would be of the form∫ 4

0

∫ √
4−y

−
√

4−y
(xy+ y)dxdy =

∫ 4

0
2y
√

4− ydy =
256
15

Why should it be the case that these two iterated integrals are equal? This involves a
consideration of what you are computing when you do such an iterated integral. First note
that in the general example given above involving t (x) ,b(x) , it would not have been at
all convenient to have done the iterated integral in the other order. So what is it you are
getting? Consider the first illustration where the region is between y = b(x) and y = t (x).
Consider the following picture

R

a b

y = t(x)

y = b(x)

y

x

For simplicity, we let the distance between the vertical lines be ∆x and the distance
between the horizontal lines be ∆y. We will only consider those rectangles which intersect
the region R. Thus we will have a = x0 < x1 < · · · < xn = b and in the vertical direction,
we will have

yim(i) < yi(m(i)+1) < · · ·< yiM(i)

where m(i) is the largest such that yim(i) is no larger than b(xi) and M (i) is the smallest
such that yiM(i) is as large as y(xi) . Then the iterated integral should satisfy the following
approximate equalities∫ b

a

∫ t(x)

b(x)
f (x,y)dydx =

n

∑
i=1

∫ xi

xi−1

∫ t(x)

b(x)
f (x,y)dydx

≈
n

∑
i=1

∫ xi

xi−1

∫ t(xi)

b(xi)
f (xi,y)dydx

≈
n

∑
i=1

∫ xi

xi−1

M(i)

∑
j=m(i)

f (xi,yi j)∆ydx

=
n

∑
i=1

M(i)

∑
j=m(i)

f (xi,yi j)∆y∆x
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where we can extend f to be 0 off the region R. We would expect these approximations
to improve as ∆x,∆y converge to 0, provided that the bounday of R is sufficiently “thin”.
Thus the iterated integral ought to equal the number to which the “Riemannn sums” repre-
sented by the last expression converge as ∆x,∆y → 0. That sum on the right is really just a
systematic way of taking the value of the function at a point of a rectangle which intersects
R, multiplying by the area of the rectangle containing this point and adding them together.
It would have worked out similarly if we had been able to do the iterated integral in the
other order, provided the boundary of R is “thin” enough, a completely stupid considera-
tion which is not needed in the context of the Lebesgue integral. We would still have a sum
of values of the function times areas of little rectangles. This is why it is entirely reasonable
to expect the iterated integrals in two different orders to be equal. It is also why the iterated
integral is approximating something which we call the Riemannn integral.

For another more precise explanation for equality of iterated integrals in the case where
the function is continuous, see Problem 7 on Page 248. For the whole story, see the chapter
on the Lebesgue integral.

Definition 26.1.2 Let R be a bounded region in the xy plane and let f be a bounded
function defined on R. We say f is Riemannn integrable if there exists a number, denoted
by
∫

R f dA and called the Riemannn integral such that if ε > 0 is given, then whenever
one imposes a sufficiently fine mesh enclosing R and considers the finitely many rectangles
which intersect R, numbered as {Qi}m

i=1 and a point (xi,yi) ∈ Qi, it follows that∣∣∣∣∣
∫

R
f dA−∑

i
f (xi,yi)area(Qi)

∣∣∣∣∣< ε

It is
∫

R f dA which is of interest. The iterated integral should always be considered as a
tool for computing this number. When this is kept in mind, things become less confusing.
Also, it is helpful to consider

∫
R f dA as a kind of a glorified sum. It means to take the value

of f at a point and multiply by a little chunk of area dA and then add these together, hence
the integral sign which is really just an elongated symbol for a sum.

The careful explanation of these ideas is contained later in a special chapter devoted to
the theory of the integral. I have presented there the Lebesgue integral because it is much
easier to understand and use although it is more abstract.

Example 26.1.3 Let f (x,y) = x2y+ yx for (x,y) ∈ R where R is the triangular region de-
fined to be in the first quadrant, below the line y = x and to the left of the line x = 4. Find∫

R f dA.

x

y

4

R

From the above discussion,∫
R

f dA =
∫ 4

0

∫ x

0

(
x2y+ yx

)
dydx

The reason for this is that x goes from 0 to 4 and for each fixed x between 0 and 4, y goes
from 0 to the slanted line, y = x, the function being defined to be 0 for larger y. Thus y goes
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from 0 to x. This explains the inside integral. Now
∫ x

0
(
x2y+ yx

)
dy = 1

2 x4 + 1
2 x3 and so∫

R
f dA =

∫ 4

0

(
1
2

x4 +
1
2

x3
)

dx =
672
5

.

What of integration in a different order? Lets put the integral with respect to y on the
outside and the integral with respect to x on the inside. Then∫

R
f dA =

∫ 4

0

∫ 4

y

(
x2y+ yx

)
dxdy

For each y between 0 and 4, the variable x, goes from y to 4.∫ 4

y

(
x2y+ yx

)
dx =

88
3

y− 1
3

y4 − 1
2

y3

Now ∫
R

f dA =
∫ 4

0

(
88
3

y− 1
3

y4 − 1
2

y3
)

dy =
672

5
.

Here is a similar example.

Example 26.1.4 Let f (x,y) = x2y for (x,y)∈ R where R is the triangular region defined to
be in the first quadrant, below the line y = 2x and to the left of the line x = 4. Find

∫
R f dA.

x

y

4

R

Put the integral with respect to x on the outside first. Then∫
R

f dA =
∫ 4

0

∫ 2x

0

(
x2y
)

dydx

because for each x ∈ [0,4], y goes from 0 to 2x. Then∫ 2x

0

(
x2y
)

dy = 2x4

and so ∫
R

f dA =
∫ 4

0

(
2x4) dx =

2048
5

Now do the integral in the other order. Here the integral with respect to y will be on the
outside. What are the limits of this integral? Look at the triangle and note that x goes from
0 to 4 and so 2x = y goes from 0 to 8. Now for fixed y between 0 and 8, where does x go? It
goes from the x coordinate on the line y = 2x which corresponds to this y to 4. What is the
x coordinate on this line which goes with y? It is x = y/2. Therefore, the iterated integral is∫ 8

0

∫ 4

y/2

(
x2y
)

dxdy.
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Now ∫ 4

y/2

(
x2y
)

dx =
64
3

y− 1
24

y4

and so ∫
R

f dA =
∫ 8

0

(
64
3

y− 1
24

y4
)

dy =
2048

5

the same answer.
A few observations are in order here. In finding

∫
S f dA there is no problem in setting

things up if S is a rectangle. However, if S is not a rectangle, the procedure always is
agonizing. A good rule of thumb is that if what you do is easy it will be wrong. There
are no shortcuts! There are no quick fixes which require no thought! Pain and suffering
is inevitable and you must not expect it to be otherwise. Always draw a picture and then
begin agonizing over the correct limits. Even when you are careful you will make lots of
mistakes until you get used to the process.

Sometimes an integral can be evaluated in one order but not in another.

Example 26.1.5 For R as shown below, find
∫

R sin
(
y2
)

dA.

x

8

4

R

Setting this up to have the integral with respect to y on the inside yields∫ 4

0

∫ 8

2x
sin
(
y2) dydx.

Unfortunately, there is no antiderivative in terms of elementary functions for sin
(
y2
)

so
there is an immediate problem in evaluating the inside integral. It doesn’t work out so the
next step is to do the integration in another order and see if some progress can be made.
This yields ∫ 8

0

∫ y/2

0
sin
(
y2) dxdy =

∫ 8

0

y
2

sin
(
y2) dy

and
∫ 8

0
y
2 sin

(
y2
)

dy =− 1
4 cos64+ 1

4 which you can verify by making the substitution, u =

y2. Thus ∫
R

sin
(
y2) dy =−1

4
cos64+

1
4
.

This illustrates an important idea. The integral
∫

R sin
(
y2
)

dA is defined as a number.
It is the unique number between all the upper sums and all the lower sums. Finding it is
another matter. In this case it was possible to find it using one order of integration but not
the other. The iterated integral in this other order also is defined as a number but it cannot be
found directly without interchanging the order of integration. Of course sometimes nothing
you try will work out.
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26.1.1 Density and Mass
Consider a two dimensional material. Of course there is no such thing but a flat plate
might be modeled as one. The density ρ is a function of position and is defined as follows.
Consider a small chunk of area dA located at the point whose Cartesian coordinates are
(x,y). Then the mass of this small chunk of material is given by ρ (x,y) dA. Thus if the
material occupies a region in two dimensional space U , the total mass of this material
would be ∫

U
ρ dA

In other words you integrate the density to get the mass. Now by letting ρ depend on
position, you can include the case where the material is not homogeneous. Here is an
example.

Example 26.1.6 Let ρ (x,y) denote the density of the plane region determined by the curves
1
3 x+ y = 2,x = 3y2, and x = 9y. Find the total mass if ρ (x,y) = y.

You need to first draw a picture of the region R. A rough sketch follows.

(3,1)

(9/2,1/2)

(0,0)

x = 3y2 (1/3)x+ y = 2

x = 9y

This region is in two pieces, one having the graph of x = 9y on the bottom and the
graph of x = 3y2 on the top and another piece having the graph of x = 9y on the bottom and
the graph of 1

3 x+ y = 2 on the top. Therefore, in setting up the integrals, with the integral
with respect to x on the outside, the double integral equals the following sum of iterated
integrals.

has x=3y2 on top︷ ︸︸ ︷∫ 3

0

∫ √
x/3

x/9
ydydx+

has 1
3 x+y=2 on top︷ ︸︸ ︷∫ 9

2

3

∫ 2− 1
3 x

x/9
ydydx

You notice it is not necessary to have a perfect picture, just one which is good enough to
figure out what the limits should be. The dividing line between the two cases is x = 3 and
this was shown in the picture. Now it is only a matter of evaluating the iterated integrals
which in this case is routine and gives 1.

26.2 Exercises
1. Evaluate the iterated integral and then write the iterated integral with the order of

integration reversed.
∫ 4

0
∫ 3y

0 xdxdy.

2. Evaluate the iterated integral and then write the iterated integral with the order of
integration reversed.

∫ 3
0
∫ 3y

0 ydxdy.
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3. Evaluate the iterated integral and then write the iterated integral with the order of
integration reversed.

∫ 2
0
∫ 2y

0 (x+1)dxdy.

4. Evaluate the iterated integral and then write the iterated integral with the order of
integration reversed.

∫ 3
0
∫ y

0 sin(x) dxdy.

5. Evaluate the iterated integral and then write the iterated integral with the order of
integration reversed.

∫ 1
0
∫ y

0 exp(y) dxdy.

6. Let ρ (x,y) denote the density of the plane region closest to (0,0) which is between
the curves x+2y = 3,x = y2, and x = 0. Find the total mass if ρ (x,y) = y. Set up the
integral in terms of dxdy and in terms of dydx.

7. Let ρ (x,y) denote the density of the plane region determined by the curves x+2y =
3,x = y2, and x = 4y. Find the total mass if ρ (x,y) = x. Set up the integral in terms
of dxdy and dydx.

8. Let ρ (x,y) denote the density of the plane region determined by the curves y =
2x,y = x,x+ y = 3. Find the total mass if ρ (x,y) = y+ 1. Set up the integrals in
terms of dxdy and dydx.

9. Let ρ (x,y) denote the density of the plane region determined by the curves y =
3x,y = x,2x+ y = 4. Find the total mass if ρ (x,y) = 1.

10. Let ρ (x,y) denote the density of the plane region determined by the curves y =
3x,y = x,x+ y = 2. Find the total mass if ρ (x,y) = x+ 1. Set up the integrals in
terms of dxdy and dydx.

11. Let ρ (x,y) denote the density of the plane region determined by the curves y =
5x,y = x,5x+ 2y = 10. Find the total mass if ρ (x,y) = 1. Set up the integrals in
terms of dxdy and dydx.

12. Find
∫ 4

0
∫ 2

y/2
1
x e2 y

x dxdy. You might need to interchange the order of integration.

13. Find
∫ 8

0
∫ 4

y/2
1
x e3 y

x dxdy.

14. Find
∫ 1

3 π

0
∫ 1

3 π

x
siny

y dydx.

15. Find
∫ 1

2 π

0
∫ 1

2 π

x
siny

y dydx.

16. Find
∫

π

0
∫

π

x
siny

y dydx

17. ∗ Evaluate the iterated integral and then write the iterated integral with the order of
integration reversed.

∫ 3
−3
∫ x
−x x2 dydx

You should get∫ 0

3

∫ −y

−3
x2 dxdy+

∫ −3

0

∫ y

−3
x2 dxdy+

∫ 3

0

∫ 3

y
x2 dxdy+

∫ 0

−3

∫ 3

−y
x2 dxdy

This is a very interesting example which shows that iterated integrals have a life of
their own, not just as a method for evaluating double integrals.

18. ∗ Evaluate the iterated integral and then write the iterated integral with the order of
integration reversed.

∫ 2
−2
∫ x
−x x2 dydx.
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26.3 Methods for Triple Integrals

26.3.1 Definition of the Integral
The integral of a function of three variables is similar to the integral of a function of two
variables. In this case, the term: “mesh” refers to a collection of little boxes which covers
a given region in R.

Definition 26.3.1 Let R be a bounded region in the R3 and let f be a bounded
function defined on R. We say f is Riemannn integrable if there exists a number, denoted
by
∫

R f dV and called the Riemannn integral such that if ε > 0 is given, then whenever one
imposes a sufficiently fine mesh enclosing R and considers the finitely many boxes which
intersect R, numbered as {Qi}m

i=1 and a point (xi,yi,zi) ∈ Qi, it follows that∣∣∣∣∣
∫

R
f dV −∑

i
f (xi,yi,zi)volume(Qi)

∣∣∣∣∣< ε

Of course one can continue generalizing to higher dimensions by analogy. By exactly
similar reasoning to the case of integrals of functions of two variables, we can consider
iterated integrals as a tool for finding the Riemannn integral of a function of three or more
variables.

26.3.2 Iterated Integrals
As before, the integral is often computed by using an iterated integral. In general it is
impossible to set up an iterated integral for finding

∫
E f dV for arbitrary regions, E but

when the region is sufficiently simple, one can make progress. Suppose the region E over
which the integral is to be taken is of the form E = {(x,y,z) : a(x,y)≤ z ≤ b(x,y)} for
(x,y) ∈ R, a two dimensional region. This is illustrated in the following picture in which
the bottom surface is the graph of z = a(x,y) and the top is the graph of z = b(x,y).

x

z

y

R

Then ∫
E

f dV =
∫

R

∫ b(x,y)

a(x,y)
f (x,y,z)dzdA
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It might be helpful to think of dV = dzdA. Now
∫ b(x,y)

a(x,y) f (x,y,z)dz is a function of x and
y and so you have reduced the triple integral to a double integral over R of this func-
tion of x and y. Similar reasoning would apply if the region in R3 were of the form
{(x,y,z) : a(y,z)≤ x ≤ b(y,z)} or {(x,y,z) : a(x,z)≤ y ≤ b(x,z)}.

Example 26.3.2 Find the volume of the region E in the first octant between z = 1− (x+ y)
and z = 0.

In this case, R is the region shown.

x

y

R

1 x

y

z

Thus the region E is between the plane z = 1− (x+ y) on the top, z = 0 on the bottom,
and over R shown above. Thus∫

E
1dV =

∫
R

∫ 1−(x+y)

0
dzdA =

∫ 1

0

∫ 1−x

0

∫ 1−(x+y)

0
dzdydx =

1
6

Of course iterated integrals have a life of their own although this will not be explored
here. You can just write them down and go to work on them. Here are some examples.

Example 26.3.3 Find
∫ 3

2
∫ x

3
∫ x

3y (x− y) dzdydx.

The inside integral yields
∫ x

3y (x− y) dz = x2 −4xy+3y2. Next this must be integrated
with respect to y to give

∫ x
3
(
x2 −4xy+3y2

)
dy=−3x2+18x−27. Finally the third integral

gives ∫ 3

2

∫ x

3

∫ x

3y
(x− y) dzdydx =

∫ 3

2

(
−3x2 +18x−27

)
dx =−1.

Example 26.3.4 Find
∫

π

0
∫ 3y

0
∫ y+z

0 cos(x+ y) dxdzdy.

The inside integral is
∫ y+z

0 cos(x+ y) dx = 2coszsinycosy+2sinzcos2 y−sinz−siny.
Now this has to be integrated.∫ 3y

0

∫ y+z

0
cos(x+ y) dxdz

=
∫ 3y

0

(
2coszsinycosy+2sinzcos2 y− sinz− siny

)
dz

=−1−16cos5 y+20cos3 y−5cosy−3(siny)y+2cos2 y.
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Finally, this last expression must be integrated from 0 to π . Thus∫
π

0

∫ 3y

0

∫ y+z

0
cos(x+ y) dxdzdy

=
∫

π

0

(
−1−16cos5 y+20cos3 y−5cosy−3(siny)y+2cos2 y

)
dy =−3π

Example 26.3.5 Here is an iterated integral:
∫ 2

0
∫ 3− 3

2 x
0

∫ x2

0 dzdydx. Write as an iterated
integral in the order dzdxdy.

The inside integral is just a function of x and y. (In fact, only a function of x.) The order
of the last two integrals must be interchanged. Thus the iterated integral which needs to be
done in a different order is ∫ 2

0

∫ 3− 3
2 x

0
f (x,y) dydx.

As usual, it is important to draw a picture and then go from there.

3− 3
2 x = y

3

2
Thus this double integral equals

∫ 3

0

∫ 2
3 (3−y)

0
f (x,y) dxdy.

Now substituting in for f (x,y),

∫ 3

0

∫ 2
3 (3−y)

0

∫ x2

0
dzdxdy.

Example 26.3.6 Find the volume of the bounded region determined by 3y+ 3z = 2,x =
16− y2,y = 0,x = 0.

In the yz plane, the first of the following pictures corresponds to x = 0.

3y+3z = 2

2
3

2
3

y (0,0,0)

z

x = 16− y2
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Therefore, the outside integrals taken with respect to z and y are of the form

∫ 2
3

0

∫ 2
3−y

0
dzdy

and now for any choice of (y,z) in the above triangular region, x goes from 0 to 16− y2.
Therefore, the iterated integral is

∫ 2
3

0

∫ 2
3−y

0

∫ 16−y2

0
dxdzdy =

860
243

Example 26.3.7 Find the volume of the region determined by the intersection of the two
cylinders, x2 + y2 ≤ 1 and x2 + z2 ≤ 1.

The first listed cylinder intersects the xy plane in the disk, x2 + y2 ≤ 1. What is the
volume of the three dimensional region which is between this disk and the two surfaces,
z =

√
1− x2 and z =−

√
1− x2? An iterated integral for the volume is

∫ 1

−1

∫ √
1−x2

−
√

1−x2

∫ √
1−x2

−
√

1−x2
dzdydx =

16
3
.

Note that I drew no picture of the three dimensional region. If you are interested, here it is.

One of the cylinders is parallel to the z axis, x2 + y2 ≤ 1 and the other is parallel to the
y axis, x2 + z2 ≤ 1. I did not need to be able to draw such a nice picture in order to work
this problem. This is the key to doing these. Draw pictures in two dimensions and reason
from the two dimensional pictures rather than attempt to wax artistic and consider all three
dimensions at once. These problems are hard enough without making them even harder by
attempting to be an artist.

26.4 Exercises
1. Find the following iterated integrals.

(a)
∫ 3
−1
∫ 2z

0
∫ z+1

y (x+ y)dxdydz

(b)
∫ 1

0
∫ z

0
∫ z2

y (y+ z)dxdydz



550 CHAPTER 26. THE RIEMANNN INTEGRAL ON Rp

(c)
∫ 3

0
∫ x

1
∫ 3x−y

2 sin(x)dzdydx

(d)
∫ 1

0
∫ 2x

x
∫ 2y

y dzdydx

(e)
∫ 4

2
∫ 2x

2
∫ x

2y dzdydx

(f)
∫ 3

0
∫ 2−5x

0
∫ 2−x−2y

0 2x dzdydx

(g)
∫ 2

0
∫ 1−3x

0
∫ 3−3x−2y

0 x dzdydx

(h)
∫

π

0
∫ 3y

0
∫ y+z

0 cos(x+ y) dxdzdy

(i)
∫

π

0
∫ 4y

0
∫ y+z

0 sin(x+ y) dxdzdy

2. Fill in the missing limits.∫ 1
0
∫ z

0
∫ z

0 f (x,y,z) dxdydz =
∫ ?

?
∫ ?

?
∫ ?

? f (x,y,z) dxdzdy,∫ 1
0
∫ z

0
∫ 2z

0 f (x,y,z) dxdydz =
∫ ?

?
∫ ?

?
∫ ?

? f (x,y,z) dydzdx,∫ 1
0
∫ z

0
∫ z

0 f (x,y,z) dxdydz =
∫ ?

?
∫ ?

?
∫ ?

? f (x,y,z) dzdydx,∫ 1
0
∫√z

z/2

∫ y+z
0 f (x,y,z) dxdydz =

∫ ?
?
∫ ?

?
∫ ?

? f (x,y,z) dxdzdy,∫ 6
4
∫ 6

2
∫ 4

0 f (x,y,z) dxdydz =
∫ ?

?
∫ ?

?
∫ ?

? f (x,y,z) dzdydx.

3. Find the volume of R where R is the bounded region formed by the plane 1
5 x+ y+

1
4 z = 1 and the planes x = 0,y = 0,z = 0.

4. Find the volume of R where R is the bounded region formed by the plane 1
5 x+ 1

2 y+
1
4 z = 1 and the planes x = 0,y = 0,z = 0.

5. Find the volume of R where R is the bounded region formed by the plane 1
5 x+ 1

3 y+
1
4 z = 1 and the planes x = 0,y = 0,z = 0.

6. Find the volume of the bounded region determined by 3y+ z = 3,x = 4− y2,y =
0,x = 0.

7. Find the volume of the region bounded by x2 + y2 = 16,z = 3x,z = 0, and x ≥ 0.

8. Find the volume of R where R is the bounded region formed by the plane 1
4 x+ 1

2 y+
1
4 z = 1 and the planes x = 0,y = 0,z = 0.

9. Here is an iterated integral:
∫ 3

0
∫ 3−x

0
∫ x2

0 dzdydx. Write as an iterated integral in the
following orders: dzdxdy, dxdzdy, dxdydz, dydxdz, dydzdx.

10. Find the volume of the bounded region determined by 2y+ z = 3,x = 9− y2,y =
0,x = 0,z = 0.

11. Find the volume of the bounded region determined by y+ 2z = 3,x = 9− y2,y =
0,x = 0.

12. Find the volume of the bounded region determined by y+z = 2,x = 3−y2,y = 0,x =
0.

13. Find the volume of the region bounded by x2 + y2 = 25,z = x,z = 0, and x ≥ 0.

Your answer should be 250
3 .

14. Find the volume of the region bounded by x2 + y2 = 9,z = 3x,z = 0, and x ≥ 0.
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26.4.1 Mass and Density
As an example of the use of triple integrals, consider a solid occupying a set of points
U ⊆ R3 having density ρ . Thus ρ is a function of position and the total mass of the solid
equals

∫
U ρ dV . This is just like the two dimensional case. The mass of an infinitesimal

chunk of the solid located at x would be ρ (x) dV and so the total mass is just the sum of
all these,

∫
U ρ (x) dV .

Example 26.4.1 Find the volume of R where R is the bounded region formed by the plane
1
5 x+ y+ 1

5 z = 1 and the planes x = 0,y = 0,z = 0.

When z = 0, the plane becomes 1
5 x+y = 1. Thus the intersection of this plane with the

xy plane is this line shown in the following picture.

1

5
Therefore, the bounded region is between the triangle formed in the above picture by

the x axis, the y axis and the above line and the surface given by 1
5 x+ y+ 1

5 z = 1 or z =
5
(
1−
( 1

5 x+ y
))

= 5− x−5y. Therefore, an iterated integral which yields the volume is

∫ 5

0

∫ 1− 1
5 x

0

∫ 5−x−5y

0
dzdydx =

25
6
.

Example 26.4.2 Find the mass of the bounded region R formed by the plane 1
3 x+ 1

3 y+ 1
5 z=

1 and the planes x = 0,y = 0,z = 0 if the density is ρ (x,y,z) = z.

This is done just like the previous example except in this case, there is a function to
integrate. Thus the answer is

∫ 3

0

∫ 3−x

0

∫ 5− 5
3 x− 5

3 y

0
z dzdydx =

75
8
.

Example 26.4.3 Find the total mass of the bounded solid determined by z = 9− x2 − y2

and x,y,z ≥ 0 if the mass is given by ρ (x,y,z) = z

When z = 0 the surface z = 9− x2 − y2 intersects the xy plane in a circle of radius 3
centered at (0,0). Since x,y ≥ 0, it is only a quarter of a circle of interest, the part where
both these variables are nonnegative. For each (x,y) inside this quarter circle, z goes from
0 to 9− x2 − y2. Therefore, the iterated integral is of the form,

∫ 3

0

∫ √(9−x2)

0

∫ 9−x2−y2

0
z dzdydx =

243
8

π

Example 26.4.4 Find the volume of the bounded region determined by x ≥ 0,y ≥ 0,z ≥ 0,
and 1

7 x+ y+ 1
4 z = 1, and x+ 1

7 y+ 1
4 z = 1.

When z = 0, the plane 1
7 x+y+ 1

4 z = 1 intersects the xy plane in the line whose equation
is 1

7 x+ y = 1, while the plane, x+ 1
7 y+ 1

4 z = 1 intersects the xy plane in the line whose



552 CHAPTER 26. THE RIEMANNN INTEGRAL ON Rp

equation is x+ 1
7 y = 1. Furthermore, the two planes intersect when x = y as can be seen

from the equations, x+ 1
7 y = 1− z

4 and 1
7 x+ y = 1− z

4 which imply x = y. Thus the two
dimensional picture to look at is depicted in the following picture.

x+ 1
7 y+ 1

4 z = 1

y+ 1
7 x+ 1

4 z = 1R1
R2

y = x

You see in this picture, the base of the region in the xy plane is the union of the two
triangles, R1 and R2. For (x,y)∈ R1, z goes from 0 to what it needs to be to be on the plane,
1
7 x+ y+ 1

4 z = 1. Thus z goes from 0 to 4
(
1− 1

7 x− y
)
. Similarly, on R2, z goes from 0 to

4
(
1− 1

7 y− x
)
. Therefore, the integral needed is

∫
R1

∫ 4(1− 1
7 x−y)

0
dzdV +

∫
R2

∫ 4(1− 1
7 y−x)

0
dzdV

and now it only remains to consider
∫

R1
dV and

∫
R2

dV. The point of intersection of these
lines shown in the above picture is

( 7
8 ,

7
8

)
and so an iterated integral is

∫ 7/8

0

∫ 1− x
7

x

∫ 4(1− 1
7 x−y)

0
dzdydx+

∫ 7/8

0

∫ 1− y
7

y

∫ 4(1− 1
7 y−x)

0
dzdxdy =

7
6

26.5 Exercises
1. Find the volume of the region determined by the intersection of the two cylinders,

x2 + y2 ≤ 16 and y2 + z2 ≤ 16.

2. Find the volume of the region determined by the intersection of the two cylinders,
x2 + y2 ≤ 9 and y2 + z2 ≤ 9.

3. Find the volume of the region bounded by x2 + y2 = 4,z = 0,z = 5− y

4. Find
∫ 2

0
∫ 6−2z

0
∫ 3−z

1
2 x

(3− z)cos
(
y2
)

dydxdz.

5. Find
∫ 1

0
∫ 18−3z

0
∫ 6−z

1
3 x

(6− z)exp
(
y2
)

dydxdz.

6. Find
∫ 2

0
∫ 24−4z

0
∫ 6−z

1
4 y

(6− z)exp
(
x2
)

dxdydz.

7. Find
∫ 1

0
∫ 10−2z

0
∫ 5−z

1
2 y

sinx
x dxdydz.

Hint: Interchange order of integration.
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8. Find the mass of the bounded region R formed by the plane 1
4 x+ 1

2 y+ 1
3 z = 1 and the

planes x = 0,y = 0,z = 0 if the density is ρ (x,y,z) = y

9. Find the mass of the bounded region R formed by the plane 1
2 x+ 1

2 y+ 1
4 z = 1 and the

planes x = 0,y = 0,z = 0 if the density is ρ (x,y,z) = z2

10. Find the mass of the bounded region R formed by the plane 1
4 x+ 1

2 y+ 1
4 z = 1 and the

planes x = 0,y = 0,z = 0 if the density is ρ (x,y,z) = y+ z

11. Find the mass of the bounded region R formed by the plane 1
4 x+ 1

2 y+ 1
5 z = 1 and the

planes x = 0,y = 0,z = 0 if the density is ρ (x,y,z) = y

12. Find
∫ 1

0
∫ 12−4z

0
∫ 3−z

1
4 y

sinx
x dxdydz.

13. Find
∫ 20

0
∫ 2

0
∫ 6−z

1
5 y

sinx
x dxdzdy+

∫ 30
20
∫ 6− 1

5 y
0

∫ 6−z
1
5 y

sinx
x dxdzdy.

14. Find the volume of the bounded region determined by x ≥ 0,y ≥ 0,z ≥ 0, and 1
2 x+

y+ 1
2 z = 1, and x+ 1

2 y+ 1
2 z = 1.

15. Find the volume of the bounded region determined by x ≥ 0,y ≥ 0,z ≥ 0, and 1
7 x+

y+ 1
3 z = 1, and x+ 1

7 y+ 1
3 z = 1.

16. Find an iterated integral for the volume of the region between the graphs of z =
x2 + y2 and z = 2(x+ y).

17. Find the volume of the region which lies between z = x2 + y2 and the plane z = 4.

18. The base of a solid is the region in the xy plane between the curves y = x2 and y = 1.
The top of the solid is the plane z = 2− x. Find the volume of the solid.

19. The base of a solid is in the xy plane and is bounded by the lines y = x,y = 1−x, and
y = 0. The top of the solid is z = 3− y. Find its volume.

20. The base of a solid is in the xy plane and is bounded by the lines x = 0,x = π,y = 0,
and y = sinx. The top of this solid is z = x. Find the volume of this solid.
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Chapter 27

The Integral in Other
Coordinates

27.1 Polar Coordinates
Recall the relation between the rectangular coordinates and polar coordinates is

x(r,θ)≡
(

x
y

)
=

(
r cos(θ)
r sin(θ)

)
, r ≥ 0, θ ∈ [0,2π)

Now consider the part of grid obtained by fixing θ at various values and varying r and then
by fixing r at various values and varying θ .

The idea is that these lines obtained by fixing one or the other coordinate are very
close together, much closer than drawn and so we would expect the area of one of the
little curvy quadrilaterals to be close to the area of the parallelogram shown. Consider
this parallelogram. The two sides originating at the intersection of two of the grid lines as
shown are approximately equal to

xr (r,θ)dr, xθ (r,θ)dθ

where dr and dθ are the respective small changes in the variables r and θ . Thus the area
of one of those little curvy shapes should be approximately equal to

|xr (r,θ)dr×xθ (r,θ)dθ |

by the geometric description of the cross product. These vectors are extended as 0 in the

555
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third component in order to take the cross product. This reduces to

dA =

∣∣∣∣det
(

cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)∣∣∣∣drdθ = rdrdθ

which is the increment of area in polar coordinates, taking the place of dxdy. The integral
is really about taking the value of the function integrated multiplied by dA and adding these
products. Here is an example.

Example 27.1.1 Find the area of a circle of radius a.

The variable r goes from 0 to a and the angle θ goes from 0 to 2π . Therefore, the area
is ∫

D
dA =

∫ 2π

0

∫ a

0
rdrdθ = πa2

Example 27.1.2 The density equals r. Find the total mass of a disk of radius a.

This is easy to do in polar coordinates. The disk involved has θ going from 0 to 2π and
r from 0 to 2. Therefore, the integral to work is just

∫ 2π

0

∫ a

0
r

dA︷ ︸︸ ︷
rdrdθ =

2
3

πa3

Notice how in these examples the circular disk is really a rectangle [0,2π]× [0,a]. This is
why polar coordinates are so useful. The next example was worked earlier from a different
point of view.

Example 27.1.3 Find the area of the inside of the cardioid r = 1+ cosθ , θ ∈ [0,2π].

How would you go about setting this up in rectangular coordinates? It would be very
hard if not impossible, but is easy in polar coordinates. This is because in polar coordinates
the region integrated over is the region below the curve in the following picture. It is one
of those regions which is simple to integrate over. The graph of the top is r = 1+ cosθ .
However, the graph of the cardioid in rectangular coordinates is not at all simple. See
the material on polar coordinates where graphs of cardioids were provided in rectangular
coordinates.

0 π

4 π
3π

4 2π

The integral is ∫ 2π

0

∫ 1+cos(θ)

0
rdrdθ =

3
2

π

Example 27.1.4 Let R denote the inside of the cardioid r = 1+ cosθ for θ ∈ [0,2π]. Find∫
R

xdA
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Here the convenient increment of area is rdrdθ and so the integral is∫ 2π

0

∫ 1+cos(θ)

0
xrdrdθ

Now you need to change x to the right coordinates. Thus the integral equals∫ 2π

0

∫ 1+cos(θ)

0
(r cos(θ))rdrdθ =

5
4

π

A case where this sort of problem occurs is when you find the mass of a plate given the
density.

Definition 27.1.5 Suppose a material occupies a region of the plane R. The density
λ is a nonnegative function of position with the property that if B ⊆ R, then the mass of B
is given by

∫
B λdA. In particular, this is true of B = R.

Example 27.1.6 Let R denote the inside of the polar curve r = 2+ sinθ . Let λ = 3+ x.
Find the total mass of R.

As above, this is ∫ 2π

0

∫ 2+sin(θ)

0
(3+ r cos(θ))rdrdθ =

27
2

π

27.2 Exercises
1. Sketch a graph in polar coordinates of r = 2+sin(θ) and find the area of the enclosed

region.

2. Sketch a graph in polar coordinates of r = sin(4θ) and find the area of the region
enclosed. Hint: In this case, you need to worry and fuss about r < 0.

3. Suppose the density is λ (x,y) = 2− x and the region is the interior of the cardioid
r = 1+ cosθ . Find the total mass.

4. Suppose the density is λ = 4− x− y and find the mass of the plate which is between
the concentric circles r = 1 and r = 2.

5. Suppose the density is λ = 4− x− y and find the mass of the plate which is inside
the polar graph of r = 1+ sin(θ).

6. Suppose the density is 2+ x. Find the mass of the plate which is the inside of the
polar curve r = sin(2θ). Hint: This is one of those fussy things with negative radius.

7. The area density of a plate is given by λ = 1+ x and the plate occupies the inside of
the cardioid r = 1+ cosθ . Find its mass.

8. The moment about the x axis of a plate with density λ occupying the region R is
defined as my =

∫
R yλdA. The moment about the y axis of the same plate is mx =∫

R xλdA. If λ = 2− x, find the moments about the x and y axes of the plate inside
r = 2+ sin(θ).
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9. Using the above problem, find the moments about the x and y axes of a plate having
density 1+ x for the plate which is the inside of the cardioid r = 1+ cosθ .

10. Use the same plate as the above but this time, let the density be (2+ x+ y). Find the
moments.

11. Let D =
{
(x,y) : x2 + y2 ≤ 25

}
. Find

∫
D e25x2+25y2

dxdy. Hint: This is an integral of
the form

∫
D f (x,y)dA. Write in polar coordinates and it will be fairly easy.

12. Let D =
{
(x,y) : x2 + y2 ≤ 16

}
. Find

∫
D cos

(
9x2 +9y2

)
dxdy.Hint: This is an inte-

gral of the form
∫

D f (x,y)dA. Write in polar coordinates and it will be fairly easy.

13. Derive a formula for area between two polar graphs using the increment of area of
polar coordinates.

14. Use polar coordinates to evaluate the following integral. Here S is given in terms of
the polar coordinates.

∫
S sin

(
2x2 +2y2

)
dV where r ≤ 2 and 0 ≤ θ ≤ 3

2 π .

15. Find
∫

S e2x2+2y2
dV where S is given in terms of the polar coordinates r ≤ 2 and

0 ≤ θ ≤ π .

16. Find
∫

S
y
x dV where S is described in polar coordinates as 1 ≤ r ≤ 2 and 0 ≤ θ ≤ π/4.

17. Find
∫

S

(( y
x

)2
+1
)

dV where S is given in polar coordinates as 1 ≤ r ≤ 2 and 0 ≤
θ ≤ 1

6 π .

18. A right circular cone has a base of radius 2 and a height equal to 2. Use polar
coordinates to find its volume.

19. Now suppose in the above problem, it is not really a cone but instead z = 2− 1
2 r2.

Find its volume.

27.3 Cylindrical and Spherical Coordinates
Cylindrical coordinates are defined as follows.

x(r,θ ,z) ≡

 x
y
z

=

 r cos(θ)
r sin(θ)

z

 ,

r ≥ 0,θ ∈ [0,2π),z ∈ R

Spherical coordinates are a little harder. These are given by

x(ρ,θ ,φ) ≡

 x
y
z

=

 ρ sin(φ)cos(θ)
ρ sin(φ)sin(θ)

ρ cos(φ)

 ,

ρ ≥ 0,θ ∈ [0,2π),φ ∈ [0,π]

The following picture relates the various coordinates.
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x1 (x1,y1,0)

y1

(ρ,φ ,θ)
(r,θ ,z1)
(x1,y1,z1)

z1

ρ

rθ

φ

•

x

y

z

In this picture, ρ is the distance between the origin, the point whose Cartesian coor-
dinates are (0,0,0) and the point indicated by a dot and labelled as (x1,y1,z1), (r,θ ,z1),
and (ρ,φ ,θ). The angle between the positive z axis and the line between the origin and
the point indicated by a dot is denoted by φ , and θ is the angle between the positive x
axis and the line joining the origin to the point (x1,y1,0) as shown, while r is the length
of this line. Thus r = ρ sin(φ) and is the usual polar coordinate while θ is the other polar
coordinate. Letting z1 denote the usual z coordinate of a point in three dimensions, like
the one shown as a dot, (r,θ ,z1) are the cylindrical coordinates of the dotted point. The
spherical coordinates are determined by (ρ,φ ,θ). When ρ is specified, this indicates that
the point of interest is on some sphere of radius ρ which is centered at the origin. Then
when φ is given, the location of the point is narrowed down to a circle of “latitude” and
finally, θ determines which point is on this circle by specifying a circle of “longitude”. Let
φ ∈ [0,π],θ ∈ [0,2π), and ρ ∈ [0,∞). The picture shows how to relate these new coordinate
systems to Cartesian coordinates. Note that θ is the same in the two coordinate systems
and that ρ sinφ = r.

27.3.1 Volume and Integrals in Cylindrical Coordinates
The increment of three dimensional volume in cylindrical coordinates is dV = rdrdθdz.
It is just a chunk of two dimensional area rdrdθ times the height dz which gives three
dimensional volume. Here is an example.

Example 27.3.1 Find the volume of the three dimensional region between the graphs of
z = 4−2y2 and z = 4x2 +2y2.

Where do the two surfaces intersect? This happens when 4x2 +2y2 = 4−2y2 which is
the curve in the xy plane, x2 +y2 = 1. Thus (x,y) is on the inside of this circle while z goes
from 4x2 +2y2 to 4−2y2. Denoting the unit disk by D, the desired integral is

∫
D

∫ 4−2y2

4x2+2y2
dzdA
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I will use the dA which corresponds to polar coordinates so this will then be in cylindrical
coordinates. Thus the above equals

∫ 2π

0

∫ 1

0

∫ 4−2(r2 sin2(θ))

4(r2 cos2(θ))+2(r2 sin2(θ))
dzrdrdθ = 2π

Note this is really not much different than simply using polar coordinates to integrate the
difference of the two values of z This is∫

D
4−2y2 −

(
4x2 +2y2)dA =

∫
D

(
4−4r2)dA

=
∫ 2π

0

∫ 1

0

(
4−4r2)rdrdθ = 2π

Here is another example.

Example 27.3.2 Find the volume of the three dimensional region between the graphs of
z = 0,z =

√
x2 + y2, and the cylinder (x−1)2 + y2 = 1.

Consider the cylinder. It reduces to r2 = 2r cosθ or more simply r = 2cosθ . This is
the graph of a circle having radius 1 and centered at (1,0). Therefore, θ ∈ [−π/2,π/2]. It
follows that the cylindrical coordinate description of this volume is∫

π/2

−π/2

∫ 2cosθ

0

∫ r

0
dzrdrdθ =

32
9

27.3.2 Volume and Integrals in Spherical Coordinates
What is the increment of volume in spherical coordinates? There are two ways to see what
this is, through art and through a systematic procedure. First consider art. Here is a picture.

dρρdϕ

ρsin(ϕ)dθ

In the picture there are two concentric spheres formed by making ρ two different con-
stants and surfaces which correspond to θ assuming two different constants and φ assuming
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two different constants. These intersecting surfaces form the little box in the picture. Here
is a more detailed blow up of the little box.

dφ

dθ

dρ
ρdφ

ρ sin(φ)dθ

has coordinates (ρ,φ ,θ)

z

x y

What is the volume of this little box? Length ≈ ρdφ , width ≈ ρ sin(φ)dθ , height ≈ dρ

and so the volume increment for spherical coordinates is

dV = ρ
2 sin(φ)dρdθdφ

Now what is really going on? Consider the dot in the picture of the little box. Fixing θ

and φ at their values at this point and differentiating with respect to ρ leads to a little vector
of the form  sin(φ)cos(θ)

sin(φ)sin(θ)
cos(φ)

dρ

which points out from the surface of the sphere. Next keeping ρ and θ constant and differ-
entiating only with respect to φ leads to an infinitesimal vector in the direction of a line of
longitude,  ρ cos(φ)cos(θ)

ρ cos(φ)sin(θ)
−ρ sin(φ)

dφ

and finally keeping ρ and φ constant and differentiating with respect to θ leads to the third
infinitesimal vector which points in the direction of a line of latitude. −ρ sin(φ)sin(θ)

ρ sin(φ)cos(θ)
0

dθ

To find the increment of volume, we just need to take the absolute value of the determi-
nant which has these vectors as columns, (Remember this is the absolute value of the box
product.) exactly as was the case for polar coordinates. This will also yield

dV = ρ
2 sin(φ)dρdθdφ .
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However, in contrast to the drawing of pictures, this procedure is completely general
and will handle all curvilinear coordinate systems and in any dimension. This is discussed
more later.

Example 27.3.3 Find the volume of a ball, BR of radius R. Then find
∫

BR
z2dV where z is

the rectangular z coordinate of a point.

In this case, U = (0,R]× [0,π]× [0,2π) and use spherical coordinates. Then this yields
a set in R3 which clearly differs from the ball of radius R only by a set having volume equal
to zero. It leaves out the point at the origin is all. Therefore, the volume of the ball is∫

BR

1dV =
∫

U
ρ

2 sinφ dV

=
∫ R

0

∫
π

0

∫ 2π

0
ρ

2 sinφ dθ dφ dρ =
4
3

R3
π.

The reason this was effortless, is that the ball, BR is realized as a box in terms of the
spherical coordinates. Remember what was pointed out earlier about setting up iterated
integrals over boxes.

As for the integral, it is no harder to set up. You know from the transformation equations
that z = ρ cosφ . Then you want∫

BR

zdV =
∫ R

0

∫
π

0

∫ 2π

0
(ρ cos(φ))2

ρ
2 sinφ dθ dφ dρ =

4
15

πR5

This will be pretty easy also although somewhat more messy because the function you are
integrating is not just 1 as it is when you find the volume.

Example 27.3.4 A cone is cut out of a ball of radius R as shown in the following picture,
the diagram on the left being a side view. The angle of the cone is π/3. Find the volume of
what is left.

π

3

Use spherical coordinates. This volume is then∫
π

π/6

∫ 2π

0

∫ R

0
ρ

2 sin(φ)dρdθdφ =
2
3

πR3 +
1
3

√
3πR3

Now change the example a little by cutting out a cone at the bottom which has an angle
of π/2 as shown. What is the volume of what is left?
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This time you would have the volume equals∫ 3π/4

π/6

∫ 2π

0

∫ R

0
ρ

2 sin(φ)dρdθdφ =
1
3

√
2πR3 +

1
3

√
3πR3

Example 27.3.5 Next suppose the ball of radius R is a sort of an orange and you remove a
slice as shown in the picture. What is the volume of what is left? Assume the slice is formed
by the two half planes θ = 0 and θ = π/4.

Using spherical coordinates, this gives for the volume∫
π

0

∫ 2π

π/4

∫ R

0
ρ

2 sin(φ)dρdθdφ =
7
6

πR3

Example 27.3.6 Now remove the same two cones as in the above examples along with the
same slice and find the volume of what is left. Next, if R is the region just described, find∫

R xdV .

This time you need∫ 3π/4

π/6

∫ 2π

π/4

∫ R

0
ρ

2 sin(φ)dρdθdφ =
7

24

√
2πR3 +

7
24

√
3πR3

As to the integral, it equals∫ 3π/4

π/6

∫ 2π

π/4

∫ R

0
(ρ sin(φ)cos(θ))ρ

2 sin(φ)dρdθdφ =− 1
192

√
2R4

(
7π +3

√
3+6

)
This is because, in terms of spherical coordinates, x = ρ sin(φ)cos(θ).
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Example 27.3.7 Set up the integrals to find the volume of the cone 0≤ z≤ 4,z=
√

x2 + y2.
Next, if R is the region just described, find

∫
R zdV .

This is entirely the wrong coordinate system to use for this problem but it is a good
exercise. Here is a side view.

φ

You need to figure out what ρ is as a function of φ which goes from 0 to π/4. You
should get ∫ 2π

0

∫
π/4

0

∫ 4sec(φ)

0
ρ

2 sin(φ)dρdφdθ =
64
3

π

As to
∫

R zdV, it equals

∫ 2π

0

∫
π/4

0

∫ 4sec(φ)

0

z︷ ︸︸ ︷
ρ cos(φ)ρ2 sin(φ)dρdφdθ = 64π

Example 27.3.8 Find the volume element for cylindrical coordinates.

In cylindrical coordinates,  x
y
z

=

 r cosθ

r sinθ

z


Therefore, the Jacobian determinant is

det

 cosθ −r sinθ 0
sinθ r cosθ 0

0 0 1

= r.

It follows the volume element in cylindrical coordinates is r dθ dr dz.

Example 27.3.9 In the cone of Example 27.3.7 set up the integrals for finding the volume
in cylindrical coordinates.

This is a better coordinate system for this example than spherical coordinates. This
time you should get ∫ 2π

0

∫ 4

0

∫ 4

r
rdzdrdθ =

64
3

π

Example 27.3.10 This example uses spherical coordinates to verify an important conclu-
sion about gravitational force. Let the hollow sphere, H be defined by a2 < x2+y2+z2 < b2
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and suppose this hollow sphere has constant density taken to equal 1. Now place a unit
mass at the point (0,0,z0) where |z0| ∈ [a,b] . Show that the force of gravity acting on this

unit mass is
(

αG
∫

H
(z−z0)

[x2+y2+(z−z0)
2]

3/2 dV
)
k and then show that if |z0| > b then the force

of gravity acting on this point mass is the same as if the entire mass of the hollow sphere
were placed at the origin, while if |z0| < a, the total force acting on the point mass from
gravity equals zero. Here G is the gravitation constant and α is the density. In particular,
this shows that the force a planet exerts on an object is as though the entire mass of the
planet were situated at its center1.

Without loss of generality, assume z0 > 0. Let dV be a little chunk of material located
at the point (x,y,z) of H the hollow sphere. Then according to Newton’s law of gravity, the
force this small chunk of material exerts on the given point mass equals

xi+ yj+(z− z0)k

|xi+ yj+(z− z0)k|
1(

x2 + y2 +(z− z0)
2
)Gα dV =

(xi+ yj+(z− z0)k)
1(

x2 + y2 +(z− z0)
2
)3/2 Gα dV

Therefore, the total force is∫
H
(xi+ yj+(z− z0)k)

1(
x2 + y2 +(z− z0)

2
)3/2 Gα dV.

By the symmetry of the sphere, the i and j components will cancel out when the integral
is taken. This is because there is the same amount of stuff for negative x and y as there is
for positive x and y. Hence what remains is

αGk
∫

H

(z− z0)[
x2 + y2 +(z− z0)

2
]3/2 dV

as claimed. Now for the interesting part, the integral is evaluated. In spherical coordinates
this integral is. ∫ 2π

0

∫ b

a

∫
π

0

(ρ cosφ − z0)ρ2 sinφ(
ρ2 + z2

0 −2ρz0 cosφ
)3/2 dφ dρ dθ . (27.1)

Rewrite the inside integral and use integration by parts to obtain this inside integral equals

1
2z0

∫
π

0

(
ρ

2 cosφ −ρz0
) (2z0ρ sinφ)(

ρ2 + z2
0 −2ρz0 cosφ

)3/2 dφ =

1
2z0

−2
−ρ2 −ρz0√(

ρ2 + z2
0 +2ρz0

) +2
ρ2 −ρz0√(

ρ2 + z2
0 −2ρz0

)
1This was shown by Newton in 1685 and allowed him to assert his law of gravitation applied to the planets as

though they were point masses. It was a major accomplishment.
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−
∫

π

0
2ρ

2 sinφ√(
ρ2 + z2

0 −2ρz0 cosφ
) dφ

 . (27.2)

There are some cases to consider here.
First suppose z0 < a so the point is on the inside of the hollow sphere and it is always

the case that ρ > z0. Then in this case, the two first terms reduce to

2ρ (ρ + z0)√
(ρ + z0)

2
+

2ρ (ρ − z0)√
(ρ − z0)

2
=

2ρ (ρ + z0)

(ρ + z0)
+

2ρ (ρ − z0)

ρ − z0
= 4ρ

and so the expression in 27.2 equals

1
2z0

4ρ −
∫

π

0
2ρ

2 sinφ√(
ρ2 + z2

0 −2ρz0 cosφ
) dφ



=
1

2z0

4ρ − 1
z0

∫
π

0
ρ

2ρz0 sinφ√(
ρ2 + z2

0 −2ρz0 cosφ
) dφ


=

1
2z0

(
4ρ − 2ρ

z0

(
ρ

2 + z2
0 −2ρz0 cosφ

)1/2 |π0
)

=
1

2z0

(
4ρ − 2ρ

z0
[(ρ + z0)− (ρ − z0)]

)
= 0.

Therefore, in this case the inner integral of 27.1 equals zero and so the original integral will
also be zero.

The other case is when z0 > b and so it is always the case that z0 > ρ. In this case the
first two terms of 27.2 are

2ρ (ρ + z0)√
(ρ + z0)

2
+

2ρ (ρ − z0)√
(ρ − z0)

2
=

2ρ (ρ + z0)

(ρ + z0)
+

2ρ (ρ − z0)

z0 −ρ
= 0.

Therefore in this case, 27.2 equals

1
2z0

−
∫

π

0
2ρ

2 sinφ√(
ρ2 + z2

0 −2ρz0 cosφ
) dφ


=

−ρ

2z2
0

∫ π

0

2ρz0 sinφ√(
ρ2 + z2

0 −2ρz0 cosφ
) dφ


which equals

−ρ

z2
0

((
ρ

2 + z2
0 −2ρz0 cosφ

)1/2 |π0
)
=

−ρ

z2
0
[(ρ + z0)− (z0 −ρ)] =−2ρ2

z2
0
.
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Thus the inner integral of 27.1 reduces to the above simple expression. Therefore, 27.1
equals ∫ 2π

0

∫ b

a

(
− 2

z2
0

ρ
2
)

dρ dθ =−4
3

π
b3 −a3

z2
0

and so

αGk
∫

H

(z− z0)[
x2 + y2 +(z− z0)

2
]3/2 dV

= αGk

(
−4

3
π

b3 −a3

z2
0

)
=−kG

total mass
z2

0
.

27.4 Exercises
1. Find the volume of the region bounded by z = 0,x2+(y−2)2 = 4, and z =

√
x2 + y2.

2. Find the volume of the region z ≥ 0,x2 + y2 ≤ 4, and z ≤ 4−
√

x2 + y2.

3. Find the volume of the region which is between the surfaces z = 5y2 + 9x2 and z =
9−4y2.

4. Find the volume of the region which is between z = x2 + y2 and z = 5− 4x. Hint:
You might want to change variables at some point.

5. The ice cream in a sugar cone is described in spherical coordinates by ρ ∈ [0,10] ,φ ∈[
0, 1

3 π
]
,θ ∈ [0,2π]. If the units are in centimeters, find the total volume in cubic

centimeters of this ice cream.

6. Find the volume between z = 3− x2 − y2 and z = 2
√
(x2 + y2).

7. A ball of radius 3 is placed in a drill press and a hole of radius 2 is drilled out with the
center of the hole a diameter of the ball. What is the volume of the material which
remains?

8. Find the volume of the cone defined by z ∈ [0,4] having angle π/2. Use spherical
coordinates.

9. A ball of radius 9 has density equal to
√

x2 + y2 + z2 in rectangular coordinates. The
top of this ball is sliced off by a plane of the form z = 2. Write integrals for the mass
of what is left. In spherical coordinates and in cylindrical coordinates.



568 CHAPTER 27. THE INTEGRAL IN OTHER COORDINATES

10. A ball of radius 4 has a cone taken out of the top which has an angle of π/2 and then
a cone taken out of the bottom which has an angle of π/3. Then a slice, θ ∈ [0,π/4]
is removed. What is the volume of what is left?

11. In Example 27.3.10 on Page 564 check out all the details by working the integrals to
be sure the steps are right.

12. What if the hollow sphere in Example 27.3.10 were in two dimensions and every-
thing, including Newton’s law still held? Would similar conclusions hold? Explain.

13. Convert the following integrals into integrals involving cylindrical coordinates and
then evaluate them.

(a)
∫ 2
−2
∫√4−x2

0
∫ x

0 xydzdydx

(b)
∫ 1
−1
∫√1−y2

−
√

1−y2

∫ x+y
0 dzdxdy

(c)
∫ 1

0
∫√1−x2

0
∫ 1

x dzdydx

(d) For a > 0,
∫ a
−a
∫√a2−x2

−
√

a2−x2

∫√a2−x2−y2

−
√

a2−x2−y2
dzdydx

(e)
∫ 1
−1
∫√1−x2

−
√

1−x2

∫√4−x2−y2

−
√

4−x2−y2
dzdydx

14. Convert the following integrals into integrals involving spherical coordinates and
then evaluate them.

(a)
∫ a
−a
∫√a2−x2

−
√

a2−x2

∫√a2−x2−y2

−
√

a2−x2−y2
dzdydx

(b)
∫ 1
−1
∫√1−x2

0
∫√1−x2−y2

−
√

1−x2−y2
dzdydx

(c)
∫√2
−
√

2

∫√2−x2

−
√

2−x2

∫√4−x2−y2√
x2+y2

dzdydx

(d)
∫√3
−
√

3

∫√3−x2

−
√

3−x2

∫√4−x2−y2

1 dzdydx

(e)
∫ 1
−1
∫√1−x2

−
√

1−x2

∫√4−x2−y2

−
√

4−x2−y2
dzdydx

27.5 The General Procedure

As mentioned above, the fundamental concept of an integral is a sum of things of the form
f (x) dV where dV is an “infinitesimal” chunk of volume located at the point x. Up to now,
this infinitesimal chunk of volume has had the form of a box with sides dx1, · · · , dxp so
dV = dx1 dx2 · · · dxp but its form is not important. It could just as well be an infinitesimal
parallelepiped for example. In what follows, this is what it will be.

First recall the definition of a parallelepiped.
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Definition 27.5.1 Let u1, · · · ,up be vectors in Rk. The parallelepiped determined
by these vectors will be denoted by P(u1, · · · ,up) and it is defined as

P(u1, · · · ,up)≡

{
p

∑
j=1

s ju j : s j ∈ [0,1]

}
.

Now define the volume of this parallelepiped.

volume of P(u1, · · · ,up)≡ (det(ui ·u j))
1/2 .

To justify this definition, recall that if each vector is in Rp, the volume of this paral-
lelepiped is

∣∣det
(
u1 · · · up

)∣∣ . In three dimensions it is |u1 ×u2 ·u3| . Thus, making
the obvious generalization and using det(A) = det

(
AT
)
, the volume in p dimensions is(

det
((

u1 · · · up
)T
)

det
(
u1 · · · up

))1/2

= det
[((

u1 · · · up
)T
)(

u1 · · · up
)]1/2

The i jth entry of the matrix on the inside of [·] is ui ·u j and this is why this definition
corresponds to earlier material. Definition 27.5.1 continues to hold in more general settings
including the case where the vectors are in Rq and you have a p dimensional parallelpiped.
See Section 20.3.

The dot product is used to determine this volume of a parallelepiped spanned by the
given vectors and you should note that it is only the dot product that matters. Let

x = f1 (u1,u2,u3) , y = f2 (u1,u2,u3) , z = f3 (u1,u2,u3) (27.3)

where u∈U an open set in R3and corresponding to such a u∈U there exists a unique point
(x,y,z)∈V as above. Suppose at the point u0 ∈U , there is an infinitesimal box having sides
du1,du2,du3. Then this little box would correspond to something in V . What? Consider
the mapping from U to V defined by

x=

 x
y
z

=

 f1 (u1,u2,u3)
f2 (u1,u2,u3)
f3 (u1,u2,u3)

= f (u) (27.4)

which takes a point u in U and sends it to the point in V which is identified as (x,y,z)T ≡x.
What happens to a point of the infinitesimal box? Such a point is of the form

(u01 + s1du1,u02 + s2 du2,u03 + s3du3) ,

where si ≥ 0 and ∑i si ≤ 1. Also, from the definition of the derivative,

f (u10 + s1du1,u20 + s2 du2,u30 + s3du3)−f (u01,u02,u03) =

Df (u10,u20,u30)

 s1du1
s2du2
s3du3

+o

 s1du1
s2du2
s3du3
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where the last term may be taken equal to 0 since the vector (s1du1,s2du2,s3du3)
T is

infinitesimal, meaning nothing precise, but conveying the idea that it is surpassingly small.
Therefore, a point of this infinitesimal box is sent to the vector

=Df(u10,u20,u30)︷ ︸︸ ︷(
∂x(u0)

∂u1
,

∂x(u0)

∂u2
,

∂x(u0)

∂u3

) s1du1
s2du2
s3du3

=

s1
∂x(u0)

∂u1
du1 + s2

∂x(u0)

∂u2
du2 + s3

∂x(u0)

∂u3
du3,

a point of the infinitesimal parallelepiped determined by the vectors{
∂x(u10,u20,u30)

∂u1
du1,

∂x(u10,u20,u30)

∂u2
du2,

∂x(u10,u20,u30)

∂u3
du3

}
.

The situation is no different for general coordinate systems in any dimension. In gen-
eral, x= f (u) where u∈U , a subset of Rp and x is a point in V , a subset of p dimensional
space. Thus, letting the Cartesian coordinates of x be given by x = (x1, · · · ,xp)

T , each xi
being a function of u, an infinitesimal box located at u0 corresponds to an infinitesimal
parallelepiped located at f (u0) which is determined by the p vectors

{
∂x(u0)

∂ui
dui

}p

i=1
.

From Definition 27.5.1, the volume of this infinitesimal parallelepiped located at f (u0) is
given by (

det
(

∂x(u0)

∂ui
dui ·

∂x(u0)

∂u j
du j

))1/2

(27.5)

in which there is no sum on the repeated index. As pointed out above, after Definition
27.5.1, if there are p vectors in Rp,

{
v1, · · · ,vp

}
,

det(vi ·v j)
1/2 =

∣∣det(v1, · · · ,vp)
∣∣ (27.6)

where this last matrix is the p× p matrix which has the ith column equal to vi. Therefore,
from the properties of determinants, 27.5 equals∣∣∣∣det

(
∂x(u0)

∂u1
du1, · · · ,

∂x(u0)

∂up
dup

)∣∣∣∣= ∣∣∣∣det
(

∂x(u0)

∂u1
, · · · , ∂x(u0)

∂up

)∣∣∣∣ du1 · · · dup

This is the infinitesimal chunk of volume corresponding to the point f (u0) in V . The

advantage of
(

det
(

∂x(u0)
∂ui

dui · ∂x(u0)
∂u j

du j

))1/2
is that it goes on making sense even if the

vectors ∂x(u0)
∂u j

are in Rq for q > p thus allowing the consideration of integrals on p dimen-
sional surfaces in Rq. However, this will not be pursued much further in this book.

Definition 27.5.2 Let x= f (u) be as described above. Then the symbol

∂ (x1, · · ·xp)

∂ (u1, · · · ,up)
,

called the Jacobian determinant, is defined by

det
(

∂x(u0)

∂u1
, · · · , ∂x(u0)

∂up

)
≡

∂ (x1, · · ·xp)

∂ (u1, · · · ,up)
.
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Also, the symbol
∣∣∣∣ ∂(x1,···xp)

∂(u1,··· ,up)

∣∣∣∣ du1 · · · dup is called the volume element or increment of vol-

ume, or increment of area.

This has given motivation for the following fundamental procedure often called the
change of variables formula which holds under fairly general conditions.

Procedure 27.5.3 Suppose U is an open subset of Rp for p > 0 and suppose f :
U → f (U) is a C1 function which is one to one, x= f (u). 2 Then if h : f (U)→ R, is
integrable, ∫

U
h(f (u))

∣∣∣∣ ∂ (x1, · · · ,xp)

∂ (u1, · · · ,up)

∣∣∣∣ dV =
∫
f(U)

h(x) dV.

Example 27.5.4 Find the area of the region in R2 which is determined by the lines y =
2x,y = (1/2)x,x+ y = 1,x+ y = 3.

You might sketch this region. You will find it is an ugly quadrilateral. Let u = x+y and
v = y

x . The reason for this is that the given region corresponds to (u,v) ∈ [1,3]×
[ 1

2 ,2
]
, a

nice rectangle. Now we need to solve for x,y to obtain the Jacobian. A little computation
shows that

x =
u

v+1
, y =

uv
v+1

Therefore, ∂ (x,y)
∂ (u,v) is

det

( 1
v+1 − u

(v+1)2

v
v+1

u
(v+1)2

)
=

u

(v+1)2 .

Therefore, the area of this quadrilateral is∫ 2

1/2

∫ 3

1

u

(v+1)2 dudv =
4
3
.

27.6 Exercises
1. Verify the three dimensional volume increment in spherical coordinates is

ρ
2 sin(φ)dρdφdθ .

2. Find the area of the bounded region R, determined by 5x+ y = 1,5x+ y = 9,y = 2x,
and y = 5x.

3. Find the area of the bounded region R, determined by y+2x = 6,y+2x = 10,y = 3x,
and y = 4x.

2This will cause non overlapping infinitesimal boxes in U to be mapped to non overlapping infinitesimal
parallelepipeds in V .

Also, in the context of the Riemann integral we should say more about the set U in any case the function
h. These conditions are mainly technical however, and since a mathematically respectable treatment will not
be attempted for this theorem in this part of the book, I think it best to give a memorable version of it which is
essentially correct in all examples of interest. The simple statement above is just fine if you are using the Lebesgue
integral. This integral and a slightly less general theorem is proved in a special chapter on the integral.



572 CHAPTER 27. THE INTEGRAL IN OTHER COORDINATES

4. A solid, R is determined by 3x+ y = 2,3x+ y = 4,y = x, and y = 2x and the density
is ρ = x. Find the total mass of R.

5. A solid, R is determined by 4x+2y= 1,4x+2y= 9,y= x, and y= 6x and the density
is ρ = y. Find the total mass of R.

6. A solid, R is determined by 3x+y= 3,3x+y= 10,y= 3x, and y= 5x and the density
is ρ = y−1. Find the total mass of R.

7. Find a 2×2 matrix A which maps the equilateral triangle having vertices at

(0,0) ,(1,0) ,and
(

1/2,
√

3/2
)

to the triangle having vertices at (0,0) ,(a,b), and (c,d) where (c,d) is not a multiple
of (a,b). Find the area of this last triangle by using the cross product. Next find the
area of this triangle using the change of variables formula and the fact that the area
of the equilateral triangle is

√
3

4 .

8. Find the volume of the region E, bounded by the ellipsoid, 1
4 x2 + y2 + z2 = 1.

9. Here are three vectors. (4,1,2)T ,(5,0,2)T , and (3,1,3)T . These vectors determine a
parallelepiped, R, which is occupied by a solid having density ρ = x. Find the mass
of this solid.

10. Here are three vectors. (5,1,6)T ,(6,0,6)T , and (4,1,7)T . These vectors determine a
parallelepiped, R, which is occupied by a solid having density ρ = y. Find the mass
of this solid.

11. Here are three vectors. (5,2,9)T ,(6,1,9)T , and (4,2,10)T . These vectors determine
a parallelepiped, R, which is occupied by a solid having density ρ = y+ x. Find the
mass of this solid.

12. Compute the volume of a sphere of radius R using cylindrical coordinates.

13. Fill in all details for the following argument that∫
∞

0
e−x2

dx =
1
2
√

π.

Let I =
∫

∞

0 e−x2
dx. Then

I2 =
∫

∞

0

∫
∞

0
e−(x2+y2)dxdy =

∫
π/2

0

∫
∞

0
re−r2

dr dθ =
1
4

π

from which the result follows.

14. Show that
∫

∞

−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx = 1. Here σ is a positive number called the standard
deviation and µ is a number called the mean.

15. Show using Problem 13 that Γ
( 1

2

)
=
√

π . Recall Γ(α)≡
∫

∞

0 e−ttα−1dt.

16. Let p,q > 0 and define B(p,q) =
∫ 1

0 xp−1 (1− x)q−1. Show that

Γ(p)Γ(q) = B(p,q)Γ(p+q) .

Hint: It is fairly routine if you start with the left side and proceed to change variables.
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27.7 The Moment of Inertia and Center of Mass
The methods used to evaluate multiple integrals make possible the determination of centers
of mass and moments of inertia for solids. This leads to the following definition.

Definition 27.7.1 Let a solid occupy a region R such that its density is ρ (x) for x
a point in R and let L be a line. For x ∈ R, let l (x) be the distance from the point x to the
line L. The moment of inertia of the solid is defined as

I =
∫

R
l (x)2

ρ (x)dV.

Letting (x,y,z) denote the Cartesian coordinates of the center of mass,

x=

∫
R xρ (x)dV∫
R ρ (x)dV

, y =

∫
R yρ (x)dV∫
R ρ (x)dV

, z =

∫
R zρ (x)dV∫
R ρ (x)dV

where x,y,z are the Cartesian coordinates of the point at x.

The reason the moment of inertia is of interest has to do with the total kinetic energy
of a solid occupying the region R which is rotating about the line L. Suppose its angular
velocity is ω . Then the kinetic energy of an infinitesimal chunk of volume located at point
x is 1

2 ρ (x)(l (x)ω)2 dV . Then using an integral to add these up, it follows the total kinetic
energy is

1
2

∫
R

ρ (x) l (x)2 dV ω
2 =

1
2

Iω
2

Thus in the consideration of a rotating body, the moment of inertia takes the place of mass
when angular velocity takes the place of speed.

As to the center of mass, its significance is that it gives the point at which the mass will
balance. To see this presented in terms of point masses, see Definition 14.5.4. Here the
sums are replaced with integrals.

Example 27.7.2 Let a solid occupy the three dimensional region R and suppose the density
is ρ . What is the moment of inertia of this solid about the z axis? What is the center of
mass?

Here the little masses would be of the form ρ (x)dV where x is a point of R. Therefore,
the contribution of this mass to the moment of inertia would be

(
x2 + y2

)
ρ (x)dV where

the Cartesian coordinates of the point x are (x,y,z). Then summing these up as an integral,
yields the following for the moment of inertia.∫

R

(
x2 + y2)

ρ (x) dV. (27.7)

To find the center of mass, sum up rρ dV for the points in R and divide by the total
mass. In Cartesian coordinates, where r = (x,y,z), this means to sum up vectors of the
form (xρ dV,yρ dV,zρ dV ) and divide by the total mass. Thus the Cartesian coordinates of
the center of mass are(∫

R xρ dV∫
R ρ dV

,

∫
R yρ dV∫
R ρ dV

,

∫
R zρ dV∫
R ρ dV

)
≡
∫

R rρ dV∫
R ρ dV

.

Here is a specific example.



574 CHAPTER 27. THE INTEGRAL IN OTHER COORDINATES

Example 27.7.3 Find the moment of inertia about the z axis and center of mass of the solid
which occupies the region R defined by 9−

(
x2 + y2

)
≥ z ≥ 0 if the density is ρ (x,y,z) =√

x2 + y2.

This moment of inertia is
∫

R
(
x2 + y2

)√
x2 + y2 dV and the easiest way to find this

integral is to use cylindrical coordinates. Thus the answer is

∫ 2π

0

∫ 3

0

∫ 9−r2

0
r3r dzdr dθ =

8748
35

π.

To find the center of mass, note the x and y coordinates of the center of mass,∫
R xρ dV∫
R ρ dV

,

∫
R yρ dV∫
R ρ dV

both equal zero because the above shape is symmetric about the z axis and ρ is also sym-
metric in its values. Thus xρ dV will cancel with −xρ dV and a similar conclusion will
hold for the y coordinate. It only remains to find the z coordinate of the center of mass, z.
In polar coordinates, ρ = r and so,

z =
∫

R zρ dV∫
R ρ dV

=

∫ 2π

0
∫ 3

0
∫ 9−r2

0 zr2 dzdr dθ∫ 2π

0
∫ 3

0
∫ 9−r2

0 r2 dzdr dθ

=
18
7
.

Thus the center of mass will be
(
0,0, 18

7

)
.

27.8 Exercises
1. Let R denote the finite region bounded by z = 4− x2 − y2 and the xy plane. Find zc,

the z coordinate of the center of mass if the density σ is a constant.

2. Let R denote the finite region bounded by z = 4− x2 − y2 and the xy plane. Find zc,
the z coordinate of the center of mass if the density σ is equals σ (x,y,z) = z.

3. Find the mass and center of mass of the region between the surfaces z =−y2 +8 and
z = 2x2 + y2 if the density equals σ = 1.

4. Find the mass and center of mass of the region between the surfaces z =−y2 +8 and
z = 2x2 + y2 if the density equals σ (x,y,z) = x2.

5. The two cylinders, x2 + y2 = 4 and y2 + z2 = 4 intersect in a region R. Find the mass
and center of mass if the density σ , is given by σ (x,y,z) = z2.

6. The two cylinders, x2 + y2 = 4 and y2 + z2 = 4 intersect in a region R. Find the mass
and center of mass if the density σ , is given by σ (x,y,z) = 4+ z.

7. Find the mass and center of mass of the set (x,y,z) such that x2

4 + y2

9 + z2 ≤ 1 if the
density is σ (x,y,z) = 4+ y+ z.

8. Let R denote the finite region bounded by z = 9− x2 − y2 and the xy plane. Find the
moment of inertia of this shape about the z axis given the density equals 1.
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9. Let R denote the finite region bounded by z = 9− x2 − y2 and the xy plane. Find the
moment of inertia of this shape about the x axis given the density equals 1.

10. Let B be a solid ball of constant density and radius R. Find the moment of inertia
about a line through a diameter of the ball. You should get 2

5 R2M where M is the
mass..

11. Let B be a solid ball of density σ = ρ where ρ is the distance to the center of the ball
which has radius R. Find the moment of inertia about a line through a diameter of
the ball. Write your answer in terms of the total mass and the radius as was done in
the constant density case.

12. Let C be a solid cylinder of constant density and radius R. Find the moment of inertia
about the axis of the cylinder

You should get 1
2 R2M where M is the mass.

13. Let C be a solid cylinder of constant density and radius R and mass M and let B be a
solid ball of radius R and mass M. The cylinder and the ball are placed on the top of
an inclined plane and allowed to roll to the bottom. Which one will arrive first and
why?

14. A ball of radius 4 has a cone taken out of the top which has an angle of π/2 and then
a cone taken out of the bottom which has an angle of π/3. If the density is λ = ρ ,
find the z component of the center of mass.

15. A ball of radius 4 has a cone taken out of the top which has an angle of π/2 and then
a cone taken out of the bottom which has an angle of π/3. If the density is λ = ρ ,
find the moment of inertia about the z axis.

16. Suppose a solid of mass M occupying the region B has moment of inertia, Il about a
line, l which passes through the center of mass of M and let l1 be another line parallel
to l and at a distance of a from l. Then the parallel axis theorem states Il1 = Il +a2M.
Prove the parallel axis theorem. Hint: Choose axes such that the z axis is l and l1
passes through the point (a,0) in the xy plane.

17. ∗ Using the parallel axis theorem find the moment of inertia of a solid ball of radius
R and mass M about an axis located at a distance of a from the center of the ball.
Your answer should be Ma2 + 2

5 MR2.

18. Consider all axes in computing the moment of inertia of a solid. Will the smallest
possible moment of inertia always result from using an axis which goes through the
center of mass?

19. Find the moment of inertia of a solid thin rod of length l, mass M, and constant
density about an axis through the center of the rod perpendicular to the axis of the
rod. You should get 1

12 l2M.

20. Using the parallel axis theorem, find the moment of inertia of a solid thin rod of
length l, mass M, and constant density about an axis through an end of the rod per-
pendicular to the axis of the rod. You should get 1

3 l2M.
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21. Let the angle between the z axis and the sides of a right circular cone be α . Also
assume the height of this cone is h. Find the z coordinate of the center of mass of this
cone in terms of α and h assuming the density is constant.

22. Let the angle between the z axis and the sides of a right circular cone be α . Also
assume the height of this cone is h. Assuming the density is σ = 1, find the moment
of inertia about the z axis in terms of α and h.

23. Let R denote the part of the solid ball, x2 +y2 + z2 ≤ R2 which lies in the first octant.
That is x,y,z≥ 0. Find the coordinates of the center of mass if the density is constant.
Your answer for one of the coordinates for the center of mass should be (3/8)R.

24. Show that in general for L angular momentum, dL
dt = Γ where Γ is the total torque,

Γ≡ ∑ri ×F i where F i is the force on the ith point mass.



Chapter 28

The Integral on Two Dimensional
Surfaces in R3

A parametric surface is the image of a vector valued function of two variables. Earlier,
vector valued functions of one variable were considered in the study of space curves. Here
there are two independent variables. This is why the result could be expected to be a
surface. For example, you could have

r (s, t) =
(

x y z
)
=
(

s+ t cos(s)sin(s) ts
)

for (s, t) ∈ (0,1)× (0,1). Each value of (s, t) gives a point on this surface. The surface
is smooth if all the component functions are C1 and rs ×rt (s, t) ̸= 0. This last condition
assures the existence of a well defined normal vector to the surface, namely rs ×rt (s, t).
Recall from the material on space curves that rt ,rs are both tangent to curves which lie in
this surface. If this cross product were 0, you would get points or creases in the surface.

28.1 The Two Dimensional Area in R3

Consider a function defined on a two dimensional surface. Imagine taking the value of
this function at a point, multiplying this value by the area of an infinitesimal chunk of area
located at this point and then adding these together. The only difference is that now you
need a two dimensional chunk of area rather than one dimensional.

Definition 28.1.1 Let u1,u2 be vectors in R3. The 2 dimensional parallelogram
determined by these vectors will be denoted by P(u1,u2) and it is defined as

P(u1,u2)≡

{
2

∑
j=1

s ju j : s j ∈ [0,1]

}
.

Then the area of this parallelogram is

area P(u1,u2)≡ |u1 ×u2|= det(G)1/2

where Gi j ≡ ui ·u j.

577
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To see the last claim,

|u1 ×u2|2 = |u1|2 |u2|2 sin2 (θ) = |u1|2 |u2|2
(
1− cos2 (θ)

)
= |u1|2 |u2|2 − (u1 ·u2)

2 = det(G)2

Suppose then that x= f (u) where u ∈ U , a subset of R2 and x is a point in V , a
subset of 3 dimensional space. Thus, letting the Cartesian coordinates of x be given by
x = (x1,x2,x3)

T , each xi being a function of u, an infinitesimal rectangle located at u0
corresponds to an infinitesimal parallelogram located at f (u0) which is determined by the

2 vectors
{

∂f(u0)
∂ui

dui

}2

i=1
, each of which is tangent to the surface defined by x= f (u).

(No sum on the repeated index.)

dV

u0

du2

du1

fu2
(u0)du2

fu1
(u0)du1

f(dV )

From Definition 28.1.1, the two dimensional volume of this infinitesimal parallelepiped
located at f (u0) is given by∣∣∣∣∂f (u0)

∂u1
du1 ×

∂f (u0)

∂u2
du2

∣∣∣∣ =

∣∣∣∣∂f (u0)

∂u1
× ∂f (u0)

∂u2

∣∣∣∣du1du2 (28.1)

=
∣∣fu1

×fu2

∣∣du1du2 (28.2)

It might help to think of a lizard. The infinitesimal parallelepiped is like a very small
scale on a lizard. This is the essence of the idea. To define the area of the lizard sum up
areas of individual scales1. If the scales are small enough, their sum would serve as a good
approximation to the area of the lizard.

This motivates the following fundamental procedure which I hope is extremely familiar
from the earlier material.

1This beautiful lizard is a Sceloporus magister. It was photographed by C. Riley Nelson who is in the Zoology
department at Brigham Young University © 2004 in Kane Co. Utah. The lizard is a little less than one foot in
length.
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Procedure 28.1.2 Suppose U is a subset of R2 and suppose f : U → f (U) ⊆ R3

is a one to one and C1 function. Then if h : f (U)→ R, define the 2 dimensional surface
integral

∫
f(U) h(x) dA according to the following formula.∫

f(U)
h(x) dA ≡

∫
U

h(f (u))
∣∣fu1

(u)×fu2
(u)
∣∣du1du2

=
∫

U
h(f (u))det(G(u))1/2 du1du2

where G(u) =

(
fu1

·fu1
fu1

·fu2
fu1

·fu2
fu2

·fu2

)
.

Note that the Jacobian for change of variables and the Jacobian to be used in surface
integrals are really both special cases of the same general theory involving the square root
of the determinant of the matrix G. This matrix is called the metric tensor and will be
considered more later.

Definition 28.1.3 It is customary to write
∣∣fu1

(u)×fu2
(u)
∣∣= ∂ (x1,x2,x3)

∂ (u1,u2)
because

this new notation generalizes to far more general situations for which the cross product is
not defined. For example, one can consider three dimensional surfaces in R8.

Example 28.1.4 Consider the surface given by z = x2 for (x,y) ∈ [0,1]× [0,1] =U. Find
the surface area of this surface.

The first step in using the above is to write this surface in the form x= f (u). This is
easy to do if you let u= (x,y). Then f (x,y) =

(
x,y,x2

)
. If you like, let x = u1 and y = u2.

What is ∂ (x1,x2,x3)
∂ (x,y) =

∣∣f x ×f y
∣∣?

f x =
(

1 0 2x
)T

, f y =
(

0 1 0
)T

and so ∣∣f x ×f y
∣∣= ∣∣∣( 1 0 2x

)T ×
(

0 1 0
)T
∣∣∣=√1+4x2

and so the area element is
√

1+4x2 dxdy and the surface area is obtained by integrating
the function h(x)≡ 1. Therefore, this area is∫

f(U)
dA =

∫ 1

0

∫ 1

0

√
1+4x2 dxdy =

1
2

√
5− 1

4
ln
(
−2+

√
5
)

which can be obtained by using the trig. substitution, 2x = tanθ on the inside integral.
Note this all depends on being able to write the surface in the form, x= f (u) for

u ∈ U ⊆ Rp. Surfaces obtained in this form are called parametrically defined surfaces.
These are best but sometimes you have some other description of a surface and in these
cases things can get pretty intractable. For example, you might have a level surface of the
form 3x2 + 4y4 + z6 = 10. In this case, you could solve for z using methods of algebra.
Thus z = 6

√
10−3x2 −4y4 and a parametric description of part of this level surface is(

x,y, 6
√

10−3x2 −4y4
)

for (x,y) ∈ U where U =
{
(x,y) : 3x2 +4y4 ≤ 10

}
. But what if

the level surface was something like

sin
(
x2 + ln

(
7+ y2 sinx

))
+ sin(zx)ez = 11sin(xyz)?
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I really do not see how to use methods of algebra to solve for some variable in terms of the
others. It isn’t even clear to me whether there are any points (x,y,z) ∈ R3 satisfying this
particular relation. However, if a point satisfying this relation can be identified, the implicit
function theorem from advanced calculus can usually be used to assert one of the variables
is a function of the others, proving the existence of a parametrization at least locally. The
problem is, this theorem does not give the answer in terms of known functions so this is
not much help. Finding a parametric description of a surface is a hard problem and there
are no easy answers. This is a good example which illustrates the gulf between theory and
practice.

Example 28.1.5 Let U = [0,12]× [0,2π] and let f : U → R3 be given by

f (t,s)≡ (2cos t + coss,2sin t + sins, t)T

Find a double integral for the surface area. A graph of this surface is drawn below.

Then f t =
(
−2sin t 2cos t 1

)T
, f s =

(
−sins coss 0

)T and

f t ×f s =

 −coss
−sins

−2sin t coss+2cos t sins


and so ∂ (x1,x2,x3)

∂ (t,s) =

|f t ×f s|=
√

5−4sin2 t sin2 s−8sin t sinscos t coss−4cos2 t cos2 s.

Therefore, the desired integral giving the area is∫ 2π

0

∫ 12

0

√
5−4sin2 t sin2 s−8sin t sinscos t coss−4cos2 t cos2 sdt ds.

If you really needed to find the number this equals, how would you go about finding it?
This is an interesting question and there is no single right answer. You should think about
this. Here is an example for which you will be able to find the integrals.

Example 28.1.6 Let U = [0,2π]× [0,2π] and for (t,s) ∈U, let

f (t,s) = (2cos t + cos t coss,−2sin t − sin t coss,sins)T .

Find the area of f (U). This is the surface of a donut shown below. The fancy name for
this shape is a torus.
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-1

0

2

1

2
0

0
-2 -2

To find its area,

f t =

 −2sin t − sin t coss
−2cos t − cos t coss

0

 ,f s =

 −cos t sins
sin t sins

coss


and so |f t ×f s|= (coss+2) so the area element is (coss+2) dsdt and the area is∫ 2π

0

∫ 2π

0
(coss+2) dsdt = 8π

2

Example 28.1.7 Let U = [0,2π]× [0,2π] and for (t,s) ∈U, let

f (t,s) = (2cos t + cos t coss,−2sin t − sin t coss,sins)T .

Find
∫
f(U) hdV where h(x,y,z) = x2.

Everything is the same as the preceding example except this time it is an integral of a
function. The area element is (coss+2) dsdt and so the integral called for is

∫
f(U)

hdA =
∫ 2π

0

∫ 2π

0

 x on the surface︷ ︸︸ ︷
2cos t + cos t coss

2

(coss+2) dsdt = 22π
2

28.2 Surfaces of the Form z = f (x,y)

The special case where a surface is in the form z = f (x,y) ,(x,y) ∈ U , yields a simple
formula which is used most often in this situation. You write the surface parametrically in
the form f (x,y) = (x,y, f (x,y))T such that (x,y) ∈U . Then

f x =
(

1 0 fx
)T

, f y =
(

0 1 fy
)T

and
∣∣f x ×f y

∣∣=√1+ f 2
y + f 2

x so the area element is√
1+ f 2

y + f 2
x dxdy.

When the surface of interest comes in this simple form, people generally use this area
element directly rather than worrying about a parametrization and taking cross products.

In the case where the surface is of the form x = f (y,z) for (y,z) ∈ U , the area el-

ement is obtained similarly and is
√

1+ f 2
y + f 2

z dydz. I think you can guess what the

area element is if y = f (x,z). It also generalizes immediately to higher dimensions where
xki = f

(
x1, ...,xki−1 ,xki+1 , ...,xn

)
.

There is also a simple geometric description of these area elements. Consider the sur-
face z = f (x,y). This is a level surface of the function of three variables z− f (x,y). In
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fact the surface is simply z− f (x,y) = 0. Now consider the gradient of this function of
three variables. The gradient is perpendicular to the surface and the third component is
positive in this case. This gradient is (− fx,− fy,1) and so the unit upward normal is just

1√
1+ f 2

x + f 2
y
(− fx,− fy,1). Now consider the following picture.

kn
θ

θ

dA

dxdy

In this picture, you are looking at a chunk of area on the surface seen on edge and so it
seems reasonable to expect to have dxdy = dAcosθ . But it is easy to find cosθ from the
picture and the properties of the dot product.

cosθ =
n ·k
|n| |k|

=
1√

1+ f 2
x + f 2

y

.

Therefore, dA =
√

1+ f 2
x + f 2

y dxdy as claimed.

Example 28.2.1 Let z =
√

x2 + y2 where (x,y) ∈U for

U =
{
(x,y) : x2 + y2 ≤ 4

}
Find

∫
S hdS where h(x,y,z) = x+ z and S is the surface whose parametrical description is(

x,y,
√

x2 + y2
)

for (x,y) ∈U.

Here you can see directly the angle in the above picture is π

4 and so dA =
√

2dxdy. If

you do not see this or if it is unclear, simply compute
√

1+ f 2
x + f 2

y and you will find it is
√

2. Therefore, using polar coordinates,∫
S

hdS =
∫

U

(
x+
√

x2 + y2
)√

2dA

=
√

2
∫ 2π

0

∫ 2

0
(r cosθ + r)r dr dθ =

16
3

√
2π.

I have been purposely vague about precise mathematical conditions necessary for the
above procedures. This is because the precise mathematical conditions which are usually
cited are very technical and at the same time far too restrictive. The most general conditions
under which these sorts of procedures are valid include things like Lipschitz functions de-
fined on very general sets. These are functions satisfying a Lipschitz condition of the form
|f (x)−f (y)| ≤ K |x−y|. For example, y = |x| is Lipschitz continuous. This function
does not have a derivative at every point. So it is with Lipschitz functions. However, it
turns out these functions have derivatives at enough points to push everything through but
this requires considerations involving the Lebesgue integral.
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28.3 MATLAB and Graphing Surfaces
I will illustrate with an example.

[s,t]=meshgrid(0:.02*pi:2*pi,0:.02*pi:pi);
[u,v]=meshgrid(0:.02*pi:2*pi,-1.4:.2:1.4);
hold on
surf(sin(t).*cos(s),sin(t).*sin(s),cos(t),’edgecolor’,’none’)
alpha .7
surf(.5*cos(u),.5*sin(u),v,’edgecolor’,’none’)
axis equal

This graphs two surfaces, a cylinder and a sphere. The .7 makes the sphere slightly
transparent. You can adjust this number to be anything between 0 and 1 depending on how
transparent you want it to be. If you just wanted to graph the sphere, you could forget
about the hold on and simply include the first of the two lines beginning with “surf”. You
should experiment with this. These are parametrically defined surfaces because this is
more general than a surface of the form z = f (x,y) and the integral is defined on these
more general kinds of surfaces. Click on the little curvy arrow on the top of the picture
which appears to allow rotating the graph to see it from different angles.

28.4 Piecewise Defined Surfaces
As with curves, you might piece together surfaces. In this section is considered what hap-
pens on the place where the two surfaces intersect. First of all, we really don’t know how to
find the Riemann integral over arbitrary regions. We need to have the region be cylindrical
in either the u or the v direction. That is, u ∈ [a,b] and for each u, the variable v is between
T (u) and B(u). Alternatively, v ∈ [c,d] and for each v, the variable u is between L(v) and
R(v) where L(v)≤ R(v). So what is meant by a piecewise smooth surface? Let

S ≡ S1 ∪S2 ∪·· ·∪Sm

where Sk ≡ rk (Dk) where Dk is one of the special regions just described and rk is one to
one and C1 on an open set Uk ⊇ Dk such that ru × rv ̸= 0. Then we assume that either
Sk ∩S j = /0 or their intersection is rk (lk) = r j (l j) where lk, l j are one of the four edges of
Dk and D j respectively. For example, say

Dk = {u ∈ [a,b] ,v ∈ [B(u) ,T (u)]}

and say lk is the top edge of Dk,{(u,T (u)) : u ∈ [a,b]}. Then from the definition, if f is
defined on S, and is 0 off Sk ∩S j,∫

S
f dS =

∫ b

a

∫ T (u)

T (u)
f (u,v) |rku ×rkv|dvdu = 0

Other situations are exactly similar. The point is, when you have a surface which is de-
fined piecewise as just described, you don’t need to bother with the curves of intersection
because the two dimensional iterated integral will be zero on these curves. The term for
this situation in the context of the Lebesgue integral is that the curve has measure zero. In
examples of interest, the situation is usually that surfaces intersect in sets of measure zero
and so as far as the integral is concerned, these intersections are irrelevant.
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28.5 Flux Integrals
These will be important in the next chapter. The idea is this. You have a surface S and a
field of unit normal vectors n on S. That is, for each point of S there exists a unit normal
except for finitely many curves of measure zero. There is also a vector field F and you
want to find

∫
SF ·ndS. There is really nothing new here. You just need to compute the

function F ·n and then integrate it over the surface. Here is an example.

Example 28.5.1 Let F (x,y,z) = (x,x+ z,y) and let S be the hemisphere x2 + y2 + z2 =
4,z≥ 0. Let n be the unit normal to S which has nonnegative z component. Find

∫
SF ·ndS.

First find the function F ·n ≡ (x,x+ z,y) ·

=n︷ ︸︸ ︷
(x,y,z)

1
2
= 1

2 x2 + 1
2 (x+ z)y + 1

2 yz. This

follows because the normal is of the form (2x,2y,2z) and then when you divide by its
length using the fact that x2 + y2 + z2 = 4, you obtain that n = (x,y,z) 1

2 as claimed. Next
it remains to choose a coordinate system for the surface and then to compute the integral.
A parametrization is

x = 2sinφ cosθ , y = 2sinφ sinθ , z = 2cosφ

and the increment of surface area is then∣∣∣∣∣∣
 −2sinφ sinθ

2sinφ cosθ

0

×

 2cosφ cosθ

2cosφ sinθ

−2sinφ

∣∣∣∣∣∣dθdφ

=

∣∣∣∣∣∣
 −4sin2

φ cosθ

−4sin2
φ sinθ

−4sinφ cosφ

∣∣∣∣∣∣dθdφ = 4sinφdθdφ

Therefore, since the hemisphere corresponds to θ ∈ [0,2π] and φ ∈ [0,π/2], the integral to
work is ∫ 2π

0

∫
π/2

0

[
1
2
(2sinφ cosθ)2 +

(
1
2
(2sinφ cosθ +2cosφ)

)
·

(2sinφ sinθ)+
1
2
(2sinφ sinθ)2cosφ

]
4sin(φ)dφdθ

Doing the integration, this reduces to 16
3 π .

The important thing to notice is that there is no new mathematics here. That which is
new is the significance of a flux integral which will be discussed more in the next chapter.
In short, this integral often has the interpretation of a measure of how fast something is
crossing a surface.

28.6 Exercises
1. Find a parametrization for the intersection of the planes 4x+ 2y+ 4z = 3 and 6x−

2y =−1.



28.6. EXERCISES 585

2. Find a parametrization for the intersection of the plane 3x+y+z = 1 and the circular
cylinder x2 + y2 = 1.

3. Find a parametrization for the intersection of the plane 3x + 2y+ 4z = 4 and the
elliptic cylinder x2 +4z2 = 16.

4. Find a parametrization for the straight line joining (1,3,1) and (−2,5,3).

5. Find a parametrization for the intersection of the surfaces 4y + 3z = 3x2 + 2 and
3y+2z =−x+3.

6. Find the area of S if S is the part of the circular cylinder x2 + y2 = 4 which lies
between z = 0 and z = 2+ y.

7. Find the area of S if S is the part of the cone x2 +y2 = 16z2 between z = 0 and z = h.

8. Parametrizing the cylinder x2+y2 = a2 by x = acosv,y = asinv,z = u, show that the
area element is dA = adudv

9. Find the area enclosed by the limacon r = 2+ cosθ .

10. Find the surface area of the paraboloid z = h
(
1− x2 − y2

)
between z = 0 and z = h.

Take a limit of this area as h decreases to 0.

11. Evaluate
∫

S (1+ x) dA where S is the part of the plane 4x+ y+ 3z = 12 which is in
the first octant.

12. Evaluate
∫

S (1+ x) dA where S is the part of the cylinder x2 + y2 = 9 between z = 0
and z = h.

13. Evaluate
∫

S (1+ x) dA where S is the hemisphere x2 +y2 + z2 = 4 between x = 0 and
x = 2.

14. For (θ ,α) ∈ [0,2π]× [0,2π] ,let

f (θ ,α)≡ (cosθ (4+ cosα) ,−sinθ (4+ cosα) ,sinα)T .

Find the area of f ([0,2π]× [0,2π]). Hint: Check whether fθ ·fα = 0. This might
make the computations reasonable.

15. For (θ ,α) ∈ [0,2π]× [0,2π], let

f (θ ,α)≡ (cosθ (3+2cosα) ,−sinθ (3+2cosα) ,2sinα)T , h(x) = cosα,

where α is such that x= (cosθ (3+2cosα) ,−sinθ (3+2cosα) ,2sinα)T . Find∫
f([0,2π]×[0,2π]) hdA. Hint: Check whether fθ ·fα = 0. This might make the compu-

tations reasonable.

16. For (θ ,α) ∈ [0,2π]× [0,2π], let

f (θ ,α)≡ (cosθ (4+3cosα) ,−sinθ (4+3cosα) ,3sinα)T , h(x) = cos2
θ ,

where the parametrical description of the surface is

x= (cosθ (4+3cosα) ,−sinθ (4+3cosα) ,3sinα)T

Find
∫
f([0,2π]×[0,2π]) hdA. Hint: Check whether fθ ·fα = 0. This might make the

computations reasonable.
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17. In spherical coordinates, φ = c,ρ ∈ [0,R] determines a cone. Find the area of this
cone.

18. Let F = (x,y,z) and let S be the curved surface which comes from the intersection
of the plane z = x with the paraboloid z = x2 + y2. Find an iterated integral for the
flux integral

∫
SF ·ndS where n is the field of unit normals which has negative z

component.

19. Let F = (x,0,0) and let S denote the surface which consists of the part of the sphere
x2+y2+z2 = 9 which lies between the planes z= 1 and z= 2. Find

∫
SF ·ndS where

n is the unit normal to this surface which has positive z component.

20. In the situation of the above problem change the vector field to F = (0,0,z) and do
the same problem.

21. Show that for a sphere of radius a parameterized with spherical coordinates so that

x = asinφ cosθ , y = asinφ sinθ , z = acosφ

the increment of surface area is a2 sinφdθdφ . Use to show that the area of a sphere
of radius a is 4πa2.



Chapter 29

Calculus of Vector Fields

29.1 Divergence and Curl of a Vector Field
Here the important concepts of divergence and curl are defined in terms of rectangular
coordinates.

Definition 29.1.1 Let f :U →Rp for U ⊆Rp denote a vector field. A scalar valued
function is called a scalar field. The function f is called a Ck vector field if the function f
is a Ck function. For a C1 vector field, as just described ∇ ·f (x)≡ divf (x) known as the
divergence, is defined as

∇ ·f (x)≡ divf (x)≡
p

∑
i=1

∂ fi

∂xi
(x) .

Using the repeated summation convention, this is often written as

fi,i (x)≡ ∂i fi (x)

where the comma indicates a partial derivative is being taken with respect to the ith variable
and ∂i denotes differentiation with respect to the ith variable. In words, the divergence is
the sum of the ith derivative of the ith component function of f for all values of i. If p = 3,
the curl of the vector field yields another vector field and it is defined as follows.

(curl(f)(x))i ≡ (∇×f (x))i ≡ ε i jk∂ j fk (x)

where here ∂ j means the partial derivative with respect to x j and the subscript of i in
(curl(f)(x))i means the ith Cartesian component of the vector curl(f)(x). Thus the curl
is evaluated by expanding the following determinant along the top row.∣∣∣∣∣∣

i j k
∂

∂x
∂

∂y
∂

∂ z
f1 (x,y,z) f2 (x,y,z) f3 (x,y,z)

∣∣∣∣∣∣ .
Note the similarity with the cross product. Sometimes the curl is called rot. (Short for

rotation not decay.) Also
∇

2 f ≡ ∇ · (∇ f ) .

587
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This last symbol is important enough that it is given a name, the Laplacian.It is also de-
noted by ∆. Thus ∇

2 f = ∆ f . In addition for f a vector field, the symbol f ·∇ is defined as
a “differential operator” in the following way.

f ·∇(g)≡ f1 (x)
∂g (x)

∂x1
+ f2 (x)

∂g (x)

∂x2
+ · · ·+ fp (x)

∂g (x)

∂xp
.

Thus f ·∇ takes vector fields and makes them into new vector fields.

This definition is in terms of a given rectangular coordinate system but later coordinate
free definitions of the curl and div are presented. For now, everything is defined in terms
of a given Cartesian coordinate system. The divergence and curl have profound physical
significance and this will be discussed later. For now it is important to understand their
definition in terms of coordinates. Be sure you understand that for f a vector field, divf
is a scalar field meaning it is a scalar valued function of three variables. For a scalar field
f , ∇ f is a vector field described earlier. For f a vector field having values in R3,curlf is
another vector field.

Example 29.1.2 Let f (x) = xyi+(z− y)j+(sin(x)+ z)k. Find divf and curlf .

First the divergence of f is

∂ (xy)
∂x

+
∂ (z− y)

∂y
+

∂ (sin(x)+ z)
∂ z

= y+(−1)+1 = y.

Now curlf is obtained by evaluating∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂ z
xy z− y sin(x)+ z

∣∣∣∣∣∣=
i

(
∂

∂y
(sin(x)+ z)− ∂

∂ z
(z− y)

)
−j

(
∂

∂x
(sin(x)+ z)− ∂

∂ z
(xy)

)
+

k

(
∂

∂x
(z− y)− ∂

∂y
(xy)

)
=−i− cos(x)j− xk.

29.1.1 Vector Identities
There are many interesting identities which relate the gradient, divergence and curl.

Theorem 29.1.3 Assuming f,g are a C2 vector fields whenever necessary, the fol-
lowing identities are valid.

1. ∇ · (∇×f) = 0

2. ∇×∇φ = 0

3. ∇× (∇×f) = ∇(∇ ·f)−∇
2f where ∇

2f is a vector field whose ith component is
∇

2 fi.

4. ∇ · (f ×g) = g·(∇×f)−f ·(∇×g)
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5. ∇× (f ×g) = (∇ ·g)f− (∇ ·f)g+ (g·∇)f− (f ·∇)g

Proof: These are all easy to establish if you use the repeated index summation conven-
tion and the reduction identities.

∇ · (∇×f) = ∂i (∇×f)i = ∂i
(
ε i jk∂ j fk

)
= ε i jk∂i (∂ j fk)

= ε jik∂ j (∂i fk) =−ε i jk∂ j (∂i fk) =−ε i jk∂i (∂ j fk)

= −∇ · (∇×f) .

This establishes the first formula. The second formula is done similarly. Now consider the
third.

(∇× (∇×f))i = ε i jk∂ j (∇×f)k = ε i jk∂ j (εkrs∂r fs)

=

=ε i jk︷︸︸︷
εki j εkrs∂ j (∂r fs) = (δ irδ js −δ isδ jr)∂ j (∂r fs)

= ∂ j (∂i f j)−∂ j (∂ j fi) = ∂i (∂ j f j)−∂ j (∂ j fi)

=
(

∇(∇ ·f)−∇
2f
)

i

This establishes the third identity.
Consider the fourth identity.

∇ · (f ×g) = ∂i (f ×g)i = ∂iε i jk f jgk

= ε i jk (∂i f j)gk + ε i jk f j (∂igk)

=
(
εki j∂i f j

)
gk −

(
ε jik∂igk

)
fk

= ∇×f ·g−∇×g ·f.

This proves the fourth identity.
Consider the fifth.

(∇× (f ×g))i = ε i jk∂ j (f ×g)k = ε i jk∂ jεkrs frgs

= εki jεkrs∂ j ( frgs) = (δ irδ js −δ isδ jr)∂ j ( frgs)

= ∂ j ( fig j)−∂ j ( f jgi)

= (∂ jg j) fi +g j∂ j fi − (∂ j f j)gi − f j (∂ jgi)

= ((∇ ·g)f +(g ·∇)(f)− (∇ ·f)g− (f ·∇)(g))i

and this establishes the fifth identity. ■

29.1.2 Vector Potentials
One of the above identities says ∇ ·(∇×f) = 0. Suppose now ∇ ·g= 0. Does it follow that
there exists f such that g = ∇×f ? It turns out that this is usually the case and when such
an f exists, it is called a vector potential. Here is one way to do it, assuming everything
is defined so the following formulas make sense.

f (x,y,z)=
(∫ z

0
g2 (x,y, t) dt,−

∫ z

0
g1 (x,y, t) dt +

∫ x

0
g3 (t,y,0) dt,0

)T

. (29.1)
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In verifying this you need to use the following manipulation which will generally hold
under reasonable conditions but which has not been carefully shown yet.

∂

∂x

∫ b

a
h(x, t) dt =

∫ b

a

∂h
∂x

(x, t) dt. (29.2)

The above formula seems plausible because the integral is a sort of a sum and the deriva-
tive of a sum is the sum of the derivatives. However, this sort of sloppy reasoning will
get you into all sorts of trouble. The formula involves the interchange of two limit opera-
tions, the integral and the limit of a difference quotient. Such an interchange can only be
accomplished through a theorem. The following gives the necessary result.

Lemma 29.1.4 Suppose h and ∂h
∂x are continuous on the rectangle R = [c,d]× [a,b].

Then 29.2 holds.

Proof: Let ∆x be such that x,x+∆x are both in [c,d]. By Theorem 15.12.4 on Page 335
there exists δ > 0 such that if |(x, t)− (x1, t1)|< δ , then∣∣∣∣∂h

∂x
(x, t)− ∂h

∂x
(x1, t1)

∣∣∣∣< ε

b−a
.

Let |∆x|< δ . Then ∣∣∣∣∫ b

a

h(x+∆x, t)−h(x, t)
∆x

dt −
∫ b

a

∂h
∂x

(x, t) dt
∣∣∣∣

≤
∫ b

a

∣∣∣∣h(x+∆x, t)−h(x, t)
∆x

− ∂h
∂x

(x, t)
∣∣∣∣dt

=
∫ b

a

∣∣∣∣∂h(x+θ t∆x)
∂x

− ∂h
∂x

(x, t)
∣∣∣∣dt <

∫ b

a

ε

b−a
dt = ε.

Here θ t is a number between 0 and 1 and going from the second to the third line is an
application of the mean value theorem. ■

The second formula of Theorem 29.1.3 states ∇×∇φ = 0. This suggests the following
question: Suppose ∇×f = 0, does it follow there exists φ , a scalar field such that ∇φ = f?
The answer to this is often yes and a theorem will be given and proved after the presentation
of Stokes’ theorem. This scalar field φ , is called a scalar potential for f .

29.1.3 The Weak Maximum Principle
There is also a fundamental result having great significance which involves ∇

2 called the
maximum principle. This principle says that if ∇

2u ≥ 0 on a bounded open set U , then u
achieves its maximum value on the boundary of U .

Theorem 29.1.5 Let U be a bounded open set in Rp and suppose

u ∈C2 (U)∩C
(
U
)

such that ∇
2u ≥ 0 in U. Then letting ∂U =U \U, it follows that

max
{

u(x) : x ∈U
}
= max{u(x) : x ∈ ∂U} .
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Proof: If this is not so, there exists x0 ∈U such that

u(x0)> max{u(x) : x ∈ ∂U} ≡ M

Since U is bounded, there exists ε > 0 such that

u(x0)> max
{

u(x)+ ε |x|2 : x ∈ ∂U
}
.

Therefore, u(x)+ ε |x|2 also has its maximum in U because for ε small enough,

u(x0)+ ε |x0|2 > u(x0)> max
{

u(x)+ ε |x|2 : x ∈ ∂U
}

for all x ∈ ∂U .
Now let x1 be the point in U at which u(x) + ε |x|2 achieves its maximum. As an

exercise you should show that ∇
2 ( f +g)=∇

2 f +∇
2g and therefore, ∇

2
(

u(x)+ ε |x|2
)
=

∇
2u(x)+2pε . (Why?) Therefore,

0 ≥ ∇
2u(x1)+2pε ≥ 2pε,

a contradiction. ■

29.2 Exercises
1. Find divf and curlf where f is

(a)
(
xyz,x2 + ln(xy) ,sinx2 + z

)T

(b) (sinx,siny,sinz)T

(c) ( f (x) ,g(y) ,h(z))T

(d) (x−2,y−3,z−6)T

(e)
(
y2,2xy,cosz

)T

(f) ( f (y,z) ,g(x,z) ,h(y,z))T

2. Prove formula 2 of Theorem 29.1.3.

3. Show that if u and v are C2 functions, then curl(u∇v) = ∇u×∇v.

4. Simplify the expression f×(∇×g)+g×(∇×f)+(f ·∇)g+ (g ·∇)f .

5. Simplify ∇× (v×r) where r = (x,y,z)T = xi+ yj+ zk and v is a constant vector.

6. Discover a formula which simplifies ∇ · (v∇u).

7. Verify that ∇ · (u∇v)−∇ · (v∇u) = u∇
2v− v∇

2u.

8. Verify that ∇
2 (uv) = v∇

2u+2(∇u ·∇v)+u∇
2v.

9. Functions u, which satisfy ∇
2u = 0 are called harmonic functions. Show that the

following functions are harmonic where ever they are defined.
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(a) 2xy

(b) x2 − y2

(c) sinxcoshy

(d) ln
(
x2 + y2

)
(e) 1/

√
x2 + y2 + z2

10. Verify the formula given in 29.1 is a vector potential for g assuming that divg = 0.

11. Show that if ∇
2uk = 0 for each k = 1,2, · · · ,m, and ck is a constant, then

∇
2

(
m

∑
k=1

ckuk

)
= 0

also.

12. In Theorem 29.1.5, why is ∇
2
(

ε |x|2
)
= 2nε?

13. Using Theorem 29.1.5, prove the following: Let f ∈ C (∂U) ( f is continuous on
∂U .) where U is a bounded open set. Then there exists at most one solution u ∈
C2 (U)∩C

(
U
)

and ∇
2u = 0 in U with u = f on ∂U . Hint: Suppose there are two

solutions ui, i = 1,2 and let w = u1 −u2. Then use the maximum principle.

14. Suppose B is a vector field and ∇×A=B. Thus A is a vector potential for B.
Show that A+∇φ is also a vector potential for B. Here φ is just a C2 scalar field.
Thus the vector potential is not unique.

29.3 The Divergence Theorem
The divergence theorem relates an integral over a set to one on the boundary of the set. It
is also called Gauss’s theorem.

Definition 29.3.1 A subset V of R3 is called cylindrical in the x direction if it is of
the form

V = {(x,y,z) : φ (y,z)≤ x ≤ ψ (y,z) for (y,z) ∈ D}

where D is a subset of the yz plane. V is cylindrical in the z direction if

V = {(x,y,z) : φ (x,y)≤ z ≤ ψ (x,y) for (x,y) ∈ D}

where D is a subset of the xy plane, and V is cylindrical in the y direction if

V = {(x,y,z) : φ (x,z)≤ y ≤ ψ (x,z) for (x,z) ∈ D}

where D is a subset of the xz plane. If V is cylindrical in the z direction, denote by ∂V the
boundary of V defined as the points of the form (x,y,φ (x,y)) ,(x,y,ψ (x,y)) for (x,y) ∈ D,
along with points of the form (x,y,z) where (x,y) ∈ ∂D and φ (x,y) ≤ z ≤ ψ (x,y). Points
on ∂D are defined to be those for which every open ball contains points which are in D as
well as points which are not in D. A similar definition holds for ∂V in the case that V is
cylindrical in one of the other directions.
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The following picture illustrates the above definition in the case of V cylindrical in the
z direction. Also labeled are the z components of the respective outer unit normals on the
sides and top and bottom.

z = ψ(x,y)

z = φ(x,y)

x

z

y

nz =
1

(1+ψ2
x+ψ2

y)
1/2

nz =
−1

(1+φ2
x+φ2

y)
1/2

nz = 0

Of course, many three dimensional sets are cylindrical in each of the coordinate direc-
tions. For example, a ball or a rectangle or a tetrahedron are all cylindrical in each direction.
The following lemma allows the exchange of the volume integral of a partial derivative for
an area integral in which the derivative is replaced with multiplication by an appropriate
component of the unit exterior normal.

Lemma 29.3.2 Suppose V is cylindrical in the z direction and that φ and ψ are the
functions in the above definition. Assume φ and ψ are C1 functions and suppose F is a C1

function defined on V . Also, let n= (nx,ny,nz) be the unit exterior normal to ∂V . Then∫
V

∂F
∂ z

(x,y,z) dV =
∫

∂V
Fnz dA.

Proof: From the fundamental theorem of calculus,∫
V

∂F
∂ z

(x,y,z) dV =
∫

D

∫
ψ(x,y)

φ(x,y)

∂F
∂ z

(x,y,z) dzdxdy (29.3)

=
∫

D
[F (x,y,ψ (x,y))−F (x,y,φ (x,y))] dxdy

Now the unit exterior normal on the top of V , the surface (x,y,ψ (x,y)) is

1√
ψ2

x +ψ2
y +1

(
−ψx,−ψy,1

)
.

This follows from the observation that the top surface is the level surface z−ψ (x,y) = 0
and so the gradient of this function of three variables is perpendicular to the level surface.
It points in the correct direction because the z component is positive. Therefore, on the top
surface

nz =
1√

ψ2
x +ψ2

y +1



594 CHAPTER 29. CALCULUS OF VECTOR FIELDS

Similarly, the unit normal to the surface on the bottom is

1√
φ

2
x +φ

2
y +1

(
φ x,φ y,−1

)
and so on the bottom surface,

nz =
−1√

φ
2
x +φ

2
y +1

Note that here the z component is negative because since it is the outer normal it must point
down. On the lateral surface, the one where (x,y) ∈ ∂D and z ∈ [φ (x,y) ,ψ (x,y)], nz = 0.

The area element on the top surface is dA=
√

ψ2
x +ψ2

y +1dxdy while the area element

on the bottom surface is
√

φ
2
x +φ

2
y +1dxdy. Therefore, the last expression in (29.3) is of

the form,

∫
D

F (x,y,ψ (x,y))

nz︷ ︸︸ ︷
1√

ψ2
x +ψ2

y +1

dA︷ ︸︸ ︷√
ψ2

x +ψ2
y +1dxdy+

∫
D

F (x,y,φ (x,y))

nz︷ ︸︸ ︷ −1√
φ

2
x +φ

2
y +1


dA︷ ︸︸ ︷√

φ
2
x +φ

2
y +1dxdy

+
∫

Lateral surface
Fnz dA,

the last term equaling zero because on the lateral surface, nz = 0. Therefore, this reduces
to
∫

∂V Fnz dA as claimed. ■
The following corollary is entirely similar to the above.

Corollary 29.3.3 If V is cylindrical in the y direction, then∫
V

∂F
∂y

dV =
∫

∂V
Fny dA

and if V is cylindrical in the x direction, then∫
V

∂F
∂x

dV =
∫

∂V
Fnx dA

With this corollary, here is a proof of the divergence theorem.

Theorem 29.3.4 Let V be cylindrical in each of the coordinate directions and let
F be a C1 vector field defined on V . Then∫

V
∇ ·F dV =

∫
∂V

F ·ndA.
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Proof: From the above lemma and corollary,∫
V

∇ ·F dV =
∫

V

∂F1

∂x
+

∂F2

∂y
+

∂F3

∂y
dV

=
∫

∂V
(F1nx +F2ny +F3nz) dA

=
∫

∂V
F ·ndA.■

Note that this only requires that ∂V be piecewise continuous. As discussed earlier, the
edges end up not contributing to the surface integral. The divergence theorem holds for
much more general regions than this. Suppose for example you have a complicated region
which is the union of finitely many disjoint regions of the sort just described which are
cylindrical in each of the coordinate directions. Then the volume integral over the union
of these would equal the sum of the integrals over the disjoint regions. If the boundaries
of two of these regions intersect, then the area integrals will cancel out on the intersection
because the unit exterior normals will point in opposite directions. Therefore, the sum of
the integrals over the boundaries of these disjoint regions will reduce to an integral over the
boundary of the union of these. Hence the divergence theorem will continue to hold. For
example, consider the following picture. If the divergence theorem holds for each Vi in the
following picture, then it holds for the union of these two.

V1 V2

General formulations of the divergence theorem involve Hausdorff measures and the
Lebesgue integral, a better integral than the old fashioned Riemannn integral which has
been obsolete now for almost 100 years. In general, one finds that the conclusion of the
divergence theorem is usually true and the theorem can be used with confidence. Minor
modifications show that the divergence theorem holds in any dimension. In particular, it
holds in two dimensions. In two dimensions, the dS refers to length and the dV refers
to area dxdy. In four dimensions, the dS would refer to three dimensional area using
dS =

√
1+ψ2

x1
+ψ2

x2
+ψ2

x3
dx1dx2dx3 or something involving another subset of the four

variables on the ends.

Example 29.3.5 Let V = [0,1]× [0,1]× [0,1]. That is, V is the cube in the first octant
having the lower left corner at (0,0,0) and the sides of length 1. Let F (x,y,z) = xi+yj+
zk. Find the flux integral in which n is the unit exterior normal.∫

∂V
F ·ndS

You can certainly inflict much suffering on yourself by breaking the surface up into 6
pieces corresponding to the 6 sides of the cube, finding a parametrization for each face and
adding up the appropriate flux integrals. For example, n= k on the top face and n=−k
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on the bottom face. On the top face, a parametrization is (x,y,1) : (x,y)∈ [0,1]× [0,1]. The
area element is just dxdy. It is not really all that hard to do it this way but it is much easier
to use the divergence theorem. The above integral equals∫

V
div(F )dV =

∫
V

3dV = 3.

Example 29.3.6 This time, let V be the unit ball,
{
(x,y,z) : x2 + y2 + z2 ≤ 1

}
and let

F (x,y,z) = x2i+ yj+ (z−1)k.

Find ∫
∂V

F ·ndS.

As in the above you could do this by brute force. A parametrization of the ∂V is
obtained as

x = sinφ cosθ , y = sinφ sinθ , z = cosφ

where (φ ,θ) ∈ (0,π)× (0,2π]. Now this does not include all the ball but it includes all but
the point at the top and at the bottom. As far as the flux integral is concerned these points
contribute nothing to the integral so you can neglect them. Then you can grind away and
get the flux integral which is desired. However, it is so much easier to use the divergence
theorem! Using spherical coordinates,∫

∂V
F ·ndS =

∫
V

div(F )dV =
∫

V
(2x+1+1)dV

=
∫

π

0

∫ 2π

0

∫ 1

0
(2+2ρ sin(φ)cosθ)ρ

2 sin(φ)dρdθdφ =
8
3

π

Example 29.3.7 Suppose V is an open set in R3 for which the divergence theorem holds.
Let F (x,y,z) = xi+ yj+ zk. Then show that∫

∂V
F ·ndS = 3× volume(V ).

This follows from the divergence theorem.∫
∂V

F ·ndS =
∫

V
div(F )dV = 3

∫
V

dV = 3×volume(V ).

The message of the divergence theorem is the relation between the volume integral and
an area integral. This is the exciting thing about this marvelous theorem. It is not its utility
as a method for evaluations of boring problems. This will be shown in the examples of its
use which follow.

29.3.1 Coordinate Free Concept of Divergence
The divergence theorem also makes possible a coordinate free definition of the divergence.

Theorem 29.3.8 Let B(x,δ ) be the ball centered at x having radius δ and let F be
a C1 vector field. Then letting v(B(x,δ )) denote the volume of B(x,δ ) given by

∫
B(x,δ ) dV,

it follows

divF (x) = lim
δ→0+

1
v(B(x,δ ))

∫
∂B(x,δ )

F ·ndA. (29.4)
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Proof: The divergence theorem holds for balls because they are cylindrical in every
direction. Therefore,

1
v(B(x,δ ))

∫
∂B(x,δ )

F ·ndA =
1

v(B(x,δ ))

∫
B(x,δ )

divF (y) dV.

Therefore, since divF (x) is a constant,∣∣∣∣divF (x)− 1
v(B(x,δ ))

∫
∂B(x,δ )

F ·ndA
∣∣∣∣

=

∣∣∣∣divF (x)− 1
v(B(x,δ ))

∫
B(x,δ )

divF (y) dV
∣∣∣∣

=

∣∣∣∣ 1
v(B(x,δ ))

∫
B(x,δ )

(divF (x)−divF (y)) dV
∣∣∣∣

≤ 1
v(B(x,δ ))

∫
B(x,δ )

|divF (x)−divF (y)| dV

≤ 1
v(B(x,δ ))

∫
B(x,δ )

ε

2
dV < ε

whenever ε is small enough, due to the continuity of divF . Since ε is arbitrary, this shows
29.4. ■

How is this definition independent of coordinates? It only involves geometrical notions
of volume and dot product. This is why. Imagine rotating the coordinate axes, keeping
all distances the same and expressing everything in terms of the new coordinates. The
divergence would still have the same value because of this theorem.

29.4 Applications of the Divergence Theorem

29.4.1 Hydrostatic Pressure
Imagine a fluid which does not move which is acted on by an acceleration g. Of course the
acceleration is usually the acceleration of gravity. Also let the density of the fluid be ρ , a
function of position. What can be said about the pressure p in the fluid? Let B(x,ε) be a
small ball centered at the point x. Then the force the fluid exerts on this ball would equal

−
∫

∂B(x,ε)
pndA.

Here n is the unit exterior normal at a small piece of ∂B(x,ε) having area dA. By the
divergence theorem, (see Problem 1 on Page 612) this integral equals

−
∫

B(x,ε)
∇pdV.

Also the force acting on this small ball of fluid is∫
B(x,ε)

ρgdV.



598 CHAPTER 29. CALCULUS OF VECTOR FIELDS

Since it is given that the fluid does not move, the sum of these forces must equal zero. Thus∫
B(x,ε)

ρgdV =
∫

B(x,ε)
∇pdV.

Since this must hold for any ball in the fluid of any radius, it must be that

∇p = ρg. (29.5)

It turns out that the pressure in a lake at depth z is equal to 62.5z. This is easy to see
from 29.5. In this case, g = gk where g = 32 feet/sec2. The weight of a cubic foot of
water is 62.5 pounds. Therefore, the mass in slugs of this water is 62.5/32. Since it is a
cubic foot, this is also the density of the water in slugs per cubic foot. Also, it is normally
assumed that water is incompressible1. Therefore, this is the mass of water at any depth.
Therefore,

∂ p
∂x

i+
∂ p
∂y

j+
∂ p
∂ z

k=
62.5
32

×32k.

and so p does not depend on x and y and is only a function of z. It follows p(0) = 0, and
p′ (z) = 62.5. Therefore, p(x,y,z) = 62.5z. This establishes the claim. This is interesting
but 29.5 is more interesting because it does not require ρ to be constant.

29.4.2 Archimedes Law of Buoyancy
Archimedes principle states that when a solid body is immersed in a fluid, the net force act-
ing on the body by the fluid is directly up and equals the total weight of the fluid displaced.

Denote the set of points in three dimensions occupied by the body as V . Then for dA
an increment of area on the surface of this body, the force acting on this increment of area
would equal −pdAn where n is the exterior unit normal. Therefore, since the fluid does
not move, ∫

∂V
−pndA =

∫
V
−∇pdV =

∫
V

ρgdVk

Which equals the total weight of the displaced fluid and you note the force is directed
upward as claimed. Here ρ is the density and 29.5 is being used. There is an interesting
point in the above explanation. Why does the second equation hold? Imagine that V were
filled with fluid. Then the equation follows from 29.5 because in this equation g =−gk.

29.4.3 Equations of Heat and Diffusion
Let x be a point in three dimensional space and let (x1,x2,x3) be Cartesian coordinates of
this point. Let there be a three dimensional body having density ρ = ρ (x, t).

The heat flux J, in the body is defined as a vector which has the following property.

Rate at which heat crosses S =
∫

S
J ·ndA

where n is the unit normal in the desired direction. Thus if V is a three dimensional body,

Rate at which heat leaves V =
∫

∂V
J ·ndA

1There is no such thing as an incompressible fluid but this doesn’t stop people from making this assumption.
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where n is the unit exterior normal.
Fourier’s law of heat conduction states that the heat flux J satisfies J =−k∇(u) where

u is the temperature and k = k (u,x, t) is called the coefficient of thermal conductivity. This
changes depending on the material. It also can be shown by experiment to change with
temperature. This equation for the heat flux states that the heat flows from hot places
toward colder places in the direction of greatest rate of decrease in temperature. Let c(x, t)
denote the specific heat of the material in the body. This means the amount of heat within
V is given by the formula

∫
V ρ (x, t)c(x, t)u(x, t) dV . Suppose also there are sources for

the heat within the material given by f (x,u, t). If f is positive, the heat is increasing while
if f is negative the heat is decreasing. For example such sources could result from a
chemical reaction taking place. Then the divergence theorem can be used to verify the
following equation for u. Such an equation is called a reaction diffusion equation.

∂

∂ t
(ρ (x, t)c(x, t)u(x, t)) = ∇ · (k (u,x, t)∇u(x, t))+ f (x,u, t) . (29.6)

Take an arbitrary V for which the divergence theorem holds. Then the time rate of
change of the heat in V is

d
dt

∫
V

ρ (x, t)c(x, t)u(x, t) dV =
∫

V

∂ (ρ (x, t)c(x, t)u(x, t))
∂ t

dV

where, as in the preceding example, this is a physical derivation so the consideration of
hard mathematics is not necessary. Therefore, from the Fourier law of heat conduction,
d
dt
∫

V ρ (x, t)c(x, t)u(x, t) dV =

∫
V

∂ (ρ (x, t)c(x, t)u(x, t))
∂ t

dV =

rate at which heat enters︷ ︸︸ ︷∫
∂V

−J ·ndA +
∫

V
f (x,u, t) dV

=
∫

∂V
k∇(u) ·ndA+

∫
V

f (x,u, t) dV =
∫

V
(∇ · (k∇(u))+ f ) dV.

Since this holds for every sample volume V it must be the case that the above reaction
diffusion equation 29.6 holds. Note that more interesting equations can be obtained by
letting more of the quantities in the equation depend on temperature. However, the above
is a fairly hard equation and people usually assume the coefficient of thermal conductivity
depends only on x and that the reaction term f depends only on x and t and that ρ and c
are constant. Then it reduces to the much easier equation

∂

∂ t
u(x, t) =

1
ρc

∇ · (k (x)∇u(x, t))+ f (x,t) . (29.7)

This is often referred to as the heat equation. Sometimes there are modifications of this
in which k is not just a scalar but a matrix to account for different heat flow properties
in different directions. However, they are not much harder than the above. The major
mathematical difficulties result from allowing k to depend on temperature.

It is known that the heat equation is not correct even if the thermal conductivity did not
depend on u because it implies infinite speed of propagation of heat. However, this does
not prevent people from using it.
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29.4.4 Balance of Mass
Let y be a point in three dimensional space and let (y1,y2,y3) be Cartesian coordinates of
this point. Let V be a region in three dimensional space and suppose a fluid having density
ρ (y, t) and velocity, v (y, t) is flowing through this region. Then the mass of fluid leaving
V per unit time is given by the area integral

∫
∂V ρ (y, t)v (y, t) ·ndA while the total mass

of the fluid enclosed in V at a given time is
∫

V ρ (y, t) dV . Also suppose mass originates at
the rate f (y, t) per cubic unit per unit time within this fluid. Then the conclusion which can
be drawn through the use of the divergence theorem is the following fundamental equation
known as the mass balance equation.

∂ρ

∂ t
+∇ · (ρv) = f (y, t) (29.8)

To see this is so, take an arbitrary V for which the divergence theorem holds. Then the
time rate of change of the mass in V is

∂

∂ t

∫
V

ρ (y, t) dV =
∫

V

∂ρ (y, t)
∂ t

dV

where the derivative was taken under the integral sign with respect to t. (This is a physical
derivation and therefore, it is not necessary to fuss with the hard mathematics related to
the change of limit operations. You should expect this to be true under fairly general con-
ditions because the integral is a sort of sum and the derivative of a sum is the sum of the
derivatives.) Therefore, the rate of change of mass ∂

∂ t

∫
V ρ (y, t) dV , equals

∫
V

∂ρ (y, t)
∂ t

dV =

rate at which mass enters︷ ︸︸ ︷
−
∫

∂V
ρ (y, t)v (y, t) ·ndA+

∫
V

f (y, t) dV

= −
∫

V
(∇ · (ρ (y, t)v (y, t))+ f (y, t)) dV.

Since this holds for every sample volume V it must be the case that the equation of
continuity holds. Again, there are interesting mathematical questions here which can be
explored but since it is a physical derivation, it is not necessary to dwell too much on them.
If all the functions involved are continuous, it is certainly true but it is true under far more
general conditions than that.

Also note this equation applies to many situations and f might depend on more than
just y and t. In particular, f might depend also on temperature and the density ρ . This
would be the case for example if you were considering the mass of some chemical and f
represented a chemical reaction. Mass balance is a general sort of equation valid in many
contexts.

29.4.5 Balance of Momentum
This example is a little more substantial than the above. It concerns the balance of mo-
mentum for a continuum. To see a full description of all the physics involved, you should
consult a book on continuum mechanics. The situation is of a material in three dimensions
and it deforms and moves about in three dimensions. This means this material is not a rigid
body. Let B0 denote an open set identifying a chunk of this material at time t = 0 and let
Bt be an open set which identifies the same chunk of material at time t > 0.
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Let y (t,x) = (y1 (t,x) ,y2 (t,x) ,y3 (t,x)) denote the position with respect to Cartesian
coordinates at time t of the point whose position at time t = 0 is x = (x1,x2,x3). The
coordinates x are sometimes called the reference coordinates and sometimes the material
coordinates and sometimes the Lagrangian coordinates. The coordinates y are called the
Eulerian coordinates or sometimes the spacial coordinates and the function (t,x)→ y (t,x)
is called the motion. Thus

y (0,x) = x. (29.9)

The derivative,
D2y (t,x)≡ Dxy (t,x)

is called the deformation gradient. Recall the notation means you fix t and consider the
function x→ y (t,x), taking its derivative. Since it is a linear transformation, it is repre-
sented by the usual matrix, whose i jth entry is given by

Fi j (x) =
∂yi (t,x)

∂x j
.

Let ρ (t,y) denote the density of the material at time t at the point y and let ρ0 (x) denote
the density of the material at the point x. Thus ρ0 (x) = ρ (0,x) = ρ (0,y (0,x)). The first
task is to consider the relationship between ρ (t,y) and ρ0 (x). The following picture is
useful to illustrate the ideas.

x y = y(t,x)
V0

N

Vt

n
y

Lemma 29.4.1 ρ0 (x) = ρ (t,y (t,x))det(F) and in any reasonable physical motion
det(F)> 0.

Proof: Let V0 represent a small chunk of material at t = 0 and let Vt represent the same
chunk of material at time t. I will be a little sloppy and refer to V0 as the small chunk
of material at time t = 0 and Vt as the chunk of material at time t rather than an open set
representing the chunk of material. Then by the change of variables formula for multiple
integrals, ∫

Vt

dV =
∫

V0

|det(F)| dV.

If det(F) = 0 for some t the above formula shows that the chunk of material went from
positive volume to zero volume and this is not physically possible. Therefore, it is impos-
sible that det(F) can equal zero. However, at t = 0, F = I, the identity because of 29.9.
Therefore, det(F) = 1 at t = 0 and if it is assumed t → det(F) is continuous it follows by
the intermediate value theorem that det(F)> 0 for all t. ■

Of course it is not known for sure that this function is continuous but the above shows
why it is at least reasonable to expect det(F)> 0. General arguments involve measure and
the Lebesgue integral. As usual, one neglects mathematical rigor in derivations of physical
formulae.
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Now using the change of variables formula

mass of Vt =
∫

Vt

ρ (t,y) dV (y) =
∫

V0

ρ (t,y (t,x))det(F) dV (x)

= mass of V0 =
∫

V0

ρ0 (x) dV.

Since V0 is arbitrary, it follows

ρ0 (x) = ρ (t,y (t,x))det(F)

as claimed. Note this shows that det(F) is a magnification factor for the density.
Now consider a small chunk of material, Vt at time t which corresponds to V0 at time

t = 0. The total linear momentum of this material at time t is∫
Vt

ρ (t,y)v (t,y) dV

where v is the velocity. By Newton’s second law, the time rate of change of this linear
momentum should equal the total force acting on the chunk of material. In the following
derivation, dV (y) will indicate the integration is taking place with respect to the variable
y. By Lemma 29.4.1 and the change of variables formula for multiple integrals

d
dt

(∫
Vt

ρ (t,y)v (t,y) dV (y)

)
=

d
dt

(∫
V0

ρ (t,y (t,x))v (t,y (t,x))det(F) dV (x)

)

=
d
dt

(∫
V0

ρ0 (x)v (t,y (t,x)) dV (x)

)
=
∫

V0

ρ0 (x)

[
∂v

∂ t
+

∂v

∂yi

∂yi

∂ t

]
dV (x)

=
∫

V0

ρ0 (x)
1

det(F)

[
∂v

∂ t
+

∂v

∂yi

∂yi

∂ t

]
det(F) dV (x)

=
∫

V0

=ρ0(x)︷ ︸︸ ︷
ρ (t,y (t,x))det(F)

1
det(F)

[
∂v

∂ t
+

∂v

∂yi

∂yi

∂ t

]
det(F) dV (y)

=
∫

V0

ρ (t,y (t,x))
[

∂v

∂ t
+

∂v

∂yi

∂yi

∂ t

]
det(F) dV (y)

=
∫

Vt

ρ (t,y)
[

∂v

∂ t
+

∂v

∂yi

∂yi

∂ t

]
dV (y) =

∫
Vt

ρ (t,y) v̇dV (y)

where the dot on v indicates it is the total derivative. Having taken the derivative of the
total momentum, it is time to consider the total force acting on the chunk of material.

The force comes from two sources, a body force b and a force which acts on the bound-
ary of the chunk of material called a traction force. Typically, the body force is something
like gravity in which case, b=−gρk, assuming the Cartesian coordinate system has been
chosen in the usual manner. The traction force is of the form∫

∂Vt

s(t,y,n) dA
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where n is the unit exterior normal. Thus the traction force depends on position, time, and
the orientation of the boundary of Vt . Cauchy showed the existence of a linear transfor-
mation T (t,y) such that T (t,y)n = s(t,y,n). It follows there is a matrix Ti j (t,y) such
that the ith component of s is given by si (t,y,n) = Ti j (t,y)n j. Cauchy also showed this
matrix is symmetric, Ti j = Tji. It is called the Cauchy stress. Using Newton’s second law to
equate the time derivative of the total linear momentum with the applied forces and using
the usual repeated index summation convention,∫

Vt

ρ (t,y) v̇dV (y) =
∫

Vt

b(t,y) dV (y)+
∫

∂Bt

eiTi j (t,y)n j dA,

the sum taken over repeated indices. Here is where the divergence theorem is used. In
the last integral, the multiplication by n j is exchanged for the jth partial derivative and an
integral over Vt . Thus∫

Vt

ρ (t,y) v̇dV (y) =
∫

Vt

b(t,y) dV (y)+
∫

Vt

ei∂ (Ti j (t,y))
∂y j

dV (y) ,

the sum taken over repeated indices. Since Vt was arbitrary, it follows

ρ (t,y) v̇ = b(t,y)+ei
∂ (Ti j (t,y))

∂y j
≡ b(t,y)+div(T )

where here divT is a vector whose ith component is given by

(divT )i =
∂Ti j

∂y j
.

The term ∂v
∂ t +

∂v
∂yi

∂yi
∂ t , is the total derivative with respect to t of the velocity v. Thus you

might see this written as
ρv̇ = b+div(T ) .

The above formulation of the balance of momentum involves the spatial coordinates y
but people also like to formulate momentum balance in terms of the material coordinates
x. Of course this changes everything.

The momentum in terms of the material coordinates is∫
V0

ρ0 (x)v (t,x) dV

and so, since x does not depend on t,

d
dt

(∫
V0

ρ0 (x)v (t,x) dV
)
=
∫

V0

ρ0 (x)vt (t,x) dV.

As indicated earlier, this is a physical derivation, so the mathematical questions related to
interchange of limit operations are ignored. This must equal the total applied force. Thus
using the repeated index summation convention,∫

V0

ρ0 (x)vt (t,x) dV =
∫

V0

b0 (t,x) dV +
∫

∂Vt

eiTi jn jdA, (29.10)
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the first term on the right being the contribution of the body force given per unit volume
in the material coordinates and the last term being the traction force discussed earlier. The
task is to write this last integral as one over ∂V0. For y ∈ ∂Vt there is a unit outer normal n.
Here y = y (t,x) for x ∈ ∂V0. Then define N to be the unit outer normal to V0 at the point
x. Near the point y ∈ ∂Vt the surface ∂Vt is given parametrically in the form y = y (s, t)
for (s, t) ∈ D ⊆ R2 and it can be assumed the unit normal to ∂Vt near this point is

n=
ys (s, t)×yt (s, t)
|ys (s, t)×yt (s, t)|

with the area element given by |ys (s, t)×yt (s, t)| dsdt. This is true for y ∈ Pt ⊆ ∂Vt , a
small piece of ∂Vt . Therefore, the last integral in 29.10 is the sum of integrals over small
pieces of the form ∫

Pt

Ti jn jdA (29.11)

where Pt is parameterized by y (s, t), (s, t) ∈ D. Thus the integral in 29.11 is of the form∫
D

Ti j (y (s, t))(ys (s, t)×yt (s, t)) j dsdt.

By the chain rule this equals∫
D

Ti j (y (s, t))
(

∂y

∂xα

∂xα

∂ s
× ∂y

∂xβ

∂xβ

∂ t

)
j
dsdt.

Summation over repeated indices is used. Remember y = y (t,x) and it is always assumed
the mapping x→ y (t,x) is one to one and so, since on the surface ∂Vt near y, the points
are functions of (s, t), it follows x is also a function of (s, t). Now by the properties of the
cross product, this last integral equals∫

D
Ti j (x(s, t))

∂xα

∂ s
∂xβ

∂ t

(
∂y

∂xα

× ∂y

∂xβ

)
j
dsdt (29.12)

where here x(s, t) is the point of ∂V0 which corresponds with y (s, t) ∈ ∂Vt . Thus

Ti j (x(s, t)) = Ti j (y (s, t)) .

(Perhaps this is a slight abuse of notation because Ti j is defined on ∂Vt , not on ∂V0, but it
avoids introducing extra symbols.) Next 29.12 equals∫

D
Ti j (x(s, t))

∂xα

∂ s
∂xβ

∂ t
ε jab

∂ya

∂xα

∂yb

∂xβ

dsdt

=
∫

D
Ti j (x(s, t))

∂xα

∂ s
∂xβ

∂ t
εcabδ jc

∂ya

∂xα

∂yb

∂xβ

dsdt

=
∫

D
Ti j (x(s, t))

∂xα

∂ s
∂xβ

∂ t
εcab

=δ jc︷ ︸︸ ︷
∂yc

∂xp

∂xp

∂y j

∂ya

∂xα

∂yb

∂xβ

dsdt
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=
∫

D
Ti j (x(s, t))

∂xα

∂ s
∂xβ

∂ t
∂xp

∂y j

=ε pαβ det(F)︷ ︸︸ ︷
εcab

∂yc

∂xp

∂ya

∂xα

∂yb

∂xβ

dsdt

=
∫

D
(detF)Ti j (x(s, t))ε pαβ

∂xα

∂ s
∂xβ

∂ t
∂xp

∂y j
dsdt.

Now ∂xp
∂y j

= F−1
p j and also

ε pαβ

∂xα

∂ s
∂xβ

∂ t
= (xs ×xt)p

so the result just obtained is of the form∫
D
(detF)F−1

p j Ti j (x(s, t))(xs ×xt)p dsdt =

∫
D
(detF)Ti j (x(s, t))

(
F−T )

jp (xs ×xt)p dsdt.

This has transformed the integral over Pt to one over P0, the part of ∂V0 which corresponds
with Pt . Thus the last integral is of the form∫

P0

det(F)
(
T F−T )

ip NpdA

Summing these up over the pieces of ∂Vt and ∂V0, yields the last integral in 29.10 equals∫
∂V0

det(F)
(
T F−T )

ip NpdA

and so the balance of momentum in terms of the material coordinates becomes∫
V0

ρ0 (x)vt (t,x) dV =
∫

V0

b0 (t,x) dV +
∫

∂V0

ei det(F)
(
T F−T )

ip NpdA

The matrix det(F)
(
T F−T

)
ip is called the Piola Kirchhoff stress S. An application of the

divergence theorem yields

∫
V0

ρ0 (x)vt (t,x) dV =
∫

V0

b0 (t,x) dV +
∫

V0

ei

∂

(
det(F)

(
T F−T

)
ip

)
∂xp

dV.

Since V0 is arbitrary, a balance law for momentum in terms of the material coordinates is
obtained

ρ0 (x)vt (t,x) = b0 (t,x)+ei

∂

(
det(F)

(
T F−T

)
ip

)
∂xp

= b0 (t,x)+div
(
det(F)

(
T F−T ))

= b0 (t,x)+divS. (29.13)

As just shown, the relation between the Cauchy stress and the Piola Kirchhoff stress is

S = det(F)
(
T F−T ) , (29.14)
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perhaps not the first thing you would think of.
The main purpose of this presentation is to show how the divergence theorem is used

in a significant way to obtain balance laws and to indicate a very interesting direction for
further study. To continue, one needs to specify T or S as an appropriate function of things
related to the motion y. Often the thing related to the motion is something called the strain
and such relationships are known as constitutive laws.

29.4.6 Frame Indifference
The proper formulation of constitutive laws involves more physical considerations such as
frame indifference in which it is required that the response of the system cannot depend
on the manner in which the Cartesian coordinate system for the spacial coordinates was
chosen.

For Q(t) an orthogonal transformation,

y′ = q (t)+Q(t)y,

the new spacial coordinates are denoted by y′. Recall an orthogonal transformation is just
one which satisfies

Q(t)T Q(t) = Q(t)Q(t)T = I.

The stress has to do with the traction force area density produced by internal changes in
the body and has nothing to do with the way the body is observed. Therefore, it is required
that

T ′n′ = QTn

Thus
T ′Qn= QTn

Since this is true for any n normal to the boundary of any piece of the material considered,
it must be the case that

T ′Q = QT

and so
T ′ = QT QT .

This is called frame indifference.
By 29.14, the Piola Kirchhoff stress S is related to T by

S = det(F)T F−T , F ≡ Dxy.

This stress involves the use of the material coordinates and a normal N to a piece of the
body in reference configuration. Thus SN gives the force on a part of ∂Vt per unit area on
∂V0. Then for a different choice of spacial coordinates, y′ = q (t)+Q(t)y,

S′ = det
(
F ′)T ′ (F ′)−T

but
F ′ = Dxy

′ = Q(t)Dxy = QF

and so frame indifference in terms of S is

S′ = det(F)QT QT (QF)−T = det(F)QT QT QF−T = QS
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This principle of frame indifference is sometimes ignored and there are certainly inter-
esting mathematical models which have resulted from doing this, but such things cannot be
considered physically acceptable.

There are also many other physical properties which can be included, which require a
certain form for the constitutive equations. These considerations are outside the scope of
this book and require a considerable amount of linear algebra.

There are also balance laws for energy which you may study later but these are more
problematic than the balance laws for mass and momentum. However, the divergence
theorem is used in these also.

29.4.7 Bernoulli’s Principle
Consider a possibly moving fluid with constant density ρ and let P denote the pressure
in this fluid. If B is a part of this fluid the force exerted on B by the rest of the fluid is∫

∂B−PndA where n is the outer normal from B. Assume this is the only force which mat-
ters so for example there is no viscosity in the fluid. Thus the Cauchy stress in rectangular
coordinates should be

T =

 −P 0 0
0 −P 0
0 0 −P

 .

Then divT =−∇P. Also suppose the only body force is from gravity, a force of the form
−ρgk, so from the balance of momentum

ρ v̇ =−ρgk−∇P(x) . (29.15)

Now in all this, the coordinates are the spacial coordinates, and it is assumed they are
rectangular. Thus x = (x,y,z)T and v is the velocity while v̇ is the total derivative of
v = (v1,v2,v3)

T given by vt + viv,i. Take the dot product of both sides of (29.15) with v.
This yields

(ρ/2)
d
dt

|v|2 =−ρg
dz
dt

− d
dt

P(x) .

Therefore,
d
dt

(
ρ |v|2

2
+ρgz+P(x)

)
= 0,

so there is a constant C′ such that

ρ |v|2

2
+ρgz+P(x) =C′

For convenience define γ to be the weight density of this fluid. Thus γ = ρg. Divide by γ .
Then

|v|2

2g
+ z+

P(x)

γ
=C.

This is Bernoulli’s2 principle. Note how, if you keep the height the same, then if you raise
|v|, it follows the pressure drops.

2There were many Bernoullis. This is Daniel Bernoulli. He seems to have been nicer than some of the others.
Daniel was actually a doctor who was interested in mathematics. He lived from 1700-1782.



608 CHAPTER 29. CALCULUS OF VECTOR FIELDS

This is often used to explain the lift of an airplane wing. The top surface is curved,
which forces the air to go faster over the top of the wing, causing a drop in pressure which
creates lift. It is also used to explain the concept of a venturi tube in which the air loses
pressure due to being pinched which causes it to flow faster. In many of these applica-
tions, the assumptions used in which ρ is constant, and there is no other contribution to the
traction force on ∂B than pressure, so in particular, there is no viscosity, are not correct.
However, it is hoped that the effects of these deviations from the ideal situation are small
enough that the conclusions are still roughly true. You can see how using balance of mo-
mentum can be used to consider more difficult situations. For example, you might have a
body force which is more involved than gravity.

29.4.8 The Wave Equation

As an example of how the balance law of momentum is used to obtain an important equa-
tion of mathematical physics, suppose S = kF where k is a constant and F is the defor-
mation gradient and let u≡ y−x. Thus u is the displacement. Then from 29.13 you can
verify the following holds.

ρ0 (x)utt (t,x) = b0 (t,x)+ k∆u(t,x) (29.16)

In the case where ρ0 is a constant and b0 = 0, this yields

utt − c∆u= 0.

The wave equation is utt − c∆u = 0 and so the above gives three wave equations, one for
each component.

29.4.9 A Negative Observation

Many of the above applications of the divergence theorem are based on the assumption that
matter is continuously distributed in a way that the above arguments are correct. In other
words, a continuum. However, there is no such thing as a continuum. It has been known
for some time now that matter is composed of atoms. It is not continuously distributed
through some region of space as it is in the above. Apologists for this contradiction with
reality sometimes say to consider enough of the material in question that it is reasonable
to think of it as a continuum. This mystical reasoning is then violated as soon as they
go from the integral form of the balance laws to the differential equations expressing the
traditional formulation of these laws. See Problem 10 below, for example. However, these
laws continue to be used and seem to lead to useful physical models which have value
in predicting the behavior of physical systems. This is what justifies their use, not any
fundamental truth.

29.4.10 Volumes of Balls in Rn

Recall, B(x,r) denotes the set of all y ∈ Rn such that |y−x| < r. By the change of
variables formula for multiple integrals or simple geometric reasoning, all balls of radius r
have the same volume. Furthermore, simple reasoning or change of variables formula will
show that the volume of the ball of radius r equals αnrn where αn will denote the volume of
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the unit ball in Rn. With the divergence theorem, it is now easy to give a simple relationship
between the surface area of the ball of radius r and the volume. By the divergence theorem,∫

B(0,r)
divx dx =

∫
∂B(0,r)

x· x|x|
dA

because the unit outward normal on ∂B(0,r) is x
|x| . Therefore, denoting A(∂B) as the area

of ∂B,
nαnrn = rA(∂B(0,r))

and so
A(∂B(0,r)) = nαnrn−1.

You recall the surface area of S2 ≡
{
x ∈ R3 : |x|= r

}
is given by 4πr2 while the volume

of the ball, B(0,r) is 4
3 πr3. This follows the above pattern. You just take the derivative

with respect to the radius of the volume of the ball of radius r to get the area of the surface
of this ball. Let ωn denote the area of the sphere Sn−1 = {x ∈ Rn : |x|= 1}. I just showed
that ωn = nαn.

I want to find αn now and also to get a relationship between ωn and ωn−1. Consider
the following picture of the ball of radius ρ seen on the side.

y
r

ρ Rn−1

Taking slices at height y as shown and using that these slices have n− 1 dimensional
area equal to αn−1rn−1, it follows

αnρ
n = 2

∫
ρ

0
αn−1

(
ρ

2 − y2)(n−1)/2
dy

In the integral, change variables, letting y = ρ cosθ . Then

αnρ
n = 2ρ

n
αn−1

∫
π/2

0
sinn (θ)dθ .

It follows that

αn = 2αn−1

∫
π/2

0
sinn (θ)dθ . (29.17)

Consequently,

ωn =
2nωn−1

n−1

∫
π/2

0
sinn (θ)dθ . (29.18)

This is a little messier than I would like.∫
π/2

0
sinn (θ)dθ = −cosθ sinn−1

θ |π/2
0 +(n−1)

∫
π/2

0
cos2

θ sinn−2
θ

= (n−1)
∫

π/2

0

(
1− sin2

θ
)

sinn−2 (θ)dθ

= (n−1)
∫

π/2

0
sinn−2 (θ)dθ − (n−1)

∫
π/2

0
sinn (θ)dθ
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Hence

n
∫

π/2

0
sinn (θ)dθ = (n−1)

∫
π/2

0
sinn−2 (θ)dθ (29.19)

and so 29.18 is of the form

ωn = 2ωn−1

∫
π/2

0
sinn−2 (θ)dθ . (29.20)

So what is αn explicitly? Clearly α1 = 2 and α2 = π .

Theorem 29.4.2 αn = πn/2

Γ( n
2+1)

where Γ denotes the gamma function, defined for

α > 0 by

Γ(α)≡
∫

∞

0
e−ttα−1dt.

Proof: Recall that Γ(α +1) = αΓ(α). Now note the given formula holds if n = 1
because

Γ

(
1
2
+1
)
=

1
2

Γ

(
1
2

)
=

√
π

2
.

I leave it as an exercise for you to verify that Γ
( 1

2

)
=

√
π . Thus α1 = 2 =

√
π√

π/2 satis-
fying the formula. Now suppose this formula holds for k ≤ n. Then from the induction
hypothesis, 29.20, 29.19, 29.17 and 29.18,

αn+1 = 2αn

∫
π/2

0
sinn+1 (θ)dθ = 2αn

n
n+1

∫
π/2

0
sinn−1 (θ)dθ

= 2αn
n

n+1
αn−1

2αn−2
=

πn/2

Γ
( n

2 +1
) n

n+1
π

1/2 Γ
( n−2

2 +1
)

Γ
( n−1

2 +1
)

=
πn/2

Γ
( n−2

2 +1
)( n

2

) n
n+1

π
1/2 Γ

( n−2
2 +1

)
Γ
( n−1

2 +1
)

= 2π
(n+1)/2 1

n+1
1

Γ
( n−1

2 +1
) = π

(n+1)/2 1( n+1
2

) 1
Γ
( n−1

2 +1
)

= π
(n+1)/2 1( n+1

2

)
Γ
( n+1

2

) = π(n+1)/2

Γ
( n+1

2 +1
) . ■

29.4.11 Electrostatics
Coloumb’s law says that the electric field intensity at x of a charge q located at point x0 is
given by

E = k
q(x−x0)

|x−x0|3

where the electric field intensity is defined to be the force experienced by a unit positive
charge placed at the point x. Note that this is a vector and that its direction depends on the
sign of q. It points away from x0 if q is positive and points toward x0 if q is negative. The
constant k is a physical constant like the gravitation constant. It has been computed through
careful experiments similar to those used with the calculation of the gravitation constant.
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The interesting thing about Coloumb’s law is that E is the gradient of a function. In
fact,

E = ∇

(
qk

1
|x−x0|

)
.

The other thing which is significant about this is that in three dimensions and for x ̸= x0,

∇ ·∇
(

qk
1

|x−x0|

)
= ∇ ·E = 0. (29.21)

This is left as an exercise for you to verify.
These observations will be used to derive a very important formula for the integral∫

∂U
E ·ndS

where E is the electric field intensity due to a charge, q located at the point x0 ∈ U , a
bounded open set for which the divergence theorem holds.

Let Uε denote the open set obtained by removing the open ball centered at x0 which
has radius ε where ε is small enough that the following picture is a correct representation
of the situation.

x0
ε Uε

Bε

Then on the boundary of Bε the unit outer normal to Uε is − x−x0
|x−x0|

. Therefore,

∫
∂Bε

E ·ndS = −
∫

∂Bε

k
q(x−x0)

|x−x0|3
· x−x0

|x−x0|
dS

= −kq
∫

∂Bε

1

|x−x0|2
dS =

−kq
ε2

∫
∂Bε

dS

=
−kq
ε2 4πε

2 =−4πkq.

Therefore, from the divergence theorem and observation 29.21,

−4πkq+
∫

∂U
E ·ndS =

∫
∂Uε

E ·ndS =
∫

Uε

∇ ·EdV = 0.

It follows that 4πkq =
∫

∂U E ·ndS. If there are several charges located inside U , say
q1,q2, · · · ,qn, then letting Ei denote the electric field intensity of the ith charge and E
denoting the total resulting electric field intensity due to all these charges,∫

∂U
E ·ndS =

n

∑
i=1

∫
∂U

Ei ·ndS =
n

∑
i=1

4πkqi = 4πk
n

∑
i=1

qi.

This is known as Gauss’s law and it is the fundamental result in electrostatics.
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29.5 Exercises
1. To prove the divergence theorem, it was shown first that the spacial partial deriva-

tive in the volume integral could be exchanged for multiplication by an appropriate
component of the exterior normal. This problem starts with the divergence theorem
and goes the other direction. Assuming the divergence theorem, holds for a region
V , show that

∫
∂V nudA =

∫
V ∇udV . Note this implies

∫
V

∂u
∂x dV =

∫
∂V n1udA.

2. Fick’s law for diffusion states the flux of a diffusing species, J is proportional to
the gradient of the concentration, c. Write this law getting the sign right for the
constant of proportionality and derive an equation similar to the heat equation for
the concentration, c. Typically, c is the concentration of some sort of pollutant or a
chemical.

3. Sometimes people consider diffusion in materials which are not homogeneous. This
means that J = −K∇c where K is a 3× 3 matrix. Thus in terms of components,
Ji = −∑ j Ki j

∂c
∂x j

. Here c is the concentration which means the amount of pollutant
or whatever is diffusing in a volume is obtained by integrating c over the volume.
Derive a formula for a nonhomogeneous model of diffusion based on the above.

4. Let V be such that the divergence theorem holds. Show that
∫

V ∇ · (u∇v) dV =∫
∂V u ∂v

∂n dA where n is the exterior normal and ∂v
∂n denotes the directional derivative

of v in the direction n.

5. Let V be such that the divergence theorem holds. Show that∫
V

(
v∇

2u−u∇
2v
)

dV =
∫

∂V

(
v

∂u
∂n

−u
∂v
∂n

)
dA

where n is the exterior normal and ∂u
∂n is defined in Problem 4.

6. Let V be a ball and suppose ∇
2u = f in V while u = g on ∂V . Show that there

is at most one solution to this boundary value problem which is C2 in V and con-
tinuous on V with its boundary. Hint: You might consider w = u− v where u and
v are solutions to the problem. Then use the result of Problem 4 and the identity
w∇

2w = ∇ · (w∇w)−∇w ·∇w to conclude ∇w = 0. Then show this implies w must
be a constant by considering h(t) = w(t x+ (1− t)y) and showing h is a constant.
Alternatively, you might consider the maximum principle.

7. Show that
∫

∂V ∇×v ·ndA = 0 where V is a region for which the divergence theorem
holds and v is a C2 vector field.

8. Let F (x,y,z) = (x,y,z) be a vector field in R3 and let V be a three dimensional shape
and let n= (n1,n2,n3). Show that

∫
∂V (xn1 + yn2 + zn3) dA = 3× volume of V .

9. Let F = xi+yj+zk and let V denote the tetrahedron formed by the planes, x= 0,y=
0,z = 0, and 1

3 x+ 1
3 y+ 1

5 z = 1. Verify the divergence theorem for this example.

10. Suppose f : U →R is continuous where U is some open set and for all B ⊆U where
B is a ball,

∫
B f (x) dV = 0. Show that this implies f (x) = 0 for all x ∈U .
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11. Let U denote the box centered at (0,0,0) with sides parallel to the coordinate planes
which has width 4, length 2 and height 3. Find the flux integral

∫
∂U F ·ndS where

F = (x+3,2y,3z). Hint: If you like, you might want to use the divergence theorem.

12. Find the flux out of the cylinder whose base is x2 + y2 ≤ 1 which has height 2 of the
vector field F =

(
xy,zy,z2 + x

)
.

13. Find the flux out of the ball of radius 4 centered at 0 of the vector field F =
(x,zy,z+ x).

14. Verify 29.16 from 29.13 and the assumption that S = kF .

15. Show that if uk,k = 1,2, · · · ,n each satisfies 29.7 with f = 0 then for any choice of
constants c1, · · · ,cn, so does ∑

n
k=1 ckuk.

16. Suppose k (x) = k, a constant and f = 0. Then in one dimension, the heat equation is
of the form ut = αuxx. Show that u(x, t) = e−αn2t sin(nx) satisfies the heat equation3

17. Let U be a three dimensional region for which the divergence theorem holds. Show
that

∫
U ∇×F dx =

∫
∂U n×F dS where n is the unit outer normal.

18. In a linear, viscous, incompressible fluid, the Cauchy stress is of the form

Ti j (t,y) = λ

(
vi, j (t,y)+ v j,i (t,y)

2

)
− pδ i j

where p is the pressure, δ i j equals 0 if i ̸= j and 1 if i = j, and the comma followed
by an index indicates the partial derivative with respect to that variable and v is the
velocity. Thus vi, j =

∂vi
∂y j

. Also, p denotes the pressure. Show, using the balance of
mass equation that incompressible implies divv = 0. Next show that the balance of
momentum equation requires

ρ v̇− λ

2
∆v = ρ

[
∂v

∂ t
+

∂v

∂yi
vi

]
− λ

2
∆v = b−∇p.

This is the famous Navier Stokes equation for incompressible viscous linear flu-
ids. There are still open questions related to this equation, one of which is worth
$1,000,000 at this time.

3Fourier, an officer in Napoleon’s army studied solutions to the heat equation back in 1813. He was interested
in heat flow in cannons. He sought to find solutions by adding up infinitely many multiples of solutions of
this form, the multiples coming from a given initial condition occurring when t = 0. Fourier thought that the
resulting series always converged to this function. Lagrange and Laplace were not so sure. This topic of Fourier
series, especially the question of convergence, fascinated mathematicians for the next 150 years and motivated the
development of analysis. The first proof of convergence was given by Dirichlet. As mentioned earlier, Dirichlet,
Riemann, and later Lebesgue and Fejer were all interested in the convergence of Fourier series and the last big
result on convergence did not take place till the middle 1960’s and was due to Carleson and more generally by
Hunt. It was a surprise because of a negative result of Kolmogorov from 1923. Actually these ideas were used by
many others before Fourier, but the idea became associated with him.

Fourier was with Napoleon in Egypt when the Rosetta Stone was discovered and wrote about Egypt in Descrip-
tion de l’Égypte. He was a teacher of Champollion who eventually made it possible to read Egyptian by using
the Rosetta Stone. This expedition of Napoleon caused great interest in all things Egyptian in the first part of the
nineteenth century.
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Chapter 30

Stokes and Green’s Theorems

30.1 Green’s Theorem
Green’s theorem is an important theorem which relates line integrals to integrals over a
surface in the plane. It can be used to establish the seemingly more general Stoke’s theorem
but is interesting for it’s own sake. Historically, theorems like it were important in the
development of complex analysis.

Here is a proof of Green’s theorem from the divergence theorem.

Theorem 30.1.1 (Green’s Theorem) Let U be an open set in the plane for which
the divergence theorem holds. Let ∂U be piecewise smooth, and let

F (x,y) = (P(x,y) ,Q(x,y))

be a C1 vector field defined near U. Then∫
∂U

F ·dR=
∫

U

(
∂Q
∂x

(x,y)− ∂P
∂y

(x,y)
)

dA.

Proof: Suppose the divergence theorem holds for U . Consider the following picture.

(x′,y′)
(y′,−x′)

U

Since it is assumed that motion around U is counter clockwise, the tangent vector (x′,y′)
is as shown. The unit exterior normal is a multiple of(

x′,y′,0
)
× (0,0,1) =

(
y′,−x′,0

)
.

615
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Use your right hand and the geometric description of the cross product to verify this. This
would be the case at all the points where the unit exterior normal exists.

Now let F (x,y) = (Q(x,y) ,−P(x,y)). Also note the area (length) element on the

bounding curve ∂U is
√

(x′)2 +(y′)2dt. Suppose the boundary of U consists of m smooth
curves, the ith of which is parameterized by (xi,yi) with the parameter t ∈ [ai,bi]. Then by
the divergence theorem,∫

U
(Qx −Py)dA =

∫
U

div(F )dA =
∫

∂U
F ·ndS

=
m

∑
i=1

∫ bi

ai

(Q(xi (t) ,yi (t)) ,−P(xi (t) ,yi (t)))

· 1√
(x′i)

2 +(y′i)
2

(
y′i,−x′i

) dS︷ ︸︸ ︷√
(x′i)

2 +(y′i)
2dt

=
m

∑
i=1

∫ bi

ai

(Q(xi (t) ,yi (t)) ,−P(xi (t) ,yi (t))) ·
(
y′i,−x′i

)
dt

=
m

∑
i=1

∫ bi

ai

Q(xi (t) ,yi (t))y′i (t)+P(xi (t) ,yi (t))x′i (t)dt ≡
∫

∂U
Pdx+Qdy

This proves Green’s theorem from the divergence theorem. ■

Proposition 30.1.2 Let U be an open set in R2 for which Green’s theorem holds. Then
Area of U =

∫
∂U F ·dR where F (x,y) = 1

2 (−y,x) ,(0,x), or (−y,0).

Proof: This follows immediately from Green’s theorem. ■

Example 30.1.3 Use Proposition 30.1.2 to find the area of the ellipse x2

a2 +
y2

b2 ≤ 1.

You can parameterize the boundary of this ellipse as x = acos t, y = bsin t, t ∈ [0,2π].
Then from Proposition 30.1.2,

Area equals =
1
2

∫ 2π

0
(−bsin t,acos t) · (−asin t,bcos t)dt =

1
2

∫ 2π

0
(ab)dt = πab.

Example 30.1.4 Find
∫

∂U F ·dR where U is the set
{
(x,y) : x2 +3y2 ≤ 9

}
and F (x,y) =

(y,−x).

One way to do this is to parameterize the boundary of U and then compute the line
integral directly. It is easier to use Green’s theorem. The desired line integral equals∫

U ((−1)−1)dA = −2
∫

U dA.Now U is an ellipse having area equal to 3
√

3 and so the
answer is −6

√
3.

Example 30.1.5 Find
∫

∂U F ·dR where U is the set {(x,y) : 2 ≤ x ≤ 4,0 ≤ y ≤ 3} and

F (x,y) =
(
xsiny,y3 cosx

)
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From Green’s theorem this line integral equals∫ 4

2

∫ 3

0

(
−y3 sinx− xcosy

)
dydx =

81
4

cos4−6sin3− 81
4

cos2.

This is much easier than computing the line integral because you don’t have to break the
boundary in pieces and consider each separately.

Example 30.1.6 Find
∫

∂U F ·dR where U is the set {(x,y) : 2 ≤ x ≤ 4,x ≤ y ≤ 4} and

F (x,y) = (xsiny,ysinx)

From Green’s theorem, this line integral equals
∫ 4

2
∫ 4

x (ycosx− xcosy)dydx = 4cos2−
8cos4−8sin2−4sin4.

30.2 Exercises
1. Find

∫
S xdS where S is the surface which results from the intersection of the cone

z = 2−
√

x2 + y2 with the cylinder x2 + y2 −2x = 0.

2. Now let n be the unit normal to the above surface which has positive z component
and let F (x,y,z) = (x,y,z). Find the flux integral

∫
SF ·ndS.

3. Find
∫

S zdS where S is the surface which results from the intersection of the hemi-
sphere z =

√
4− x2 − y2 with the cylinder x2 + y2 −2x = 0.

4. In the situation of the above problem, find the flux integral
∫

SF ·ndS where n is the
unit normal to the surface which has positive z component and F = (x,y,z).

5. Let x2/a2+y2/b2 = 1 be an ellipse. Show using Green’s theorem that its area is πab.

6. A spherical storage tank having radius a is filled with water which weights 62.5
pounds per cubic foot. It is shown later that this implies that the pressure of the
water at depth z equals 62.5z. Find the total force acting on this storage tank.
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7. Let n be the unit normal to the cone z =
√

x2 + y2 which has negative z component
and let F = (x,0,z) be a vector field. Let S be the part of this cone which lies
between the planes z = 1 and z = 2.

Find
∫

SF ·ndS.

8. Let S be the surface z = 9− x2 − y2 for x2 + y2 ≤ 9. Let n be the unit normal to S
which points up. Let F = (y,−x,z) and find

∫
SF ·ndS.

9. Let S be the surface 3z = 9− x2 − y2 for x2 + y2 ≤ 9. Let n be the unit normal to S
which points up. Let F = (y,−x,z) and find

∫
SF ·ndS.

10. For F = (x,y,z), S is the part of the cylinder x2 + y2 = 1 between the planes z = 1
and z = 3. Letting n be the unit normal which points away from the z axis, find∫

SF ·ndS.

11. Let S be the part of the sphere of radius a which lies between the two cones φ = π

4
and φ = π

6 . Let F = (z,y,0). Find the flux integral
∫

SF ·ndS.

12. Let S be the part of a sphere of radius a above the plane z = a
2 ,F = (2x,1,1) and let

n be the unit upward normal on S. Find
∫

SF ·ndS.

13. In the above, problem, let C be the boundary of S oriented counter clockwise as
viewed from high on the z axis. Find

∫
C 2xdx+dy+dz.

14. Let S be the top half of a sphere of radius a centered at 0 and let n be the unit outward
normal. Let F = (0,0,z). Find

∫
SF ·ndS.

15. Let D be a circle in the plane which has radius 1 and let C be its counter clockwise
boundary. Find

∫
C ydx+ xdy.

16. Let D be a circle in the plane which has radius 1 and let C be its counter clockwise
boundary. Find

∫
C ydx− xdy.

17. Find
∫

C (x+ y)dx where C is the square curve which goes from (0,0) → (1,0) →
(1,1)→ (0,1)→ (0,0).

18. Find the line integral
∫

C (sinx+ y)dx+ y2dy where C is the oriented square

(0,0)→ (1,0)→ (1,1)→ (0,1)→ (0,0) .

19. Let P(x,y) = −y
x2+y2 ,Q(x,y) = x

x2+y2 . Show Qx −Py = 0. Let D be the unit disk.
Compute directly

∫
C Pdx+Qdy where C is the counter clockwise circle of radius 1

which bounds the unit disk. Why don’t you get 0 for the line integral?

20. Let F =
(
2y, ln

(
1+ y2

)
+ x
)
. Find

∫
C F ·dR where C is the curve consisting of line

segments, (0,0)→ (1,0)→ (1,1)→ (0,0) .



30.3. STOKE’S THEOREM FROM GREEN’S THEOREM 619

30.3 Stoke’s Theorem from Green’s Theorem
Stoke’s theorem is a generalization of Green’s theorem which relates the integral over a
surface to the integral around the boundary of the surface. These terms are a little different
from what occurs in R2. To describe this, consider a sock. The surface is the sock and its
boundary will be the edge of the opening of the sock in which you place your foot. Another
way to think of this is to imagine a region in R2 of the sort discussed above for Green’s
theorem. Suppose it is on a sheet of rubber and the sheet of rubber is stretched in three
dimensions. The boundary of the resulting surface is the result of the stretching applied to
the boundary of the original region in R2. Here is a picture describing the situation.

∂S

S

Recall the following definition of the curl of a vector field. Why do we even consider
it?

Definition 30.3.1 Let F (x,y,z) = (F1 (x,y,z) ,F2 (x,y,z) ,F3 (x,y,z)) be a C1 vector
field defined on an open set V in R3. Then

∇×F ≡

∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂ z
F1 F2 F3

∣∣∣∣∣∣≡
(

∂F3

∂y
− ∂F2

∂ z

)
i+

(
∂F1

∂ z
− ∂F3

∂x

)
j+

(
∂F2

∂x
− ∂F1

∂y

)
k.

This is also called curl(F ) and written as indicated, ∇×F .

The following lemma gives the fundamental identity which will be used in the proof of
Stoke’s theorem.

Lemma 30.3.2 Let R : U →V ⊆R3 where U is an open subset of R2 and V is an open
subset of R3. Suppose R is C2 and let F be a C1 vector field defined in V .

(Ru ×Rv) · (∇×F )(R(u,v)) = ((F ◦R)u ·Rv − (F ◦R)v ·Ru)(u,v) . (30.1)

Proof: Start with the left side and let xi = Ri (u,v) for short.

(Ru ×Rv) · (∇×F )(R(u,v)) = ε i jkx juxkvε irs
∂Fs

∂xr
= (δ jrδ ks −δ jsδ kr)x juxkv

∂Fs

∂xr

= x juxkv
∂Fk

∂x j
− x juxkv

∂Fj

∂xk
=Rv ·

∂ (F ◦R)

∂u
−Ru ·

∂ (F ◦R)

∂v

which proves 30.1. ■
The proof of Stoke’s theorem given next follows [10]. First, it is convenient to give a

definition.

Definition 30.3.3 A vector valued function R : U ⊆ Rm → Rn is said to be in
Ck
(
U ,Rn

)
if it is the restriction to U of a vector valued function which is defined on Rm

and is Ck. That is, this function has continuous partial derivatives up to order k.
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Theorem 30.3.4 (Stoke’s Theorem) Let U be any region in R2 for which the con-
clusion of Green’s theorem holds and let R∈C2

(
U ,R3

)
be a one to one function satisfying

|(Ru ×Rv)(u,v)| ̸= 0 for all (u,v) ∈U and let S denote the surface

S ≡ {R(u,v) : (u,v) ∈U} , ∂S ≡ {R(u,v) : (u,v) ∈ ∂U}

where the orientation on ∂S is consistent with the counter clockwise orientation on ∂U (U
is on the left as you walk around ∂U). Then for F a C1 vector field defined near S,∫

∂S
F ·dR=

∫
S

curl(F ) ·ndS

where n is the normal to S defined by

n≡ Ru ×Rv

|Ru ×Rv|
.

Proof: Letting C be an oriented part of ∂U having parametrization, r (t)≡ (u(t) ,v(t))
for t ∈ [α,β ] and letting R(C) denote the oriented part of ∂S corresponding to C,

∫
R(C)F ·

dR=

=
∫

β

α

F (R(u(t) ,v(t))) ·
(
Ruu′ (t)+Rvv′ (t)

)
dt

=
∫

β

α

F (R(u(t) ,v(t)))Ru (u(t) ,v(t))u′ (t)dt

+
∫

β

α

F (R(u(t) ,v(t)))Rv (u(t) ,v(t))v′ (t)dt

=
∫

C
((F ◦R) ·Ru,(F ◦R) ·Rv) ·dr.

Since this holds for each such piece of ∂U , it follows∫
∂S
F ·d R=

∫
∂U

((F ◦R) ·Ru,(F ◦R) ·Rv) ·dr.

By the assumption that the conclusion of Green’s theorem holds for U , this equals∫
U
[((F ◦R) ·Rv)u − ((F ◦R) ·Ru)v]dA

=
∫

U
[(F ◦R)u ·Rv +(F ◦R) ·Rvu − (F ◦R) ·Ruv − (F ◦R)v ·Ru]dA

=
∫

U
[(F ◦R)u ·Rv − (F ◦R)v ·Ru]dA

the last step holding by equality of mixed partial derivatives, a result of the assumption that
R is C2. Now by Lemma 30.3.2, this equals∫

U
(Ru ×Rv) · (∇×F )dA

=
∫

U
∇×F ·(Ru ×Rv)dA =

∫
S

∇×F ·ndS
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because dS = |(Ru ×Rv)|dA and n= (Ru×Rv)
|(Ru×Rv)| . Thus

(Ru ×Rv)dA =
(Ru ×Rv)

|(Ru ×Rv)|
|(Ru ×Rv)|dA = ndS.

This proves Stoke’s theorem. ■
Note that there is no mention made in the final result that R is C2. Therefore, it is not

surprising that versions of this theorem are valid in which this assumption is not present. It
is possible to obtain extremely general versions of Stoke’s theorem if you use the Lebesgue
integral.

30.3.1 The Normal and the Orientation

Stoke’s theorem as just presented needs no apology. However, it is helpful in applications
to have some additional geometric insight.

To begin with, suppose the surface S of interest is a parallelogram in R3 determined by
the two vectors a,b. Thus S = R(Q) where Q = [0,1]× [0,1] is the unit square and for
(u,v) ∈ Q,

R(u,v)≡ ua+ vb+p,

the point p being a corner of the parallelogram S. Then orient ∂S consistent with the
counter clockwise orientation on ∂Q. Thus, following this orientation on S you go from p
to p+a to p+a+b to p+b to p. Then Stoke’s theorem implies that with this orientation
on ∂S, ∫

∂S
F ·dR=

∫
S

∇×F ·nds

where

n=Ru ×Rv/ |Ru ×Rv|= a×b/ |a×b| .

Now recall a,b,a×b forms a right hand system.

ab
a×b

p+a

p+a+b

S

p

Thus, if you were walking around ∂S in the direction of the orientation with your left
hand over the surface S, the normal vector a×b would be pointing in the direction of your
head.

More generally, if S is a surface which is not necessarily a parallelogram but is instead
as described in Theorem 30.3.4, you could consider a small rectangle Q contained in U
and orient the boundary of R(Q) consistent with the counter clockwise orientation on ∂Q.
Then if Q is small enough, as you walk around ∂R(Q) in the direction of the described
orientation with your left hand over R(Q), your head points roughly in the direction of
Ru ×Rv.
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Q

u0

∆v

∆u

Rv(u0)∆v

Ru(u0)∆u

R(Q)

As explained above, this is true of the tangent parallelogram, and by continuity of
Rv,Ru, the normals to the surface R(Q)Ru ×Rv (u) for u ∈ Q will still point roughly in
the same direction as your head if you walk in the indicated direction over ∂R(Q), meaning
the angle between the vector from your feet to your head and the vector Ru×Rv (u) is less
than π/2.

You can imagine filling U with such non-overlapping regions Qi. Then orienting
∂R(Qi) consistent with the counter clockwise orientation on Qi, and adding the resulting
line integrals, the line integrals over the common sides cancel as indicated in the following
picture and the result is the line integral over ∂S.

U

R

Thus there is a simple relation between the field of normal vectors on S and the ori-
entation of ∂S. It is simply this. If you walk along ∂S in the direction mandated by the
orientation, with your left hand over the surface, the nearby normal vectors in Stoke’s the-
orem will point roughly in the direction of your head.

This also illustrates that you can define an orientation for ∂S by specifying a field of
unit normal vectors for the surface, which varies continuously over the surface, and require
that the motion over the boundary of the surface is such that your head points roughly in
the direction of nearby normal vectors as you walk along the boundary with your left hand
over S. The existence of such a continuous field of normal vectors is what constitutes an
orientable surface.
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30.3.2 The Mobeus Band
It turns out there are more general formulations of Stoke’s theorem than what is presented
above. However, it is always necessary for the surface S to be orientable. This means
it is possible to obtain a vector field of unit normals to the surface which is a continuous
function of position on S.

An example of a surface which is not orientable is the famous Mobeus band, obtained
by taking a long rectangular piece of paper and gluing the ends together after putting a twist
in it. Here is a picture of one.

There is something quite interesting about this Mobeus band and this is that it can be
written parametrically with a simple parameter domain. The picture above is a maple graph
of the parametrically defined surface

R(θ ,v)≡


x = 4cosθ + vcos θ

2
y = 4sinθ + vcos θ

2 ,

z = vsin θ

2

θ ∈ [0,2π] ,v ∈ [−1,1] .

An obvious question is why the normal vector R,θ ×R,v/
∣∣R,θ ×R,v

∣∣ is not a continuous
function of position on S. You can see easily that it is a continuous function of both θ and
v. However, the map, R is not one to one. In fact, R(0,0) =R(2π,0). Therefore, near
this point on S, there are two different values for the above normal vector. In fact, a tedious
computation will show that this normal vector is(

4sin 1
2 θ cosθ − 1

2 v,4sin 1
2 θ sinθ + 1

2 v,−8cos2 1
2 θ sin 1

2 θ −8cos3 1
2 θ +4cos 1

2 θ
)

D

where

D = 16sin2
(

θ

2

)
+

v2

2
+4sin

(
θ

2

)
v(sinθ − cosθ)

+43 cos2
(

θ

2

)(
cos
(

1
2

θ

)
sin
(

1
2

θ

)
+ cos2

(
1
2

θ

)
− 1

2

)2

and you can verify that the denominator will not vanish. Letting v = 0 and θ = 0 and 2π

yields the two vectors (0,0,−1) ,(0,0,1) so there is a discontinuity. This is why I was
careful to say in the statement of Stoke’s theorem given above that R is one to one.

The Mobeus band has some usefulness. In old machine shops the equipment was run
by a belt which was given a twist to spread the surface wear on the belt over twice the area.

The above explanation shows that R,θ ×R,v/
∣∣R,θ ×R,v

∣∣ fails to deliver an orientation
for the Mobeus band. However, this does not answer the question whether there is some
orientation for it other than this one. In fact there is none. You can see this by looking at the
first of the two pictures below or by making one and tracing it with a pencil. There is only
one side to the Mobeus band. An oriented surface must have two sides, one side identified
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by the given unit normal which varies continuously over the surface and the other side
identified by the negative of this normal. The second picture below was taken by Ouyang
when he was at meetings in Paris and saw it at a museum.

30.4 A General Green’s Theorem
Now suppose U is a region in the uv plane for which Green’s theorem holds and that

V ≡R(U)

where R is C2
(
U ,R2

)
and is one to one, Ru ×Rv ̸= 0. Here, to be specific, the u,v axes

are oriented as the x,y axes respectively.

x

y

u

v

Also let F (x,y,z) = (P(x,y) ,Q(x,y) ,0) be a C1 vector field defined near V . Note that
F does not depend on z. Therefore,

∇×F (x,y) = (Qx (x,y)−Py (x,y))k.

You can check this from the definition. Also

R(u,v) =
(

x(u,v)
y(u,v)

)
and so, from the definition of Ru ×Rv, the desired unit normal vector to V is

xuyv − xvyu

|xuyv − xvyu|
k

Suppose xuyv − xvyu > 0. Then the unit normal is k. Then Stoke’s theorem applied to this
special case yields∫

∂V
F ·dR=

∫
U
(Qx (x(u,v) ,y(u,v))−Py (x(u,v) ,y(u,v)))k ·k

∣∣∣∣ xu xv
yu yv

∣∣∣∣dA

Now by the change of variables formula, this equals
∫

V (Qx (x,y)−Py (x,y))dA. This is just
Green’s theorem for V . Thus if U is a region for which Green’s theorem holds and if V is
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another region, V =R(U) , where |Ru ×Rv| ̸= 0, R is one to one, and twice continuously
differentiable with Ru ×Rv in the direction of k, then Green’s theorem holds for V also.

This verifies the following theorem.

Theorem 30.4.1 (Green’s Theorem) Let V be an open set in the plane for which the
divergence theorem holds and let ∂V be piecewise smooth and F (x,y) = (P(x,y) ,Q(x,y))
be a C1 vector field defined near V. Then if V is oriented counter clockwise,∫

∂V
F ·dR=

∫
V

(
∂Q
∂x

(x,y)− ∂P
∂y

(x,y)
)

dA. (30.2)

In particular, if there exists U for which the divergence theorem holds and V = R(U)
where R : U → V is C2

(
U ,R2

)
such that

∣∣Rx ×Ry
∣∣ ̸= 0 and Rx ×Ry is in the direction

of k, then 30.2 is valid where the orientation around ∂V is consistent with the orientation
around U.

This is a very general version of Green’s theorem which will include most if not all
of what will be of interest. However, there are more general versions of this important
theorem. 1

30.5 Conservative Vector Fields
Definition 30.5.1 A vector field F defined in a three dimensional region is said to
be conservative2 if for every piecewise smooth closed curve C, it follows

∫
C F ·dR= 0.

This looks a little different than the earlier definition. However, the main result in this
section is an assertion that these are exactly the same.

Definition 30.5.2 Let (x,p1, · · · ,pn,y) be an ordered list of points in Rp. Let
p(x,p1, · · · ,pn,y) denote the piecewise smooth curve consisting of a straight line segment
from x to p1 and then the straight line segment from p1 to p2 · · · and finally the straight
line segment from pn to y. This is called a polygonal curve. An open set in Rp, U, is said to
be a region if it has the property that for any two points x,y ∈U, there exists a polygonal
curve joining the two points.

Conservative vector fields are important because of the following theorem, sometimes
called the fundamental theorem for line integrals.

Theorem 30.5.3 Let U be a region in Rp and let F : U → Rp be a continuous
vector field. Then F is conservative if and only if there exists a scalar valued function of p
variables φ such that F = ∇φ . Furthermore, if C is an oriented curve which goes from x
to y in U, then ∫

C
F · dR= φ (y)−φ (x) . (30.3)

Thus the line integral is path independent in this case. This function φ is called a scalar
potential for F .

1For a general version see the advanced calculus book by Apostol. Also see my book on calculus of real and
complex variables. The general versions involve the concept of a rectifiable Jordan curve. You need to be able
to take the area integral and to take the line integral around the boundary. This general version of this theorem
appeared in 1951. Green lived in the early 1800’s.

2There is no such thing as a liberal vector field.
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Proof: To save space and fussing over things which are unimportant, denote by p(x0,x)
a polygonal curve from x0 to x. Thus the orientation is such that it
goes from x0 to x. The curve p(x,x0) denotes the same set of points but in the opposite
order. Suppose first F is conservative. Fix x0 ∈U and let

φ (x)≡
∫
p(x0,x)

F ·dR.

This is well defined because if q (x0,x) is another polygonal curve joining x0 to x, Then
the curve obtained by following p(x0,x) from x0 to x and then from x to x0 along
q (x,x0) is a closed piecewise smooth curve and so by assumption, the line integral along
this closed curve equals 0. However, this integral is just∫

p(x0,x)
F ·d R+

∫
q(x,x0)

F ·d R=
∫
p(x0,x)

F ·d R−
∫
q(x0,x)

F ·dR

which shows ∫
p(x0,x)

F ·d R=
∫
q(x0,x)

F ·dR

and that φ is well defined. For small t,

φ (x + tei)−φ (x)

t
=

∫
p(x0,x+tei)

F ·d R−
∫
p(x0,x)

F ·dR
t

=

∫
p(x0,x)

F ·d R+
∫
p(x,x+tei)

F ·d R−
∫
p(x0,x)

F ·dR
t

.

Since U is open, for small t, the ball of radius |t| centered at x is contained in U . Therefore,
the line segment from x to x+ tei is also contained in U and so one can take

p(x,x+ tei)(s) = x+ s(tei)

for s ∈ [0,1]. Therefore, the above difference quotient reduces to

1
t

∫ 1

0
F (x+ s(tei)) · tei ds =

∫ 1

0
Fi (x+ s(tei)) ds = Fi (x+ st (tei))

by the mean value theorem for integrals. Here st is some number between 0 and 1. By
continuity of F, this converges to Fi (x) as t → 0. Therefore, ∇φ = F as claimed.

Conversely, if ∇φ = F, then if R : [a,b]→ Rp is any C1 curve joining x to y,∫ b

a
F (R(t)) ·R′ (t) dt =

∫ b

a
∇φ (R(t)) ·R′ (t) dt =

∫ b

a

d
dt

(φ (R(t))) dt

= φ (R(b))−φ (R(a)) = φ (y)−φ (x)

and this verifies 30.3 in the case where the curve joining the two points is smooth. The
general case follows immediately from this by using this result on each of the pieces of the
piecewise smooth curve. For example if the curve goes from x to p and then from p to y,
the above would imply the integral over the curve from x to p is φ (p)−φ (x) while from p
to y the integral would yield φ (y)−φ (p). Adding these gives φ (y)−φ (x). The formula
30.3 implies the line integral over any closed curve equals zero because the starting and
ending points of such a curve are the same. ■
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Example 30.5.4 Let

F (x,y,z) = (cosx− yzsin(xz) ,cos(xz) ,−yxsin(xz)) .

Let C be a piecewise smooth curve which goes from (π,1,1) to
(

π

2 ,3,2
)
. Find

∫
C F · dR.

The specifics of the curve are not given so the problem is nonsense unless the vector
field is conservative. Therefore, it is reasonable to look for the function φ satisfying ∇φ =
F. Such a function satisfies φ x = cosx− y(sinxz)z and so, assuming φ exists, φ (x,y,z) =
sinx+ycos(xz)+ψ (y,z) . I have to add in the most general thing possible, ψ (y,z) to ensure
possible solutions are not being thrown out. It wouldn’t be good at this point to only add in
a constant since the answer could involve a function of either or both of the other variables.
Now from what was just obtained, φ y = cos(xz) +ψy = cosxz and so it is possible to
take ψy = 0. Consequently φ , if it exists, is of the form φ (x,y,z) = sinx+ ycos(xz) +
ψ (z) . Now differentiating this with respect to z gives φ z =−yxsin(xz)+ψz =−yxsin(xz)
and this shows ψ does not depend on z either. Therefore, it suffices to take ψ = 0 and
φ (x,y,z) = sin(x)+ ycos(xz) . Therefore, the desired line integral equals

sin
(

π

2

)
+3cos(π)− (sin(π)+ cos(π)) =−1.

The above process for finding φ will not lead you astray in the case where there does
not exist a scalar potential. As an example, consider the following.

Example 30.5.5 Let F (x,y,z) =
(
x,y2x,z

)
. Find a scalar potential for F if it exists.

If φ exists, then φ x = x and so φ = x2

2 +ψ (y,z). Then φ y = ψy (y,z) = xy2 but this
is impossible because the left side depends only on y and z while the right side depends
also on x. Therefore, this vector field is not conservative and there does not exist a scalar
potential.

30.5.1 Some Terminology

If F = (P,Q,R) is a vector field. Then the statement that F is conservative is the same as
saying the differential form Pdx+Qdy+Rdz is exact. Some people like to say things in
terms of vector fields and some say it in terms of differential forms. In Example 30.5.8, the
differential form

(
4x3 +2

(
cos
(
x2 + z2

))
x
)

dx+dy+
(
2
(
cos
(
x2 + z2

))
z
)

dz is exact.

Definition 30.5.6 A set of points in three dimensional space V is simply connected
if every piecewise smooth closed curve C is the edge of a surface S which is contained
entirely within V in such a way that Stokes theorem holds for the surface S and its edge, C.

C

S
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This is like a sock. The surface is the sock and the curve C goes around the opening of
the sock.

As an application of Stoke’s theorem, here is a useful theorem which gives a way to
check whether a vector field is conservative.

Theorem 30.5.7 For a three dimensional simply connected open set V and F a C1

vector field defined in V , F is conservative if ∇×F = 0 in V .

Proof: If ∇×F = 0 then taking an arbitrary closed curve C, and letting S be a surface
bounded by C which is contained in V , Stoke’s theorem implies

0 =
∫

S
∇×F ·ndA =

∫
C
F ·dR.

Thus F is conservative. ■

Example 30.5.8 Determine whether the vector field(
4x3 +2

(
cos
(
x2 + z2))x,1,2

(
cos
(
x2 + z2))z

)
is conservative.

Since this vector field is defined on all of R3, it only remains to take its curl and see if
it is the zero vector.∣∣∣∣∣∣

i j k
∂x ∂y ∂z

4x3 +2
(
cos
(
x2 + z2

))
x 1 2

(
cos
(
x2 + z2

))
z

∣∣∣∣∣∣ .
This is obviously equal to zero. Therefore, the given vector field is conservative. Can you
find a potential function for it? Let φ be the potential function. Then φ z = 2

(
cos
(
x2 + z2

))
z

and so φ (x,y,z) = sin
(
x2 + z2

)
+g(x,y). Now taking the derivative of φ with respect to y,

you see gy = 1 so g(x,y) = y+ h(x). Hence φ (x,y,z) = y+ g(x)+ sin
(
x2 + z2

)
. Taking

the derivative with respect to x, you get 4x3 +2
(
cos
(
x2 + z2

))
x = g′ (x)+2xcos

(
x2 + z2

)
and so it suffices to take g(x) = x4. Hence φ (x,y,z) = y+ x4 + sin

(
x2 + z2

)
.

30.6 Exercises
1. Determine whether the vector field(

2xy3 sinz4,3x2y2 sinz4 +1,4x2y3 (cosz4)z3 +1
)

is conservative. If it is conservative, find a potential function.

2. Determine whether the vector field(
2xy3 sinz+ y2 + z,3x2y2 sinz+2xy,x2y3 cosz+ x

)
is conservative. If it is conservative, find a potential function.



30.6. EXERCISES 629

3. Determine whether the vector field(
2xy3 sinz+ z,3x2y2 sinz+2xy,x2y3 cosz+ x

)
is conservative. If it is conservative, find a potential function.

4. Find scalar potentials for the following vector fields if it is possible to do so. If it is
not possible to do so, explain why.

(a)
(
y2,2xy+ sinz,2z+ ycosz

)
(b)

(
2z
(
cos
(
x2 + y2

))
x,2z

(
cos
(
x2 + y2

))
y,sin

(
x2 + y2

)
+2z

)
(c) ( f (x) ,g(y) ,h(z))

(d)
(
xy,z2,y3

)
(e)

(
z+2 x

x2+y2+1 ,2
y

x2+y2+1 ,x+3z2
)

5. If a vector field is not conservative on the set U , is it possible the same vector field
could be conservative on some subset of U? Explain and give examples if it is possi-
ble. If it is not possible also explain why.

6. Prove that if a vector field F has a scalar potential, then it has infinitely many scalar
potentials.

7. Here is a vector field: F ≡
(
2xy,x2 −5y4,3z2

)
. Find

∫
C F ·dR where C is a curve

which goes from (1,2,3) to (4,−2,1).

8. Here is a vector field: F ≡
(
2xy,x2 −5y4,3

(
cosz3

)
z2
)
. Find

∫
C F ·dR where C is a

curve which goes from (1,0,1) to (−4,−2,1).

9. Find
∫

∂U F ·dR where U is the set {(x,y) : 2 ≤ x ≤ 4,0 ≤ y ≤ x} and

F (x,y) = (xsiny,ysinx)

10. Find
∫

∂U F ·dR where U is
{
(x,y) : 2 ≤ x ≤ 3,0 ≤ y ≤ x2

}
and

F (x,y) = (xcosy,y+ x)

11. Find
∫

∂U F ·dR where U is the set {(x,y) : 1 ≤ x ≤ 2,x ≤ y ≤ 3} and

F (x,y) = (xsiny,ysinx)

12. Find
∫

∂U F ·dR where U is
{
(x,y) : x2 + y2 ≤ 2

}
and F (x,y) =

(
−y3,x3

)
.

13. Show that for many open sets in R2, Area of U =
∫

∂U xdy, and Area of U =
∫

∂U −ydx
and Area of U = 1

2
∫

∂U −ydx+ xdy. Hint: Use Green’s theorem.

14. Two smooth oriented surfaces, S1 and S2 intersect in a smooth oriented closed curve
C. Let F be a C1 vector field defined on R3. Explain why

∫
S1

curl(F ) ·ndS =∫
S2

curl(F ) ·ndS. Here n is the normal to the surface which corresponds to the
given orientation of the curve C.
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15. Show that curl(ψ∇φ) = ∇ψ ×∇φ and explain why
∫

S ∇ψ ×∇φ ·ndS =
∫

∂S (ψ∇φ) ·
dr.

16. Find a simple formula for div(∇(uα)) where α ∈ R.

17. Parametric equations for one arch of a cycloid are given by x = a(t − sin t) and y =
a(1− cos t) where here t ∈ [0,2π]. Sketch a rough graph of this arch of a cycloid
and then find the area between this arch and the x axis. Hint: This is very easy using
Green’s theorem and the vector field F = (−y,x).

18. Let r (t) =
(
cos3 (t) ,sin3 (t)

)
where t ∈ [0,2π]. Sketch this curve and find the area

enclosed by it using Green’s theorem.

19. Verify that Green’s theorem can be considered a special case of Stoke’s theorem.

20. Consider the vector field
(

−y
(x2+y2)

, x
(x2+y2)

,0
)
= F . Show that ∇×F = 0 but that

for the closed curve, whose parametrization is R(t) = (cos t,sin t,0) for t ∈ [0,2π],∫
C F ·dR ̸= 0. Therefore, the vector field is not conservative. Does this contradict

Theorem 30.5.7? Explain.

21. Let x be a point of R3 and let n be a unit vector. Let Dr be the circular disk of radius
r containing x which is perpendicular to n. Placing the tail of n at x and viewing
Dr from the point of n, orient ∂Dr in the counter clockwise direction. Now suppose
F is a vector field defined near x. Show that curl(F ) ·n = limr→0

1
πr2

∫
∂Dr

F ·dR.
This last integral is sometimes called the circulation density of F . Explain how this
shows that curl(F ) ·n measures the tendency for the vector field to “curl” around
the point, the vector n at the point x.

22. The cylinder x2 + y2 = 4 is intersected with the plane x+ y+ z = 2. This yields a
closed curve C. Orient this curve in the counter clockwise direction when viewed
from a point high on the z axis. Let F =

(
x2y,z+ y,x2

)
. Find

∫
C F ·dR.

23. The cylinder x2 + 4y2 = 4 is intersected with the plane x+ 3y+ 2z = 1. This yields
a closed curve C. Orient this curve in the counter clockwise direction when viewed
from a point high on the z axis. Let F =

(
y,z+ y,x2

)
. Find

∫
C F ·dR.

24. The cylinder x2 + y2 = 4 is intersected with the plane x+ 3y+ 2z = 1. This yields
a closed curve C. Orient this curve in the clockwise direction when viewed from a
point high on the z axis. Let F = (y,z+ y,x). Find

∫
C F ·dR.

25. Let F =
(
xz,z2 (y+ sinx) ,z3y

)
. Find the surface integral

∫
S curl(F ) ·ndA where S

is the surface z = 4−
(
x2 + y2

)
, z ≥ 0.

26. Let F =
(
xz,
(
y3 + x

)
,z3y

)
. Find the surface integral

∫
S curl(F ) ·ndA where S is the

surface z = 16−
(
x2 + y2

)
, z ≥ 0.

27. The cylinder z = y2 intersects the surface z = 8− x2 − 4y2 in a curve C which is
oriented in the counter clockwise direction when viewed high on the z axis. Find∫

C F ·dR if F =
(

z2

2 ,xy,xz
)

.
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28. Tell which open sets are simply connected. The inside of a car radiator, A donut.,
The solid part of a cannon ball which contains a void on the interior. The inside of a
donut which has had a large bite taken out of it, All of R3 except the z axis, All of
R3except the xy plane.

29. Let P be a polygon with vertices (x1,y1) ,(x2,y2) , · · · ,(xn,yn) ,(x1,y1) encountered
as you move over the boundary of the polygon which is assumed a simple closed
curve in the counter clockwise direction. Using Problem 13, find a nice formula for
the area of the polygon in terms of the vertices.

30. Here is a picture of two regions in the plane, U1 and U2. Suppose Green’s theorem
holds for each of these regions. Explain why Green’s theorem must also hold for the
region which lies between them if the boundary is oriented as shown in the picture.

U2U1

31. Here is a picture of a surface which has two bounding curves oriented as shown.
Explain why Stoke’s theorem will hold for such a surface and sketch a region in the
plane which could serve as a parameter domain for this surface.

Theory of Linear Ordinary Differential Equations

32. The following is a short list of Laplace transforms. f (t) denotes the function and
F (s) the Laplace transform. f ∗g(t), the convolution, is given by

f ∗g(t) =
∫ t

0
f (t −u)g(u)du

Verify each of these formulas.

f (t) F (s) f (t) F (s) f (t) F (s)
tneat n!

(s−a)n+1 tn,n ∈ N n!
sn+1 eat sinbt b

(s−a)2+b2

eat cosbt s−a
(s−a)2+b2 f ∗g(t) F (s)G(s)

Using the table, explain why, for A an n×n matrix, there exists an n×n matrix Φ(t)
satisfying

L (Φ)(s) = (sI −A)−1

which has the property that all entries of the kth derivative of Φ(k) (t) have exponential
growth. Hint: You should use the formula for the inverse of a matrix in terms of co-
factors. The entries of (sI −A)−1 will all be rational functions whose denominators
can theoretically be factored into products of linear and irreducible quadratics. Thus
each will be the Laplace transform of such a function just described. For the needed
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theory of partial fractions, see Problem 40 on Page 48 and the following problem on
that page.

33. ↑Letting Φ(t) be as in the above problem, explain why(
I − 1

s
A
)−1

= Φ(0)+
∫

∞

0
e−ts

Φ
′ (t)dt

Letting s → ∞, explain why Φ(0) = I. Next explain why Φ′ (t) = AΦ(t) . For this
last part, you might show that AΦ(t) and Φ′ (t) have the same Laplace transform.
Thus, they will be the same by Theorem 10.3.3. Thus

Φ
′ (t) = AΦ(t) ,Φ(0) = I

This is called a fundamental matrix. Show there is at most one solution to the above
initial value problem so it is THE fundamental matrix.

34. ↑Show the group property of this fundamental solution, that Φ(t + s) = Φ(t)Φ(s)
for any s, t ∈ R. Explain why Φ(−t) = Φ(t)−1. Hint: Use Laplace transforms to
show that if Ψ′ (t) = AΨ(t) ,Ψ(0) = 0, then Ψ(t) = 0. Then consider for s ∈ R,
Ψ(t) = Φ(t + s)−Φ(t)Φ(s) .

35. ↑Now show that there is exactly one solution to the initial value problem

x′ (t) = Ax(t)+f (t) , x(0) = x0

and it is given by

x(t) = Φ(t)x0 +Φ(t)
∫ t

0
Φ(−s)f (s)ds

You just did more than the entire mathematical substance of a typical course in un-
dergraduate differential equations other than a few recipes for nonlinear equations.
The above formula is called the variation of constants formula or Green’s formula.



Chapter 31

Curvilinear Coordinates

31.1 Basis Vectors
In this chapter, I will use the repeated index summation convention unless stated otherwise.
Thus, a repeated index indicates a sum. Also, it is helpful in order to keep things straight
to always have the two repeated indices be on different levels. That is, I will write a j

i b j and
not ai jb j. The reason for this will become clear as the exposition proceeds.

The usual basis vectors are denoted by i,j,k and are as the following picture describes.

k

j
i

The vectors, i,j,k, are fixed. If v is a vector, there are unique scalars called
components such that v = v1 i+ v2 j+ v3k . This is what it means that i,j,k
is a basis. Review Section 18.4 at this time to see how this geometric notion
relates to the general concept of a basis in a vector space.

Now suppose e1,e2,e3 are three vectors which satisfy

e1 ×e2 ·e3 ̸= 0.

Recall this means the volume of the box spanned by the three vectors is not zero.

e1

e3

e2

Suppose e1,e2,e3 are as just described. Does it follow that they form
a basis? In other words, for any vector v, there are unique scalars vi such
that v = viei. Of course this is the case because the box product is really
the determinant of the matrix which has ei as the ith row (column). This is
the content of the following theorem.

Theorem 31.1.1 If e1,e2,e3 are three vectors, then they form a
basis if and only if

e1 ×e2 ·e3 ̸= 0.

This gives a simple geometric condition which determines whether a list of three vectors
forms a basis in R3. One simply takes the box product. If the box product is not equal to
zero, then the vectors form a basis. If not, the list of three vectors does not form a basis.
This condition generalizes to Rp as follows. If ei = a j

i i j, then {ei}p
i=1 forms a basis if and

only if det
(

a j
i

)
̸= 0.

These vectors may or may not be orthonormal. In any case, it is convenient to define
something called the dual basis.

633
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Definition 31.1.2 Let {ei}p
i=1 form a basis for Rp. Then

{
ei
}p

i=1 is called the dual
basis if

ei ·e j = δ
i
j ≡
{

1 if i = j
0 if i ̸= j . (31.1)

Theorem 31.1.3 If {ei}p
i=1 is a basis then

{
ei
}p

i=1 is also a basis provided 31.1
holds.

Proof: Suppose
v = vie

i. (31.2)

Then taking the dot product of both sides of 31.2 with e j,yields

v j = v ·e j. (31.3)

Thus there is at most one choice of scalars v j such that v = v je
j and it is given by 31.3.(

v−v ·e je
j) ·ek = 0

and so, since {ei}p
i=1 is a basis, (

v−v ·e je
j) ·w = 0

for all vectors w. It follows v−v ·e je
j = 0 and this shows

{
ei
}p

i=1 is a basis. ■
In the above argument are obtained formulas for the components of a vector v, vi,

with respect to the dual basis, found to be v j = v ·e j. In the same way, one can find the
components of a vector with respect to the basis {ei}p

i=1 . Let v be any vector and let

v = v je j. (31.4)

Then taking the dot product of both sides of 31.4 with ei we see vi = ei ·v.
Does there exist a dual basis and is it uniquely determined?

Theorem 31.1.4 If {ei}p
i=1 is a basis for Rp, then there exists a unique dual basis,{

e j
}p

j=1 satisfying

e j ·ei = δ
j
i .

Proof: First I show the dual basis is unique. Suppose
{
f j}p

j=1 is another set of vectors

which satisfies f j ·ei = δ
j
i . Then

f j = f j ·eie
i = δ

j
i e

i = e j.

Note that from the definition, the dual basis to
{
i j
}p

j=1 is just i j = i j. It remains to verify
the existence of the dual basis. Consider the matrix gi j ≡ ei ·e j. This is called the metric
tensor. If the resulting matrix is denoted as G, does it follow that G−1 exists? Suppose you
have ei ·e jx j = 0. Then, since i is arbitrary, this implies e jx j = 0 and since

{
e j
}

is a basis,
this requires each x j to be zero. Thus G is invertible. Denote by gi j the i jth entry of this
inverse matrix. Consider e j ≡ g jkek. Is this the dual basis as the notation implies?

e j ·ei = g jkek ·ei = g jkgki = δ
j
i

so yes, it is indeed the dual basis. This has shown both existence and uniqueness of the
dual basis. ■

From this is a useful observation.
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Proposition 31.1.5 {ei}p
i=1 is a basis for Rp if and only if when ei = a j

i i j, det
(

a j
i

)
̸=

0.

Proof: First suppose {ei}p
i=1 is a basis for Rp. Letting Ai j ≡ a j

i , we need to show that
det(A) ̸= 0. This is equivalent to showing that A or AT is one to one. But

a j
i xi = 0 ⇒ a j

i xii j = 0 ⇒ eixi = 0 ⇒ xi = 0

so AT is one to one if and only if det(A) = det
(
AT
)
̸= 0.

Conversely, suppose A has nonzero determinant. Why are the ek a basis? Suppose
xkek = 0. Is each xk = 0? Then xka j

ki j = 0 and so for each j, a j
kxk = 0 and since A has

nonzero determinant, xk = 0. ■
Summarizing what has been shown so far, we know that {ei}p

i=1 is a basis for Rp if and
only if when ei = a j

i i j,

det
(

a j
i

)
̸= 0. (31.5)

If {ei}p
i=1 is a basis, then there exists a unique dual basis,

{
e j
}p

j=1 satisfying

e j ·ei = δ
j
i , (31.6)

and that if v is any vector,
v = v je

j, v = v je j. (31.7)

The components of v which have the index on the top are called the contravariant compo-
nents of the vector while the components which have the index on the bottom are called the
covariant components. In general vi ̸= v j! We also have formulae for these components in
terms of the dot product.

v j = v ·e j, v j = v ·e j. (31.8)

As indicated above, define gi j ≡ ei ·e j and gi j ≡ ei ·e j. The next theorem describes the
process of raising or lowering an index.

Theorem 31.1.6 The following hold.

gi je j = ei, gi je
j = ei, (31.9)

gi jv j = vi, gi jv j = vi, (31.10)

gi jg jk = δ
i
k, (31.11)

det(gi j)> 0, det
(
gi j)> 0. (31.12)

Proof: First,
ei = ei ·e je j = gi je j

by 31.7 and 31.8. Similarly, by 31.7 and 31.8,

ei = ei ·e je
j = gi je

j.

This verifies 31.9. To verify 31.10,

vi = ei ·v = gi je j ·v = gi jv j.
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The proof of the remaining formula in 31.10 is similar.
To verify 31.11,

gi jg jk = ei ·e je j ·ek =
((
ei ·e j)e j

)
·ek = ei ·ek = δ

i
k.

This shows the two determinants in 31.12 are non zero because the two matrices are in-
verses of each other. It only remains to verify that one of these is greater than zero. Letting
ei = a j

i i j = bi
ji

j, we see that since i j = i j,a j
i = bi

j. Therefore,

ei ·e j = ar
i ir ·b j

ki
k = ar

i b
j
kδ

k
r = ak

i b j
k = ak

i ak
j.

It follows that for G the matrix whose i jth entry is ei ·e j, G = AAT where the ikth entry of
A is ak

i . Therefore, det(G) = det(A)det
(
AT
)
= det(A)2 > 0. It follows from 31.11 that if

H is the matrix whose i jth entry is gi j, then GH = I and so H = G−1 and

det(G)det
(
G−1)= det

(
gi j)det(G) = 1.

Therefore, det
(
G−1

)
> 0 also. ■

Note that det
(
AAT

)
≥ 0 always, because the eigenvalues are nonegative.

As noted above, we have the following definition.

Definition 31.1.7 The matrix (gi j) = G is called the metric tensor.

31.2 Exercises
1. Let e1 = i+j,e2 = i−j,e3 = j+k. Find e1,e2,e3, (gi j) ,

(
gi j
)
. If

v = i+2j+k, find vi and v j, the contravariant and covariant components of the
vector.

2. Let e1 = 2i+j,e2 = i−2j,e3 = k. Find e1,e2,e3, (gi j) ,
(
gi j
)
. If

v = 2 i− 2j+k, find vi and v j, the contravariant and covariant components of the
vector.

3. Suppose e1,e2,e3 have the property that ei ·e j = 0 whenever i ̸= j. Show the same
is true of the dual basis.

4. Let e1,· · · ,e3 be a basis for Rn and let v = viei = vie
i,w= w je j = w je

j be two
vectors. Show

v ·w = gi jviw j = gi jviw j.

5. Show if {ei}3
i=1 is a basis in R3

e1 =
e2 ×e3

e2 ×e3 ·e1
, e2 =

e1 ×e3

e1 ×e3 ·e2
, e3 =

e1 ×e2

e1 ×e2 ·e3
.

6. Let {ei}n
i=1 be a basis and define

e∗i ≡
ei

|ei|
, e∗i ≡ ei |ei| .

Show e∗i ·e∗j = δ
i
j.
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7. If v is a vector, v∗i and v∗i, are defined by

v ≡ v∗i e
∗i ≡ v∗ie∗i .

These are called the physical components of v. Show

v∗i =
vi

|ei|
, v∗i = vi |ei| ( No summation on i ).

31.3 Curvilinear Coordinates

There are many ways to identify a point in n dimensional space with an ordered list of real
numbers. Some of these are spherical coordinates, cylindrical coordinates and rectangu-
lar coordinates and these particular examples are discussed earlier. I will denote by y the
rectangular coordinates of a point in n dimensional space which I will go on writing as Rn.
Thus y =

(
y1 · · · yn

)
. It follows there are equations which relate the rectangular co-

ordinates to some other coordinates
(

x1 · · · xn
)
. In spherical coordinates, these were

ρ,φ ,θ where the geometric meaning of these were described earlier. However, completely
general systems are to be considered here, with certain stipulations. The idea is

yk = yk (x1, ...,xn) , y = y
(
x1, ...,xn)

Let
(

x1 · · · xn
)
∈ D⊆Rn be an open set and let x→ y

(
x1, ...,xn

)
≡M

(
x1, ...,xn

)
satisfy

M is C2, (31.13)

M is one to one. (31.14)

Letting x ∈ D, we can write

M (x) = Mk (x)ik

where, as usual, ik are the standard basis vectors for Rn, ik being the vector in Rn which
has a one in the kth coordinate and a 0 in every other spot. Thus yk = Mk (x) where this yk

refers to the kth rectangular coordinate of the point y as just described.
For a fixed x ∈ D, we can consider the space curves,

t →M (x+ tik)≡ y (x+ tik)

for t ∈ I, some open interval containing 0. Then for the point x,we let

ek ≡
∂M

∂xk (x)≡ d
dt

(M (x+ tik)) |t=0 ≡
∂y

∂xk (x)

Denote this vector as ek (x) to emphasize its dependence on x. The following picture
illustrates the situation in R3.
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e1e2e3

t →M(x1
0,x

2
0, t)

t →M(t,x2
0,x

3
0)

t →M(x1
0, t,x

3
0)

I want {ek}n
k=1 to be a basis. Thus, from Proposition 31.1.5,

det
(

∂Mi

∂xk

)
≡ det(Dy (x))≡ det(D(M)(x)) ̸= 0. (31.15)

Let
yi = Mi (x) i = 1, · · · ,n (31.16)

so that the yi are the usual rectangular coordinates with respect to the usual basis vectors
{ik}n

k=1 of the point y =M (x) . Letting x ≡
(
x1, · · · ,xn

)
, it follows from the inverse

function theorem (See Chapter 24) that M (D) is open, and that 31.15, 31.13, and 31.14
imply the equations 31.16 define each xi as a C2 function of y≡

(
y1, · · · ,yn

)
. Thus, abusing

notation slightly, the equations 31.16 are equivalent to

xi = xi (y1, ...,yn) , i = 1, · · · ,n

where xi is a C2 function of the rectangular coordinates of a point y. It follows from the
material on the gradient described earlier,

∇xk (y) =
∂xk (y)

∂y j i j.

Then

∇xk (y) ·e j =
∂xk

∂ys i
s · ∂yr

∂x j ir =
∂xk

∂ys
∂ys

∂x j = δ
k
j

by the chain rule. Therefore, the dual basis is given by

ek (x) = ∇xk (y (x)) . (31.17)

Notice that it might be hard or even impossible to solve algebraically for xi in terms
of the y j. Thus the straight forward approach to finding ek by 31.17 might be impossible.
Also, this approach leads to an expression in terms of the y coordinates rather than the
desired x coordinates. Therefore, it is expedient to use another method to obtain these
vectors in terms of x. Indeed, this is the main idea in this chapter, doing everything in
terms of x rather than y. The vectors, ek (x) may always be found by using formula 31.9
and the result is in terms of the curvilinear coordinates x. Here is a familiar example.
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Example 31.3.1 D ≡ (0,∞)× (0,π)× (0,2π) and y1

y2

y3

=

 x1 sin
(
x2
)

cos
(
x3
)

x1 sin
(
x2
)

sin
(
x3
)

x1 cos
(
x2
)


(We usually write this as  x

y
z

=

 ρ sin(φ)cos(θ)
ρ sin(φ)sin(θ)

ρ cos(φ)


where (ρ,φ ,θ) are the spherical coordinates. We are calling them x1,x2, and x3 to preserve
the notation just discussed.) Thus

e1 (x) = sin
(
x2)cos

(
x3)i1 + sin

(
x2)sin

(
x3)i2 + cos

(
x2)i3,

e2 (x) = x1 cos
(
x2)cos

(
x3)i1

+x1 cos
(
x2)sin

(
x3)i2 − x1 sin

(
x2)i3,

e3 (x) =−x1 sin
(
x2)sin

(
x3)i1 + x1 sin

(
x2)cos

(
x3)i2 +0i3.

It follows the metric tensor is

G =

 1 0 0
0
(
x1
)2 0

0 0
(
x1
)2 sin2 (x2

)
= (gi j) = (ei ·e j) . (31.18)

Therefore, by Theorem 31.1.6
G−1 =

(
gi j)

=
(
ei,e j)=

 1 0 0
0
(
x1
)−2 0

0 0
(
x1
)−2 sin−2 (x2

)
 .

To obtain the dual basis, use Theorem 31.1.6 to write

e1 (x) = g1 je j (x) = e1 (x)

e2 (x) = g2 je j (x) =
(
x1)−2

e2 (x)

e3 (x) = g3 je j (x) =
(
x1)−2

sin−2 (x2)e3 (x) .

Note that ∂y

∂yk ≡ ek (y) = ik = ik where, as described,
(

y1 · · · yn
)

are the rectan-
gular coordinates of the point in Rn.
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31.4 Exercises
1. Let  y1

y2

y3

=

 x1 +2x2

x2 + x3

x1 −2x2


where the yi are the rectangular coordinates of the point. Find ei,ei, i = 1,2,3, and
find (gi j)(x) and

(
gi j (x)

)
.

2. Let y = y (x,t) where t signifies time and x ∈ U ⊆ Rm for U an open set, while
y ∈ Rn and suppose x is a function of t. Physically, this corresponds to an object
moving over a surface in Rn which may be changing as a function of t. The point
y = y (x(t) , t) is the point in Rn corresponding to t. For example, consider the pen-
dulum

m

l
θ

in which n = 2, l is fixed and y1 = l sinθ ,y2 = l− l cosθ . Thus, in this simple exam-
ple, m = 1. If l were changing in a known way with respect to t, then this would be
of the form y = y (x,t) . In general, the kinetic energy is defined as

T ≡ 1
2

mẏ · ẏ (∗)

where the dot on the top signifies differentiation with respect to t. Show

∂T
∂ ẋk = m ẏ· ∂y

∂xk .

Hint: First show

ẏ =
∂y

∂x j ẋ j +
∂y

∂ t
(∗∗)

and so
∂ ẏ

∂ ẋ j =
∂y

∂x j .

3. ↑ Show
d
dt

(
∂T
∂ ẋk

)
= m ÿ· ∂y

∂xk +m ẏ· ∂ 2y

∂xk∂xr ẋr +mẏ · ∂ 2y

∂ t∂xk .

4. ↑ Show
∂T
∂xk = m ẏ·

(
∂ 2y

∂xr∂xk ẋr +
∂ 2y

∂ t∂xk

)
.

Hint: Use ∗ and ∗∗ .
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5. ↑ Now show from Newton’s second law ( mass times acceleration equals force ) that
for F the force,

d
dt

(
∂T
∂ ẋk

)
− ∂T

∂xk = m ÿ· ∂y

∂xk = F · ∂y

∂xk . (∗∗∗)

6. ↑ In the example of the simple pendulum above,

y =

(
l sinθ

l − l cosθ

)
= l sinθ i+ (l − l cosθ)j.

Use ∗∗∗ to find a differential equation which describes the vibrations of the pendu-
lum in terms of θ . First write the kinetic energy and then consider the force acting
on the mass which is −mgj.

7. Of course, the idea is to write equations of motion in terms of the variables xk, instead
of the rectangular variables yk. Suppose y = y (x) and x is a function of t. Letting G
denote the metric tensor, show that the kinetic energy is of the form 1

2 mẋT Gx where
m is a point mass with m its mass.

8. The pendulum problem is fairly easy to do without the formalism developed. Now
consider the case where x = (ρ,θ ,φ) , spherical coordinates, and write differential
equations for ρ,θ , and φ to describe the motion of an object in terms of these coor-
dinates given a force, F.

9. Suppose the pendulum is not assumed to vibrate in a plane. Let it be suspended at
the origin and let φ be the angle between the negative z axis and the positive x axis
while θ is the angle between the projection of the position vector onto the xy plane
and the positive x axis in the usual way. Thus

x = ρ sinφ cosθ ,y = ρ sinφ sinθ ,z =−ρ cosφ

10. If there are many masses, mα ,α = 1, · · · ,R, the kinetic energy is the sum of the
kinetic energies of the individual masses. Thus,

T ≡ 1
2

R

∑
α=1

mα |ẏα |
2 .

Generalize the above problems to show that, assuming

yα = yα (x,t) ,

d
dt

(
∂T
∂ ẋk

)
− ∂T

∂xk =
R

∑
α=1

F α · ∂yα

∂xk

where F α is the force acting on mα .

11. Discuss the equivalence of these formulae with Newton’s second law, force equals
mass times acceleration. What is gained from the above so called Lagrangian for-
malism?



642 CHAPTER 31. CURVILINEAR COORDINATES

12. The double pendulum has two masses instead of only one.

m1

l1
θ

m2

l2
φ

Write differential equations for θ and φ to describe the motion of the double pendu-
lum.

31.5 Transformation of Coordinates.
How do we write ek (x) in terms of the vectors, e j (z) where z is some other type of
curvilinear coordinates? This is next.

Consider the following picture in which U is an open set in Rn,D and D̂ are open sets in
Rn, and M,N are C2 mappings which are one to one from D and D̂ respectively. The only
reason for this is to ensure that the mixed partial derivatives are equal. We will suppose
that a point in U is identified by the curvilinear coordinates x in D and z in D̂.

U

D D̂

M N

(x1,x2,x3) (z1,z2,z3)

Thus M (x) = N (z) and so z = N−1 (M (x)) . The point in U will be denoted in
rectangular coordinates as y and we have y (x) = y (z) Now by the chain rule,

ei (z) =
∂y

∂ zi =
∂y

∂x j
∂x j

∂ zi
=

∂x j

∂ zi e j (x) (31.19)

Define the covariant and contravariant coordinates for the various curvilinear coordinates
in the obvious way. Thus,

v = vi (x)e
i (x) = vi (x)ei (x) = v j (z)e

j (z) = v j (z)e j (z) .

Then the following theorem tells how to transform the vectors and coordinates.

Theorem 31.5.1 The following transformation rules hold for pairs of curvilinear
coordinates.

vi (z) =
∂x j

∂ zi
v j (x) , vi (z) =

∂ zi

∂x j v j (x) , (31.20)

ei (z) =
∂x j

∂ zi
e j (x) , e

i (z) =
∂ zi

∂x j e
j (x) , (31.21)
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gi j (z) =
∂xr

∂ zi
∂xs

∂ z j grs (x) , gi j (z) =
∂ zi

∂xr
∂ z j

∂xs grs (x) . (31.22)

Proof: We already have shown the first part of 31.21 in 31.19. Then, from 31.19,

ei (z) = ei (z) ·e j (x)e
j (x) = ei (z) · ∂ zk

∂x j ek (z)e
j (x)

= δ
i
k

∂ zk

∂x j e
j (x) =

∂ zi

∂x j e
j (x)

and this proves the second part of 31.21. Now to show 31.20,

vi (z) = v ·ei (z) = v·∂x j

∂ zi
e j (x) =

∂x j

∂ zi
v ·e j (x) =

∂x j

∂ zi
v j (x)

and

vi (z) = v ·ei (z) = v · ∂ zi

∂x j e
j (x) =

∂ zi

∂x j v ·e
j (x) =

∂ zi

∂x j v j (x) .

To verify 31.22,

gi j (z) = ei (z) ·e j (z) = er (x)
∂xr

∂ zi ·es (x)
∂xs

∂ z j = grs (x)
∂xr

∂ zi
∂xs

∂ z j . ■

31.6 Differentiation and Christoffel Symbols
Let F : U → Rn be differentiable. We call F a vector field and it is used to model force,
velocity, acceleration, or any other vector quantity which may change from point to point
in U. Then ∂F (x)

∂x j is a vector and so there exist scalars, F i
, j (x) and Fi, j (x) such that

∂F (x)

∂x j = F i
, j (x)ei (x) ,

∂F (x)

∂x j = Fi, j (x)e
i (x) (31.23)

We will see how these scalars transform when the coordinates are changed.

Theorem 31.6.1 If x and z are curvilinear coordinates,

Fr
,s (x) = F i

, j (z)
∂xr

∂ zi
∂ z j

∂xs , Fr,s (x)
∂xr

∂ zi
∂xs

∂ z j = Fi, j (z) . (31.24)

Proof:

Fr
,s (x)er (x)≡

∂F (x)

∂xs =
∂F (z)

∂ z j
∂ z j

∂xs ≡

F i
, j (z)ei (z)

∂ z j

∂xs = F i
, j (z)

∂ z j

∂xs
∂xr

∂ zi er (x)

which shows the first formula of 31.23. To show the other formula,

Fi, j (z)e
i (z)≡ ∂F (z)

∂ z j =
∂F (x)

∂xs
∂xs

∂ z j ≡

Fr,s (x)e
r (x)

∂xs

∂ z j = Fr,s (x)
∂xs

∂ z j
∂xr

∂ zi e
i (z) ,
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and this shows the second formula for transforming these scalars. ■
Now F (x) = F i (x)ei (x) and so by the product rule,

∂F

∂x j =
∂F i

∂x j ei (x)+F i (x)
∂ei (x)

∂x j . (31.25)

Now ∂ei(x)
∂x j is a vector and so there exist scalars,

{
k
i j

}
such that

∂ei (x)

∂x j =

{
k
i j

}
ek (x) .

Thus {
k
i j

}
ek (x) =

∂ 2y

∂x j∂xi

and so {
k
i j

}
ek (x) ·er (x) =

{
k
i j

}
δ

r
k =

{
r
i j

}
=

∂ 2y

∂x j∂xi ·e
r (x) (31.26)

Therefore, from 31.25, ∂F
∂x j =

∂Fk

∂x j ek (x)+F i (x)

{
r
i j

}
ek (x) which shows

Fk
, j (x) =

∂Fk

∂x j +F i (x)

{
k
i j

}
. (31.27)

This is sometimes called the covariant derivative.

Theorem 31.6.2 The Christoffel symbols of the second kind satisfy the following

∂ei (x)

∂x j =

{
k
i j

}
ek (x) , (31.28)

∂ei (x)

∂x j =−
{

i
k j

}
ek (x) , (31.29)

{
k
i j

}
=

{
k
ji

}
, (31.30)

{
m
ik

}
=

g jm

2

[
∂gi j

∂xk +
∂gk j

∂xi − ∂gik

∂x j

]
. (31.31)

Proof: Formula 31.28 is the definition of the Christoffel symbols. We verify 31.29 next.
To do so, note

ei (x) ·ek (x) = δ
i
k.

Then from the product rule,

∂ei (x)

∂x j ·ek (x)+ei (x) · ∂ek (x)

∂x j = 0.
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Now from the definition,

∂ei (x)

∂x j ·ek (x) =−ei (x) ·
{

r
k j

}
er (x) =−

{
r

k j

}
δ

i
r =−

{
i

k j

}
.

But also, using the above,

∂ei (x)

∂x j =
∂ei (x)

∂x j ·ek (x)e
k (x) =−

{
i

k j

}
ek (x) .

This verifies 31.29. Formula 31.30 follows from 31.26 and equality of mixed partial deriva-
tives.

It remains to show 31.31.

∂gi j

∂xk =
∂ei

∂xk ·e j +ei ·
∂e j

∂xk =

{
r
ik

}
er ·e j +ei ·er

{
r
jk

}
.

Therefore,
∂gi j

∂xk =

{
r
ik

}
gr j +

{
r
jk

}
gri. (31.32)

Switching i and k while remembering 31.30 yields

∂gk j

∂xi =

{
r
ik

}
gr j +

{
r
ji

}
grk. (31.33)

Now switching j and k in 31.32,

∂gik

∂x j =

{
r
i j

}
grk +

{
r
jk

}
gri. (31.34)

Adding 31.32 to 31.33 and subtracting 31.34 yields

∂gi j

∂xk +
∂gk j

∂xi − ∂gik

∂x j = 2
{

r
ik

}
gr j.

Now multiplying both sides by g jm and using the fact shown earlier in Theorem 31.1.6 that
gr jg jm = δ

m
r , it follows

2
{

m
ik

}
= g jm

(
∂gi j

∂xk +
∂gk j

∂xi − ∂gik

∂x j

)
which proves 31.31. ■

This is a very interesting formula because it shows the Christoffel symbols are com-
pletely determined by the metric tensor and its partial derivatives which illustrates the fun-
damental nature of the metric tensor. Note that the inner product is determined by this
metric tensor.

31.7 Gradients and Divergence
The purpose of this section is to express the gradient and the divergence of a vector field in
general curvilinear coordinates. As before,

(
y1, ...,yn

)
will denote the standard coordinates

with respect to the usual basis vectors. Thus

y ≡ ykik, ek (y) = ik = ek (y) .
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Let φ : U → R be a differentiable scalar function, sometimes called a “scalar field” in
this subject. Write φ (x) to denote the value of φ at the point whose coordinates are x. The
same convention is used for a vector field. Thus F (x) is the value of a vector field at the
point of U determined by the coordinates x. In the standard rectangular coordinates, the
gradient is well understood from earlier.

∇φ (y) =
∂φ (y)

∂yk ek (y) =
∂φ (y)

∂yk ik.

However, the idea is to express the gradient in arbitrary coordinates. Therefore, using the
chain rule, if the coordinates of the point of U are given as x,

∇φ (x) = ∇φ (y) =
∂φ (x)

∂xr
∂xr

∂yk e
k (y) =

∂φ (x)

∂xr
∂xr

∂yk
∂yk

∂xs e
s (x) =

∂φ (x)

∂xr δ
r
se

s (x) =
∂φ (x)

∂xr er (x) .

This shows the covariant components of ∇φ (x) are

(∇φ (x))r =
∂φ (x)

∂xr , (31.35)

Formally the same as in rectangular coordinates. To find the contravariant components,
“raise the index” in the usual way. Thus

(∇φ (x))r = grk (x)(∇φ (x))k = grk (x)
∂φ (x)

∂xk . (31.36)

What about the divergence of a vector field? The divergence of a vector field F defined
on U is a scalar field, div(F ) which from calculus is

∂Fk

∂yk (y) = Fk
,k (y)

in terms of the usual rectangular coordinates y. The reason the above equation holds in
this case is that ek (y) is a constant and so the Christoffel symbols are zero. We want an
expression for the divergence in arbitrary coordinates. From Theorem 31.6.1,

F i
, j (y) = Fr

,s (x)
∂xs

∂y j
∂yi

∂xr

From 31.27,

=

(
∂Fr (x)

∂xs +Fk (x)

{
r
ks

}
(x)

)
∂xs

∂y j
∂yi

∂xr .

Letting j = i yields

div(F ) =

(
∂Fr (x)

∂xs +Fk (x)

{
r
ks

}
(x)

)
∂xs

∂yi
∂yi

∂xr

=

(
∂Fr (x)

∂xs +Fk (x)

{
r
ks

}
(x)

)
δ

s
r

=

(
∂Fr (x)

∂xr +Fk (x)

{
r
kr

}
(x)

)
. (31.37)
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r
kr

}
is simplified using the description of it in Theorem 31.6.2. Thus, from this theo-

rem, {
r
rk

}
=

g jr

2

[
∂gr j

∂xk +
∂gk j

∂xr − ∂grk

∂x j

]
Now consider g jr

2 times the last two terms in [·] . Relabeling the indices r and j in the second
term implies

g jr

2
∂gk j

∂xr − g jr

2
∂grk

∂x j =
g jr

2
∂gk j

∂xr − gr j

2
∂g jk

∂xr = 0.

Therefore, {
r
rk

}
=

g jr

2
∂gr j

∂xk . (31.38)

Now recall g ≡ det(gi j) = det(G)> 0 from Theorem 31.1.6. Also from the formula for the
inverse of a matrix and this theorem,

g jr = Ar j (detG)−1 = A jr (detG)−1

where Ar j is the r jth cofactor of the matrix (gi j) . Also recall that

g =
n

∑
r=1

gr jAr j no sum on j.

Therefore, g is a function of the variables
{

gr j
}

and ∂g
∂gr j

= Ar j. From 31.38,{
r
rk

}
=

g jr

2
∂gr j

∂xk =
1

2g
∂gr j

∂xk A jr =
1

2g
∂g

∂gr j

∂gr j

∂xk =
1
2g

∂g
∂xk

and so from 31.37,

div(F ) =
∂Fk (x)

∂xk +

+Fk (x)
1

2g(x)
∂g(x)

∂xk =
1√

g(x)

∂

∂xi

(
F i (x)

√
g(x)

)
. (31.39)

This is the formula for the divergence of a vector field in general curvilinear coordinates.
Note that it uses the contravariant components of F .

The Laplacian of a scalar field is nothing more than the divergence of the gradient. In
symbols, ∆φ ≡ ∇ ·∇φ . From 31.39 and 31.36 it follows

∆φ (x) =
1√

g(x)

∂

∂xi

(
gik (x)

∂φ (x)

∂xk

√
g(x)

)
. (31.40)

We summarize the conclusions of this section in the following theorem.

Theorem 31.7.1 The following hold for gradient, divergence, and Laplacian in
general curvilinear coordinates.

(∇φ (x))r =
∂φ (x)

∂xr , (31.41)
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(∇φ (x))r = grk (x)
∂φ (x)

∂xk , (31.42)

div(F ) =
1√

g(x)

∂

∂xi

(
F i (x)

√
g(x)

)
, (31.43)

∆φ (x) =
1√

g(x)

∂

∂xi

(
gik (x)

∂φ (x)

∂xk

√
g(x)

)
. (31.44)

Example 31.7.2 Define curvilinear coordinates as follows

x = r cosθ ,y = r sinθ

Find ∇
2 f (r,θ). That is, find the Laplacian in terms of these new variables r,θ .

First find the metric tensor. From the definition, this is

G =

(
1 0
0 r2

)
,G−1 =

(
1 0
0 r−2

)
The contravariant components of the gradient are(

1 0
0 r−2

)(
fr
fθ

)
=

(
fr

1
r2 fθ

)
Then also

√
g = r. Therefore, using the formula,

∇
2 f (u,v) =

1
r

[
(r fr)r +

(
r

1
r2 fθ

)
θ

]
=

1
r
(r fr)r +

1
r2 fθθ

Notice how easy this is. It is anything but easy if you try to do it by brute force with none
of the machinery developed here.

31.8 Exercises
1. Let y1 = x1 +2x2,y2 = x2 +3x3,y3 = x1 + x3. Let

F (x) = x1e1 (x)+ x2e2 (x)+
(
x3)2

e(x) .

Find div(F )(x) .

2. For the coordinates of the preceding problem, and φ a scalar field, find

(∇φ (x))3

in terms of the partial derivatives of φ taken with respect to the variables xi.

3. Let y1 = 7x1+2x2,y2 = x2+3x3,y3 = x1+x3. Let φ be a scalar field. Find ∇
2
φ (x) .

4. Derive ∇
2u in cylindrical coordinates, r,θ ,z, where u is a scalar field on R3.

x = r cosθ , y = r sinθ , z = z.
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5. ↑ Find all solutions to ∇
2u = 0 which depend only on r where r ≡

√
x2 + y2.

6. Derive ∇
2u in spherical coordinates.

7. ↑Let u be a scalar field on R3. Find all solutions to ∇
2u = 0 which depend only on

ρ ≡
√

x2 + y2 + z2.

8. The temperature, u, in a solid satisfies ∇
2u = 0 after a long time. Suppose in a long

pipe of inner radius 9 and outer radius 10 the exterior surface is held at 100◦ while
the inner surface is held at 200◦ find the temperature in the solid part of the pipe.

9. Show velocity can be expressed as v = vi (x)e
i (x) , where

vi (x) =
∂ ri

∂x j
dx j

dt
− rp (x)

{
p
ik

}
dxk

dt

and ri (x) are the covariant components of the displacement vector,

r = ri (x)e
i (x) .

10. Find the covariant components of velocity in spherical coordinates. Hint: v = dy
dt .

Now use chain rule and identify the contravariant components. Then use the tech-
nique of lowering or raising index.

11. Show that v ·w = gi j (x)vi (x)v j (x) = gi j (x)vi (x)v j (x) .
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Chapter 32

Measures and Integrals

If you want to understand a decent theory of integration, you need to do something other
than the Riemann integral. In particular, if probability is of interest, you must understand
the notion of measure theory and the abstract Lebesgue integral. It is also the case that
these topics are much easier to follow than the extreme technicalities required for a rigorous
description of the very inferior Riemann integral of a function of many variables. That is
why I am placing this material in this elementary book. The rigorous description of the
Riemann integral for functions of many variables is in my engineering math book and also
in my earlier calculus book [21]. It is very technical and what you end up with is not nearly
as good. The usual solution to this problem is to simply leave out the rigorous presentation
and pretend people understand it when they don’t. This is essentially what I did earlier in
the book and you will see this done even in advanced calculus courses. I attempted to make
the integral plausible through the use of iterated integrals. This required an emphasis on
integration over very simple regions, those for which you can actually compute the integral,
and it avoids the fundamental questions.

There are two chapters devoted to this material. The first is on the abstract framework
for Lebesgue integration. It has a very different flavor than what you saw up till now. The
second chapter considers the special case of Lebesgue integration and measure in Rp. If
you understand the first of these chapters, this one will seem fairly easy. I believe it is
worth mastering the abstract material in order to gain a more up to date understanding of
the integral. However, this is only an introduction. I have neglected all the very important
material on representation theorems and functions spaces and regularity of the measures.
You can see this in my on line book Calculus of Real and Complex Variables which is
intended to follow this book or in Real and Abstract Analysis also on my web page. There
are many standard texts which also give this material such as [20, 27].

Notation 32.0.1 In this chapter Ω will be some nonempty set. It could be a subset of Rp,
the integers, part of a probability space, a part of a manifold, etc. First of all, the notation
[g < f ] is short for {ω ∈Ω : g(ω)< f (ω)} with other variants of this notation being
similar. Also, the convention, 0 ·∞ = 0 will be used to simplify the presentation whenever
it is convenient to do so. The notation a∧b means the minimum of a and b.

Also XE (ω) is defined as

XE (ω)≡
{

1 if ω ∈ E
0 if ω /∈ E

651
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This is called the indicator function of the set E because it indicates whether ω ∈ E, 1 if ω

is in E and 0 if it is not.

32.1 Countable Sets
There are different kinds of infinity. The smallest one is called ℵ0 and is referred to as
countably infinite. The theory of the Lebesgue integral lives in the land of sequences and
the indices of these come from a countably infinite set. One considers countable inter-
sections and unions. I will only include the minimum needed to understand measure and
integration. A much more complete treatment is in Hewitt and Stromberg [20].

Definition 32.1.1 A set S is said to be countable if there is a function f : N → S
which is onto. This means you can assign a positive integer to each element of S. In other
words, you could write S = ∪∞

k=1 {sk}.If X ,Y are countable sets, then so is X ×Y.

Proof: This follows from the diagram in which X = {xk} and Y =
{

y j
}

(x1,y1) (x1,y2) (x1,y3) (x1,y4) · · ·
(x2,y1) (x2,y2) (x2,y3) (x2,y4) · · ·
(x3,y1) (x3,y2) (x3,y3) (x3,y4) · · ·

...
...

...
...

Now pick a route through this doubly infinite array of ordered pairs:

(x1,y1)(x2,y1)(x1,y2)(x3,y1)(x2,y2)(x1,y3) · · ·

You will see the pattern if you begin with the sequence just shown. Give an ordered pair
the number which corresponds to its order in the above listing process. Thus you pick up
the entire X ×Y, giving each ordered pair a number from N. ■

Lemma 32.1.2 If A,B are countable, so is A∪B. If A is countable and if Â is a subset
of A, then Â is countable also.

Proof: Consider the array

a1 a2 a3 a4 · · ·
b1 b2 b3 b4 · · ·

Then list them as follows a1,b1,a2,b2, · · · . Give the number in this list the number which
corresponds to its order in the listing process. As to the last claim, let

a1 a2 a3 a4 · · ·

be the list of things in A. Let an1 be the first in Â. If an1 , · · · ,ank have been chosen, n1 <

n2 < · · ·< nk, let ank+1 be the next in Â. Then k → ank lists all the elements of Â. ■

Corollary 32.1.3 The rational numbers are countable.
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Proof: The positive rational numbers are included in the set of numbers m/n where m,n
are positive integers. Considering a doubly infinite array like the above, the element in the
mth row and nth column being m/n, it follows that all positive rationals are listed. Letting
0 be the first in the list shows that all nonnegative rationals are countable. Then similarly,
the non positive rationals are countable. It follows from the above lemma that the rationals
are countable along with every subset of the rationals. ■

Corollary 32.1.4 Qp is countable and also dense in Rp.

Proof: Let x ∈ Rp. Let |ri − xi| < δ . Then |r−x| ≤
(

∑
p
k=1 |ri − xi|2

)1/2
<

√
pδ .

Therefore, contained in B(x,r) is a point of Qp if we make each |ri − xi| < δ where√
pδ < r. This shows Qp is dense in Rp. As to it being countable, it was shown that

Q is countable. Suppose Qm is countable. Then by Proposition 32.1.1, Qm ×Q is also
countable. It follows by induction that Qn is countable for any n ∈ N. ■

Note this does not say that an infinite Cartesian product of Q is countable. This is not
even true. However, for any p ∈ N, Qp is indeed countable.

Theorem 32.1.5 If U is an open set in Rp, then U is the union of countably many
open boxes of the form ∏

p
k=1 (ak,bk).

Proof:Let x ∈ U. Then B(x,r) ⊆ U. Pick r ∈ Qp such that r ∈ B
(
x, r

10p

)
. Then let

ui ∈Q be such that |xi − ri|< ui <
r

10p for each i. Consider R ≡ ∏
p
i=1 (ri −ui,ri +ui) . Then

x ∈ R and if y ∈ R, Then

|x−y|=

(
p

∑
i=1

22u2
i

)1/2

≤ 2
(

p
r2

100p2

)1/2

=
2
√

p
r

10
< r

Thus x ∈ R ⊆ B(x,r)⊆U . There are countably many such boxes ∏
p
i=1 (ai,bi) where each

ai,bi are rational and this has just shown that every point of U is in one of these boxes
which is also contained in U . ■

Note there are countably many of those boxes because there are countably many (ai,bi)
for each i ≤ p and what is wanted is a finite Cartesian product of these.

Also of great importance is the following lemma which says that you can stuff any open
set with half open boxes with no overlap at all.

Lemma 32.1.6 Every open set in Rp is the countable disjoint union of half open boxes
of the form

p

∏
i=1

(ai,ai +2−k]

where ai = l2−k for some integers, l,k where k ≥ m. If Bm denotes this collection of half
open boxes, then every box of Bm+1 is contained in a box of Bm or equals a box of Bm.

Proof: Let m ∈ N be given and let k ≥ m.

Ck = {All half open boxes
p

∏
i=1

(ai,ai +2−k] where
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ai = l2−k for some integer l.}

Thus Ck consists of a countable disjoint collection of boxes whose union is Rp. This is
sometimes called a tiling of Rp. Think of tiles on the floor of a bathroom and you will get
the idea. Note that each box has diameter no larger than 2−k√p. This is because if we have
two points,

x,y ∈
p

∏
i=1

(ai,ai +2−k],

then |xi − yi| ≤ 2−k. Therefore,

|x−y| ≤

(
p

∑
i=1

(
2−k
)2
)1/2

= 2−k√p.

Also, a box of Ck+1 is either contained in a box of Ck or it has empty intersection with this
box of Ck.

Let U be open and let B1 ≡ all sets of C1 which are contained in U . If B1, · · · ,Bk
have been chosen, Bk+1 ≡ all sets of Ck+1 contained in

U \∪
(
∪k

i=1Bi

)
.

Let B∞ = ∪∞
i=1Bi. I claim ∪B∞ = U . Clearly ∪B∞ ⊆ U because every box of every Bi

is contained in U . If p ∈ U , let k be the smallest integer such that p is contained in a box
from Ck which is also a subset of U . Thus

p ∈ ∪Bk ⊆ ∪B∞.

Hence B∞ is the desired countable disjoint collection of half open boxes whose union is
U . The last claim follows from the construction. ■

Note that there are countably many boxes in B∞ because they are disjoint, each contains
an open set, and each of these open sets contains a point from the countably many Qp.

32.2 Simple Functions, σ Algebras, Measurability
The Riemann integral, was defined in terms of step functions. One of these is of the form

s(x) =
n

∑
k=1

XIk (x)ck

where Ik is an interval. Typically we have non overlapping intervals Ik whose union is an
interval [a,b] and a step function has the value c1 on I1,c2 on I2 and so forth. We also know
that ∫

s(x)dx =
n

∑
k=1

ck

∫
XIk dx =

n

∑
k=1

ck (length of Ik) .

In defining the Riemann integral, ck = f (xk) for some xk ∈ Ik and the integral exists when
these approximate integrals approach a value as the lengths of all intervals converge to
0. The maximum of all lengths was the “norm of the partition”. We think of s(x) as
an approximation of a given function f . If f is continuous, you can verify easily, using
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uniform continuity that the step function corresponding to a Riemann sum for the norm of
the partition sufficiently small will be uniformly close to the function f and so the integral
of the step function will be close to the integral of the function, the integral of the step
function being just a Riemann sum.

A simple function looks just like a step function except the intervals Ik are replaced with
sets which might not be intervals and might not even have small diameter. In the Riemann
integral, this insistance of using the intervals results in not having f too far from being
continuous. If you develop things in terms of simple functions, leading to the Lebesgue
integral, all topological considerations are completely eliminated. This is why the Lebesgue
integral is so vastly superior and so much easier to understand and use. If

s(ω) =
n

∑
k=1

XEi (ω)ck

then ∫
s(ω)dµ ≡

n

∑
k=1

µ (Ei)ck

where µ (Ei) denotes the measure of Ei. This is a more general concept than length. It
could refer to probability that a random vector has values in the event Ei ⊆Rp for example.

We would like to be able to measure all subsets of a given set Ω but it turns out that
this is usually impossible to include along with all of the following definition. This will
become clear a little later in the discussion of outer measures. However, the notion of a σ

algebra turns out to be the ideal thing for a theory of integration.

Definition 32.2.1 Let Ω be a nonempty set. A σ algebra F is a set whose elements
are subsets of Ω which satisfies the following.

1. If Ei ∈ F , for i = 1,2, · · · , then ∪∞
i=1Ei ∈ F .

2. If E ∈ F , then EC ≡ Ω\E ∈ F

3. /0,Ω are both in F

µ : F → [0,∞] is called a measure if whenever Ei ∈ F and Ei ∩E j = /0 for all i ̸= j,
then

µ (∪∞
i=1Ei) =

∞

∑
i=1

µ (Ei)

that sum is defined as supn ∑
n
i=1 µ (Ei) . It could be a real number or +∞. Such a pair

(Ω,F ) is called a measurable space. If you add in µ, written as (Ω,F ,µ) , it is called a
measure space.

Of course our main interest is where Ω is a nonempty subset of R or Rp and the measure
µ is something to do with length or p dimensional volume, returning the length for an
interval or volume of a p dimensional box, but it is no more trouble to present this in the
generality just described and such a generalization is essential to understand if you want
to study mathematical statistics or probability. Surely the study of the integral should lead
somewhere.
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Observation 32.2.2 If (Ω,F ) is a measurable space and Ei ∈ F , then ∩∞
i=1Ei ∈ F .

This is because Ei ∈ F and by DeMorgan’s laws,

∩∞
i=1Ei =

(
∪∞

i=1EC
i
)C ∈ F since each EC

i ∈ F

Measures have the following fundamental property.

Lemma 32.2.3 If µ is a measure and Fi ∈ F , then µ (∪∞
i=1Fi) ≤ ∑

∞
i=1 µ (Fi). Also if

Fn ∈ F and Fn ⊆ Fn+1 for all n, then if F = ∪nFn,

µ (F) = lim
n→∞

µ (Fn)

Symbolically, if Fn ↑ F, then µ (Fn) ↑ µ (F). If Fn ⊇ Fn+1 for all n, then if µ (F1) < ∞ and
F = ∩nFn, then

µ (F) = lim
n→∞

µ (Fn)

Symbolically, if µ (F1)< ∞ and Fn ↓ F, then µ (Fn) ↓ µ (F).

Proof: Let G1 = F1 and if G1, · · · ,Gn have been chosen disjoint, let

Gn+1 ≡ Fn+1 \∪n
i=1Gi

Thus the Gi are disjoint. In addition, these are all measurable sets. Now

µ (Gn+1)+µ (Fn+1 ∩ (∪n
i=1Gi)) = µ (Fn+1)

and so µ (Gn)≤ µ (Fn). Therefore,

µ (∪∞
i=1Gi) = µ (∪∞

i=1Fi) = ∑
i

µ (Gi)≤ ∑
i

µ (Fi) .

Now consider the increasing sequence of Fn ∈ F . If F ⊆ G and these are sets of F

µ (G) = µ (F)+µ (G\F)

so µ (G)≥ µ (F). Also
F = ∪∞

i=1 (Fi+1 \Fi)+F1

Then

µ (F) =
∞

∑
i=1

µ (Fi+1 \Fi)+µ (F1)

Now µ (Fi+1 \Fi)+µ (Fi) = µ (Fi+1). If any µ (Fi) = ∞, there is nothing to prove. Assume
then that these are all finite. Then

µ (Fi+1 \Fi) = µ (Fi+1)−µ (Fi)

and so

µ (F) =
∞

∑
i=1

µ (Fi+1)−µ (Fi)+µ (F1)

= lim
n→∞

n

∑
i=1

µ (Fi+1)−µ (Fi)+µ (F1) = lim
n→∞

µ (Fn+1)
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Next suppose µ (F1)< ∞ and {Fn} is a decreasing sequence. Then

F1 \Fn

is increasing to F1 \F and so by the first part,

µ (F1)−µ (F) = µ (F1 \F) = lim
n→∞

µ (F1 \Fn) = lim
n→∞

(µ (F1)−µ (Fn))

This is justified because µ (F1 \Fn)+µ (Fn) = µ (F1) and all numbers are finite by assump-
tion. Hence

µ (F) = lim
n→∞

µ (Fn) . ■

Next is a discussion of the notion of a measurable function.

Notation 32.2.4 In whatever context, f−1 (S) ≡ {ω : f (ω) ∈ S}. It is called the inverse
image of S and everything in the theory of the Lebesgue integral is formulated in terms of
inverse images. For a real valued f , f−1 (λ ,∞) may be written as [ f > λ ].

Lemma 32.2.5 Let f : Ω → (−∞,∞] where F is a σ algebra of subsets of Ω. The
following are equivalent.

f−1((d,∞]) ∈ F for all finite d,

f−1((−∞,d)) ∈ F for all finite d,

f−1([d,∞]) ∈ F for all finite d,

f−1((−∞,d]) ∈ F for all finite d,

f−1 ((a,b)) ∈ F for all a < b,−∞ < a < b < ∞.

Definition 32.2.6 Any of these equivalent conditions in the above lemma is what is
meant when we say that f is measurable.

Proof of the lemma: First note that the first and the third are equivalent. To see this,
observe

f−1([d,∞]) = ∩∞
n=1 f−1((d −1/n,∞]),

and so if the first condition holds, then so does the third.

f−1((d,∞]) = ∪∞
n=1 f−1([d +1/n,∞]),

and so if the third condition holds, so does the first.
Similarly, the second and fourth conditions are equivalent. Now

f−1((−∞,d]) = ( f−1((d,∞]))C

so the first and fourth conditions are equivalent. Thus the first four conditions are equivalent
and if any of them hold, then for −∞ < a < b < ∞,

f−1((a,b)) = f−1((−∞,b))∩ f−1((a,∞]) ∈ F .

Finally, if the last condition holds,

f−1 ([d,∞]) =
(
∪∞

k=1 f−1 ((−k+d,d))
)C ∈ F

and so the third condition holds. Therefore, all five conditions are equivalent. ■
From this, it is easy to verify that pointwise limits of a sequence of measurable functions

are measurable.
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Corollary 32.2.7 If fn (ω)→ f (ω) where all functions have values in (−∞,∞], then if
each fn is measurable, so is f .

Proof: Note the following:

f−1
(
(b+

1
l
,∞]

)
= ∪∞

k=1 ∩n≥k f−1
n

(
(b+

1
l
,∞]

)
⊆ f−1

([
b+

1
l
,∞

])
This follows from the definition of the limit. Therefore,

f−1 ((b,∞]) = ∪∞
l=1 f−1

(
(b+

1
l
,∞]

)
= ∪∞

l=1 ∪∞
k=1 ∩n≥k f−1

n

(
(b+

1
l
,∞]

)
⊆ ∪∞

l=1 f−1
([

b+
1
l
,∞

])
= f−1 ((b,∞])

The messy term on the middle is measurable because it consists of countable unions and in-
tersections of measurable sets. It equals f−1 ((b,∞]) and so this last set is also measurable.
By Lemma 32.2.5, f is measurable. ■

A convenient way to check measurability is in terms of limits of simple functions.

Theorem 32.2.8 Let f ≥ 0 be measurable. Then there exists a sequence of nonneg-
ative simple functions {sn} satisfying

0 ≤ sn(ω) (32.1)

· · · sn(ω)≤ sn+1(ω) · · ·

f (ω) = lim
n→∞

sn(ω) for all ω ∈ Ω. (32.2)

If f is bounded, the convergence is actually uniform. Conversely, if f is nonnegative and is
the pointwise limit of such simple functions, then f is measurable.

Proof: Letting I ≡ {ω : f (ω) = ∞} , define

tn(ω) =
2n

∑
k=0

k
n
X f−1([ k

n ,
k+1

n ))(ω)+2nXI(ω).

Then tn(ω)≤ f (ω) for all ω and limn→∞ tn(ω) = f (ω) for all ω . This is because tn (ω) =
2n for ω ∈ I and if f (ω) ∈ [0, 2n+1

n ), then

0 ≤ f (ω)− tn (ω)≤ 1
n
. (32.3)

Thus whenever ω /∈ I, the above inequality will hold for all n large enough. Let

s1 = t1, s2 = max(t1, t2) , s3 = max(t1, t2, t3) , · · · .

Then the sequence {sn} satisfies 32.1-32.2. Also each sn has finitely many values and is
measurable. To see this, note that

s−1
n ((a,∞]) = ∪n

k=1t−1
k ((a,∞]) ∈ F
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To verify the last claim, note that in this case the term 2nXI(ω) is not present and for
n large enough, 2n/n is larger than all values of f . Therefore, for all n large enough, 32.3
holds for all ω . Thus the convergence is uniform.

Now consider the converse assertion. Why is f measurable if it is the pointwise limit
of an increasing sequence simple functions?

f−1 ((a,∞]) = ∪∞
n=1s−1

n ((a,∞])

because ω ∈ f−1 ((a,∞]) if and only if ω ∈ s−1
n ((a,∞]) for all n sufficiently large. ■

Observation 32.2.9 If f : Ω →R then the above definition of measurability holds with
no change. In this case, f never achieves the value ∞. This is actually the case of most
interest.

Corollary 32.2.10 If f : Ω → (−∞,∞) is measurable, then there exists a sequence of
simple functions {sn (ω)} such that |sn (ω)| ≤ | f (ω)| and sn (ω)→ f (ω).

Proof: Let f+ (ω) ≡ | f (ω)|+ f (ω)
2 , f− (ω) ≡ | f (ω)|− f (ω)

2 . Thus f = f+ − f− and | f | =
f++ f−. Also f = f+ when f ≥ 0 and f =− f− when f ≤ 0. Both f+, f− are measurable
functions. Indeed, if a ≥ 0, f−1

+ ((a,∞)) = f−1 ((a,∞)) ∈ F . If a < 0 then f−1
+ ((a,∞)) =

Ω. Similar considerations hold for f−. Now let s+n (ω) ↑ f+ (ω) ,s−n (ω) ↑ f− (ω) meaning
these are simple functions converging respectively to f+ and f− which are both increasing
in n and nonnegative. Thus if sn (ω)≡ s+n (ω)−s−n (ω) , this converges to f+ (ω)− f− (ω) .
Also

|sn (ω)|= s+n (ω)+ s−n (ω)≤ f+ (ω)+ f− (ω) = | f (ω)| ■

Proposition 32.2.11 Let fi : Ω → R be measurable, (Ω,F ) a measurable space, and
let g : Rp →R be continuous. If f (ω) =

(
f1 (ω) · · · fp (ω)

)T
, then g◦f is measur-

able.

Proof: From Corollary 32.2.10 above, there are

si
n (ω) ,

simple functions limn→∞ si
n (ω) = fi (ω) such that

∣∣si
n (ω)

∣∣≤ | fi (ω)|. Let

sn (ω)≡
(

s1
n (ω) · · · sp

n (ω)
)T

thus, by continuity, g(sn (ω)) → g(f (ω)) for each ω. It remains to verify that g ◦ sn
is measurable. g−1 ((a,∞)) is an open subset of Rp and so by Theorem 32.1.5, it is a
countable union of open boxes of the form Rk = ∏

p
i=1

(
uk

i ,v
k
i
)
. Thus

g◦s−1
n ((a,∞)) = {ω : sn (ω) ∈ ∪∞

k=1Rk}= ∪ks
−1
n (Rk) = ∪∞

k=1 ∩
p
i=1

(
si

n
)−1
(

uk
i ,v

k
i

)
.

Now
(
si

n
)−1 (uk

i ,v
k
i
)

consists of a finite union of measurable sets because si
n has finitely

many values on measurable sets, and so it is measurable. Hence g ◦sn is measurable and
so it follows from Corollary 32.2.7, g◦f is measurable because it is the limit of functions
which are. ■

Note how this shows as a very special case that linear combinations of measurable real
valued functions are measurable because you could take g(x,y) ≡ ax+by and then if you
have two measurable functions f1, f2, it follows that a f1 +b f2 is measurable.
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Definition 32.2.12 f : Ω → Rp is measurable means that each component func-
tion is real valued and measurable.

Proposition 32.2.13 f : Ω → Rp is measurable where (Ω,F ) is a measurable space
if and only if f−1 (open set) ∈ F .

Proof: If each component function is measurable, then

f−1

(
p

∏
k=1

(ak,bk)

)
= ∩p

k=1 f−1
k (ak,bk) ∈ F

By Theorem 32.1.5, every open set U is a countable union of open rectangles {Ri} so
f−1 (U) = ∪if

−1 (Ri) ∈ F . Conversely, if f−1 (open set) is always measurable, then

f−1
k (a,b) = f−1 (R×·· ·×(a,b)×·· ·×R)

is measurable so the component functions are measurable. ■

32.3 Measures and Outer Measures
There is also something called an outer measure which is defined on the set of all subsets.

Definition 32.3.1 Let Ω be a nonempty set and let λ : P (Ω)→ [0,∞) satisfy the
following:

1. λ ( /0) = 0

2. If A ⊆ B, then λ (A)≤ λ (B)

3. λ (∪∞
i=1Ei)≤ ∑

∞
i=1 λ (Ei)

Then λ is called an outer measure.

It is just like a measure except you only get 3. and you do not know that you get equality
if the Ei are disjoint. Every measure determines an outer measure. For example, suppose
that µ is a measure on F a σ algebra of subsets of Ω. Then define

µ̂ (S)≡ inf{µ (E) : E ⊇ S, E ∈ F}

This is easily seen to be an outer measure. Also, we have the following Proposition.

Proposition 32.3.2 Let µ be a measure as just described. Then µ̂ as defined above, is
an outer measure and also, if E ∈ F , then µ̂ (E) = µ (E).

Proof: The first two properties of an outer measure are obvious. What of the third? If
any µ̂ (Ei) = ∞, then there is nothing to show so suppose each of these is finite. Let Fi ⊇ Ei
such that Fi ∈ F and µ̂ (Ei)+

ε

2i > µ (Fi) . Then

µ̂ (∪∞
i=1Ei) ≤ µ (∪∞

i=1Fi)≤
∞

∑
i=1

µ (Fi)

<
∞

∑
i=1

(
µ̂ (Ei)+

ε

2i

)
=

∞

∑
i=1

µ̂ (Ei)+ ε

Since ε is arbitrary, this establishes the third condition. Finally, if E ∈ F , then by defini-
tion, µ̂ (E)≤ µ (E) because E ⊇ E. Also, µ (E)≤ µ (F) for all F ∈ F such that F ⊇ E. It
follows that µ (E) is a lower bound of all such µ (F) and so µ̂ (E)≥ µ (E) .■
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32.4 Measures from Outer Measures
Earlier in Theorem 33.1.1 an outer measure on P (R) was constructed. This can be used
to obtain a measure defined on R. However, the procedure for doing so is a special case of
a general approach due to Caratheodory about 1918.

Definition 32.4.1 Let Ω be a nonempty set and let µ : P(Ω)→ [0,∞] be an outer
measure. For E ⊆ Ω, E is µ measurable if for all S ⊆ Ω,

µ(S) = µ(S\E)+µ(S∩E). (32.4)

To help in remembering 32.4, think of a measurable set E, as a process which divides a
given set into two pieces, the part in E and the part not in E as in 32.4. In the Bible, there
are several incidents recorded in which a process of division resulted in more stuff than
was originally present.1 We don’t want this. Measurable sets are exactly those which are
incapable of such a miracle. You might think of the measurable sets as the non-miraculous
sets. The idea is to show that they form a σ algebra on which the outer measure µ is a
measure.

First here is a definition and a lemma.

Definition 32.4.2 (µ⌊S)(A) ≡ µ(S∩A) for all A ⊆ Ω. Thus µ⌊S is the name of a
new outer measure, called µ restricted to S.

The next lemma indicates that the property of measurability is not lost by considering
this restricted measure.

Lemma 32.4.3 If A is µ measurable, then A is µ⌊S measurable.

Proof: Suppose A is µ measurable. It is desired to to show that for all T ⊆ Ω,

(µ⌊S)(T ) = (µ⌊S)(T ∩A)+(µ⌊S)(T \A).

Thus it is desired to show

µ(S∩T ) = µ(T ∩A∩S)+µ(T ∩S∩AC). (32.5)

But 32.5 holds because A is µ measurable. Apply Definition 32.4.1 to S∩T instead of S.
■

If A is µ⌊S measurable, it does not follow that A is µ measurable. Indeed, if you believe
in the existence of non measurable sets, you could let A = S for such a µ non measurable
set and verify that S is µ⌊S measurable.

The next theorem is the main result on outer measures which shows that starting with
an outer measure you can obtain a measure.

11 Kings 17, 2 Kings 4, Mathew 14, and Mathew 15 all contain such descriptions. The stuff involved was
either oil, bread, flour or fish. In mathematics such things have also been done with sets. In the book by Bruckner
Bruckner and Thompson there is an interesting discussion of the Banach Tarski paradox which says it is possible
to divide a ball in R3 into five disjoint pieces and assemble the pieces to form two disjoint balls of the same
volume as the first. The details can be found in: The Banach Tarski Paradox by Wagon, Cambridge University
press. 1985. It is known that all such examples must involve the axiom of choice.
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Theorem 32.4.4 Let Ω be a set and let µ be an outer measure on P (Ω). The
collection of µ measurable sets S , forms a σ algebra and

If Fi ∈ S, Fi ∩Fj = /0, then µ(∪∞
i=1Fi) =

∞

∑
i=1

µ(Fi). (32.6)

If · · ·Fn ⊆ Fn+1 ⊆ ·· · , then if F = ∪∞
n=1Fn and Fn ∈ S , it follows that

µ(F) = lim
n→∞

µ(Fn). (32.7)

If · · ·Fn ⊇ Fn+1 ⊇ ·· · , and if F = ∩∞
n=1Fn for Fn ∈ S then if µ(F1)< ∞,

µ(F) = lim
n→∞

µ(Fn). (32.8)

This measure space is also complete which means that if µ (F) = 0 for some F ∈ S then
if G ⊆ F, it follows G ∈ S also.

Proof: First note that /0 and Ω are obviously in S . Now suppose A,B ∈S . I will show
A\B ≡ A∩BC is in S . To do so, consider the following picture.

S
⋂

AC ⋂BC

S
⋂

AC ⋂B

S
⋂

A
⋂

B

S
⋂

A
⋂

BC

A

B

S

It is required to show that

µ (S) = µ (S\ (A\B))+µ (S∩ (A\B))

First consider S\ (A\B) . From the picture, it equals(
S∩AC ∩BC)∪ (S∩A∩B)∪

(
S∩AC ∩B

)
Therefore,

µ (S)≤ µ (S\ (A\B))+µ (S∩ (A\B))

≤ µ
(
S∩AC ∩BC)+µ (S∩A∩B)+µ

(
S∩AC ∩B

)
+µ (S∩ (A\B))

= µ
(
S∩AC ∩BC)+µ (S∩A∩B)+µ

(
S∩AC ∩B

)
+µ

(
S∩A∩BC)

= µ
(
S∩AC ∩BC)+µ

(
S∩A∩BC)+µ (S∩A∩B)+µ

(
S∩AC ∩B

)
= µ

(
S∩BC)+µ (S∩B) = µ (S)
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and so this shows that A\B ∈ S whenever A,B ∈ S .
Since Ω ∈ S , this shows that A ∈ S if and only if AC ∈ S . Now if A,B ∈ S , A∪B =

(AC ∩ BC)C = (AC \ B)C ∈ S . By induction, if A1, · · · ,An ∈ S , then so is ∪n
i=1Ai. If

A,B ∈ S , with A∩B = /0,

µ(A∪B) = µ((A∪B)∩A)+µ((A∪B)\A) = µ(A)+µ(B).

By induction, if Ai ∩A j = /0 and Ai ∈ S ,

µ(∪n
i=1Ai) =

n

∑
i=1

µ(Ai). (32.9)

Now let A = ∪∞
i=1Ai where Ai ∩A j = /0 for i ̸= j.

∞

∑
i=1

µ(Ai)≥ µ(A)≥ µ(∪n
i=1Ai) =

n

∑
i=1

µ(Ai).

Since this holds for all n, you can take the limit as n → ∞ and conclude,

∞

∑
i=1

µ(Ai) = µ(A)

which establishes 32.6.
Consider part 32.7. Without loss of generality µ (Fk) < ∞ for all k since otherwise

there is nothing to show. Suppose {Fk} is an increasing sequence of sets of S . Then
letting F0 ≡ /0, {Fk+1 \Fk}∞

k=0 is a sequence of disjoint sets of S since it was shown above
that the difference of two sets of S is in S . Also note that from 32.9

µ (Fk+1 \Fk)+µ (Fk) = µ (Fk+1)

and so if µ (Fk)< ∞, then

µ (Fk+1 \Fk) = µ (Fk+1)−µ (Fk) .

Therefore, letting
F ≡ ∪∞

k=1Fk

which also equals
∪∞

k=1 (Fk+1 \Fk) ,

it follows from part 32.6 just shown that

µ (F) =
∞

∑
k=0

µ (Fk+1 \Fk) = lim
n→∞

n

∑
k=0

µ (Fk+1 \Fk)

= lim
n→∞

n

∑
k=0

µ (Fk+1)−µ (Fk) = lim
n→∞

µ (Fn+1) .

In order to establish 32.8, let the Fn be as given there. Then, since (F1 \Fn) increases to
(F1 \F), 32.7 implies

lim
n→∞

(µ (F1)−µ (Fn)) = µ (F1 \F) .
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The problem is, I don’t know F ∈ S and so it is not clear that µ (F1 \F) = µ (F1)−µ (F).
However, µ (F1 \F)+µ (F)≥ µ (F1) and so µ (F1 \F)≥ µ (F1)−µ (F). Hence

lim
n→∞

(µ (F1)−µ (Fn)) = µ (F1 \F)≥ µ (F1)−µ (F)

which implies
lim
n→∞

µ (Fn)≤ µ (F) .

But since F ⊆ Fn,
µ (F)≤ lim

n→∞
µ (Fn)

and this establishes 32.8. Note that it was assumed µ (F1) < ∞ because µ (F1) was sub-
tracted from both sides.

It remains to show S is closed under countable unions. Recall that if A ∈ S , then
AC ∈ S and S is closed under finite unions. Let Ai ∈ S , A = ∪∞

i=1Ai, Bn = ∪n
i=1Ai. Then

µ(S) = µ(S∩Bn)+µ(S\Bn) (32.10)
= (µ⌊S)(Bn)+(µ⌊S)(BC

n ).

By Lemma 32.4.3 Bn is (µ⌊S) measurable and so is BC
n . I want to show µ(S)≥ µ(S\A)+

µ(S∩A). If µ(S) = ∞, there is nothing to prove. Assume µ(S)< ∞. Then apply Parts 32.8
and 32.7 to the outer measure µ⌊S in 32.10 and let n → ∞. Thus

Bn ↑ A, BC
n ↓ AC

and this yields µ(S) = (µ⌊S)(A)+(µ⌊S)(AC) = µ(S∩A)+µ(S\A).
Therefore A ∈ S and this proves Parts 32.6, 32.7, and 32.8.
It only remains to verify the assertion about completeness. Letting G and F be as

described above, let S ⊆ Ω. I need to verify

µ (S)≥ µ (S∩G)+µ (S\G)

However,

µ (S∩G)+µ (S\G) ≤ µ (S∩F)+µ (S\F)+µ (F \G)

= µ (S∩F)+µ (S\F) = µ (S)

because by assumption, µ (F \G)≤ µ (F) = 0. ■
The measure m which results from the outer measure of Theorem 33.1.1 is called

Lebesgue measure. The following is a general result about completion of a measure space.
This is coming up, but first is another general result about completion of a measure space.

Proposition 32.4.5 Let (Ω,F ,µ) be a measure space. Also let µ̂ be the outer measure
defined by

µ̂ (F)≡ inf{µ (E) : E ⊇ F and E ∈ F}

Then µ̂ is an outer measure which is a measure on F̂ , the set of µ̂ measurable sets. Also
µ̂ (E) = µ (E) for E ∈ F and F ⊆ F̂ . If (Ω,F ,µ) is already complete, then no new sets
are obtained from this process and F = F̂ .
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Proof: The first part of this follows from Proposition 32.3.2. It only remains to verify
that F ⊆ F̂ . Let S be a set and let E ∈ F , ES ⊇ S,ES ∈ F . Then

µ (ES) = µ (ES \E)+µ (ES ∩E)

due to the fact that µ is a measure. As usual, if µ̂ (S) = ∞, it is obvious that µ̂ (S) ≥
µ̂ (S\E)+ µ̂ (S∩E) . Therefore, assume this is not ∞. Then let µ̂ (S) > µ (ES)− ε. Then
from the above,

ε + µ̂ (S)≥ µ (ES \E)+µ (ES ∩E)≥ µ (S\E)+µ (S∩E)

Since ε is arbitrary, this shows that E ∈ F̂ . Thus F ⊆ F̂ .
Why are these two σ algebras equal if (Ω,F ,µ) is complete? Suppose now that

(Ω,F ,µ) is complete. Let F ∈ F̂ . Then there exists E ⊇ F such that µ (E) = µ̂ (F) . This
is obvious if µ̂ (F) = ∞. Otherwise, let En ⊇ F, µ̂ (F)+ 1

n > µ (En) . Just let E = ∩nEn.
Now µ̂ (E \F) = 0. Now also, there exists a set of F called W such that µ (W ) = 0 and
W ⊇ E \F. Thus E \F ⊆W, a set of measure zero. Hence by completeness of (Ω,F ,µ) ,
it must be the case that E \F = E ∩FC = G ∈ F . Then taking complements of both sides,
EC ∪F = GC ∈ F . Now take intersections with E. F ∈ E ∩GC ∈ F . ■

32.5 Riemann Integrals for Decreasing Functions
A decreasing function is always Riemann integrable. This is discussed in Proposition 7.3.8
I will define the Lebesgue integral for a nonnegative function in terms of an improper
Riemann integral which involves a decreasing function.

Definition 32.5.1 Let f : [a,b]→ [0,∞] be decreasing. Define∫ b

a
f (λ )dλ ≡ lim

M→∞

∫ b

a
M∧ f (λ )dλ = sup

M

∫ b

a
M∧ f (λ )dλ

where A∧B means the minimum of A and B. Note that for f bounded,

sup
M

∫ b

a
M∧ f (λ )dλ =

∫ b

a
f (λ )dλ

where the integral on the right is the usual Riemann integral because eventually M > f .
For f a nonnegative decreasing function defined on [0,∞),∫

∞

0
f dλ ≡ lim

R→∞

∫ R

0
f dλ = sup

R>1

∫ R

0
f dλ = sup

R
sup
M>0

∫ R

0
f ∧Mdλ

Now here is an obvious property.

Lemma 32.5.2 Let f be a decreasing nonnegative function defined on an interval [a,b] .
Then if [a,b] =∪m

k=1Ik where Ik ≡ [ak,bk] and the intervals Ik are non overlapping, it follows

∫ b

a
f dλ =

m

∑
k=1

∫ bk

ak

f dλ .



666 CHAPTER 32. MEASURES AND INTEGRALS

Proof: This follows from the computation,∫ b

a
f dλ ≡ lim

M→∞

∫ b

a
f ∧Mdλ

= lim
M→∞

m

∑
k=1

∫ bk

ak

f ∧Mdλ =
m

∑
k=1

∫ bk

ak

f dλ

Note both sides could equal +∞. ■

32.6 Lebesgue Integrals of Nonnegative Functions
Here is the definition of the Lebesgue integral of a function which is measurable and has
values in [0,∞]. The idea is motivated by the following picture in which f−1 (λ i,∞) is
A∪B∪C and we take the measure of this set, multiply by λ i −λ i−1 and do this for each λ i
in an increasing sequence of points, λ 0 ≡ 0. Then we add the “areas” of the little horizontal
“rectangles” in order to approximate the “area” under the curve. The difference here is
that the “rectangles” in the sum are horizontal whereas with the Riemann integral, they
are vertical. Note how it is important to be able to measure f−1 (λ ,∞)≡ {x : f (x)> λ} ≡
[ f > λ ] which is what it means for f to be measurable. Also note that, in spite of the picture,
in general we don’t know a good description of this set other than that it is measurable.

λ i

A B C

y = f (x)

Definition 32.6.1 Let (Ω,F , µ) be a measure space and suppose f : Ω → [0,∞] is
measurable. Then define∫

f dµ ≡
∫

∞

0
µ ([ f > λ ])dλ =

∫
∞

0
µ
(

f−1 (λ ,∞)
)

dλ

which makes sense because λ → µ ([ f > λ ]) is nonnegative and decreasing. On the right
you have an improper Riemann integral like what was discussed above.

Note that if f ≤ g, then
∫

f dµ ≤
∫

gdµ because µ ([ f > λ ])≤ µ ([g > λ ]) . Next I point
out that the integral is a limit of lower sums.

Lemma 32.6.2 In the situation of the above definition,∫
f dµ = sup

h>0

∞

∑
i=1

µ ([ f > hi])h

Proof: Let m(h,R) ∈ N satisfy R−h < hm(h,R)≤ R. Then

lim
R→∞

m(h,R) = ∞

and so ∫
f dµ ≡

∫
∞

0
µ ([ f > λ ])dλ = sup

M
sup

R

∫ R

0
µ ([ f > λ ])∧Mdλ =
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sup
M

sup
R>0

sup
h>0

m(h,R)

∑
k=1

(µ ([ f > kh])∧M)h+(µ ([ f > R])∧M)(R−hm(h,R)) (32.11)

= sup
M

sup
R>0

sup
h>0

m(h,R)

∑
k=1

(µ ([ f > kh])∧M)h

because the sum in 32.11 is just a lower sum for the integral
∫ R

0 µ ([ f > λ ])∧Mdλ , these
lower sums are increasing, and the last term is smaller than Mh. Hence, switching the order
of the sups, this equals

sup
R>0

sup
h>0

sup
M

m(h,R)

∑
k=1

(µ ([ f > kh])∧M)h = sup
R>0

sup
h>0

lim
M→∞

m(h,R)

∑
k=1

(µ ([ f > kh])∧M)h

= sup
h>0

sup
R

m(R,h)

∑
k=1

(µ ([ f > kh]))h = sup
h>0

∞

∑
k=1

(µ ([ f > kh]))h. ■

32.7 Nonnegative Simple Functions
To begin with, here is a useful lemma.

Lemma 32.7.1 If f (λ ) = 0 for all λ > a, where f is a decreasing nonnegative function,
then ∫

∞

0
f (λ )dλ =

∫ a

0
f (λ )dλ .

Proof: From the definition,∫
∞

0
f (λ )dλ = lim

R→∞

∫ R

0
f (λ )dλ = sup

R>1

∫ R

0
f (λ )dλ

= sup
R>1

sup
M

∫ R

0
f (λ )∧Mdλ

= sup
M

sup
R>1

∫ R

0
f (λ )∧Mdλ

= sup
M

sup
R>1

∫ a

0
f (λ )∧Mdλ

= sup
M

∫ a

0
f (λ )∧Mdλ ≡

∫ a

0
f (λ )dλ . ■

Now the Lebesgue integral for a nonnegative function has been defined, what does it do
to a nonnegative simple function? Recall a nonnegative simple function is one which has
finitely many nonnegative real values which it assumes on measurable sets. Thus a simple
function can be written in the form

s(ω) =
n

∑
i=1

ciXEi (ω)

where the ci are each nonnegative, the distinct values of s.
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Lemma 32.7.2 Let s(ω) = ∑
p
i=1 aiXEi (ω) be a nonnegative simple function where the

Ei are distinct but the ai might not be. Then∫
sdµ =

p

∑
i=1

aiµ (Ei) . (32.12)

Proof: Without loss of generality, assume 0≡ a0 < a1 ≤ a2 ≤ ·· · ≤ ap and that µ (Ei)<
∞, i > 0. Here is why. If µ (Ei) = ∞, then the left side would be∫ ap

0
µ ([s > λ ])dλ ≥

∫ ai

0
µ ([s > λ ])dλ

= sup
M

∫ ai

0
µ ([s > λ ])∧Mdλ

≥ sup
M

Mai = ∞

and so both sides are equal to ∞. Thus it can be assumed that for each i,µ (Ei)< ∞. Then
it follows from Lemma 32.7.1 and Lemma 32.5.2,∫

∞

0
µ ([s > λ ])dλ =

∫ ap

0
µ ([s > λ ])dλ =

p

∑
k=1

∫ ak

ak−1

µ ([s > λ ])dλ

=
p

∑
k=1

(ak −ak−1)
p

∑
i=k

µ (Ei) =
p

∑
i=1

µ (Ei)
i

∑
k=1

(ak −ak−1) =
p

∑
i=1

aiµ (Ei) ■

Lemma 32.7.3 If a,b ≥ 0 and if s and t are nonnegative simple functions, then∫
(as+bt)dµ = a

∫
sdµ +b

∫
tdµ .

Proof: Let

s(ω) =
n

∑
i=1

α iXAi(ω), t(ω) =
m

∑
i=1

β jXB j(ω)

where α i are the distinct values of s and the β j are the distinct values of t. Clearly as+bt
is a nonnegative simple function because it has finitely many values on measurable sets. In
fact,

(as+bt)(ω) =
m

∑
j=1

n

∑
i=1

(aα i +bβ j)XAi∩B j(ω)

where the sets Ai ∩B j are disjoint and measurable. By Lemma 32.7.2,∫
as+btdµ =

m

∑
j=1

n

∑
i=1

(aα i +bβ j)µ(Ai ∩B j)

=
n

∑
i=1

a
m

∑
j=1

α iµ(Ai ∩B j)+b
m

∑
j=1

n

∑
i=1

β jµ(Ai ∩B j)

= a
n

∑
i=1

α iµ(Ai)+b
m

∑
j=1

β jµ(B j)

= a
∫

sdµ +b
∫

tdµ . ■
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32.8 The Monotone Convergence Theorem
The following is called the monotone convergence theorem also Beppo Levi’s theorem.
This theorem and related convergence theorems are the reason for using the Lebesgue
integral. If limn→∞ fn (ω) = f (ω) and fn (ω) is increasing in n, then clearly f is also
measurable because

f−1 ((a,∞]) = ∪∞
k=1 f−1

k ((a,∞]) ∈ F

Theorem 32.8.1 (Monotone Convergence theorem) Let f have values in [0,∞] and
suppose { fn} is a sequence of nonnegative measurable functions having values in [0,∞]
and satisfying

lim
n→∞

fn(ω) = f (ω) for each ω.

· · · fn(ω)≤ fn+1(ω) · · ·

Then f is measurable and ∫
f dµ = lim

n→∞

∫
fndµ.

Proof: By Lemma 32.6.2

lim
n→∞

∫
fndµ = sup

n

∫
fndµ

= sup
n

sup
h>0

∞

∑
k=1

µ ([ fn > kh])h = sup
h>0

sup
N

sup
n

N

∑
k=1

µ ([ fn > kh])h

= sup
h>0

sup
N

N

∑
k=1

µ ([ f > kh])h = sup
h>0

∞

∑
k=1

µ ([ f > kh])h =
∫

f dµ. ■

The next theorem, known as Fatou’s lemma is another important theorem which justi-
fies the use of the Lebesgue integral.

Theorem 32.8.2 (Fatou’s lemma) Let fn be a nonnegative measurable function. Let
g(ω) = liminfn→∞ fn(ω). Then g is measurable and∫

gdµ ≤ lim inf
n→∞

∫
fndµ.

In other words, ∫ (
lim inf

n→∞
fn

)
dµ ≤ lim inf

n→∞

∫
fndµ.

Proof: Let gn(ω) = inf{ fk(ω) : k ≥ n}. Then

g−1
n ([a,∞]) = ∩∞

k=n f−1
k ([a,∞]) ∈ F

Thus gn is measurable. Now the functions gn form an increasing sequence of nonnegative
measurable functions. Thus g−1 ((a,∞)) = ∪∞

n=1g−1
n ((a,∞)) ∈ F so g is measurable also.

By monotone convergence theorem,∫
gdµ = lim

n→∞

∫
gndµ ≤ lim inf

n→∞

∫
fndµ.
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The last inequality holding because∫
gndµ ≤

∫
fndµ.

(Note that it is not known whether limn→∞

∫
fndµ exists.) ■

32.9 The Integral’s Righteous Algebraic Desires
The monotone convergence theorem shows the integral wants to be linear. This is the
essential content of the next theorem.

Theorem 32.9.1 Let f ,g be nonnegative measurable functions and let a,b be non-
negative numbers. Then a f +bg is measurable and∫

(a f +bg)dµ = a
∫

f dµ +b
∫

gdµ. (32.13)

Proof: By Theorem 32.2.8 on Page 658 there exist increasing sequences of nonnegative
simple functions, sn → f and tn → g. Then a f +bg, being the pointwise limit of the simple
functions asn+btn, is measurable. Now by the monotone convergence theorem and Lemma
32.7.3, ∫

(a f +bg)dµ = lim
n→∞

∫
asn +btndµ = lim

n→∞

(
a
∫

sndµ +b
∫

tndµ

)
= a

∫
f dµ +b

∫
gdµ. ■

32.10 Integrals of Real Valued Functions
As long as you are allowing functions to take the value +∞, you cannot consider something
like f +(−g) and so you can’t very well expect a satisfactory statement about the integral
being linear until you restrict yourself to functions which have values in a vector space. To
be linear, a function must be defined on a vector space. The integral of real valued functions
is next.

Definition 32.10.1 Let (Ω,F ,µ) be a measure space and let f : Ω → R be mea-
surable. Then it is said to be in L1 (Ω,µ) when∫

Ω

| f (ω)|dµ < ∞

Lemma 32.10.2 If g−h = ĝ− ĥ where g, ĝ,h, ĥ are measurable and nonnegative, with
all integrals finite, then ∫

Ω

gdµ −
∫

Ω

hdµ =
∫

Ω

ĝdµ −
∫

Ω

ĥdµ

Proof: From Theorem 32.9.1,∫
ĝdµ +

∫
hdµ =

∫
(ĝ+h)dµ =

∫ (
g+ ĥ

)
dµ =

∫
gdµ +

∫
ĥdµ

and so, ∫
ĝdµ −

∫
ĥdµ =

∫
gdµ −

∫
hdµ ■
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Definition 32.10.3 Let f ∈ L1 (Ω,µ). Define
∫

f dµ ≡
∫

f+dµ −
∫

f−dµ.

Proposition 32.10.4 The definition of
∫

f dµ is well defined and if a,b are real num-
bers ∫

(a f +bg)dµ = a
∫

f dµ +b
∫

gdµ

Proof: First of all, it is well defined because f+, f− are both no larger than | f |. There-
fore,

∫
f+dµ,

∫
f−dµ are both real numbers. Next, why is the integral linear. First consider

the sum. ∫
( f +g)dµ ≡

∫
( f +g)+ dµ −

∫
( f +g)− dµ

Now ( f +g)+− ( f +g)− = f +g = f+− f−+g+−g−. By Lemma 32.10.2 and Theorem
32.9.1 ∫

( f +g)dµ ≡
∫

( f +g)+ dµ −
∫

( f +g)− dµ

=
∫

( f++g+)dµ −
∫

( f−+g−)dµ

=
∫

f+dµ −
∫

f−dµ +
∫

g+dµ −
∫

g−dµ

≡
∫

f dµ +
∫

gdµ

Next note that if a is real and a ≥ 0,(a f )+ = a f+,(a f )− = a f− and if a < 0,(a f )+ =
−a f−,(a f )− =−a f+. This follows from a simple computation involving the definition of
f+, f−. Therefore, if a < 0,∫

a f dµ ≡
∫

(a f )+ dµ −
∫

(a f )− dµ =
∫

(−a) f−dµ −
∫

(−a) f+dµ

By Theorem 32.9.1,

=−a
(∫

f−dµ −
∫

f+dµ

)
= a

(∫
f+dµ −

∫
f−dµ

)
≡ a

∫
f dµ

The case where a ≥ 0 is easier. ■
Now that we understand how to integrate real valued functions, it is time for another

great convergence theorem, the dominated convergence theorem.

Theorem 32.10.5 (Dominated Convergence theorem) Let fn ∈ L1(Ω) and suppose

f (ω) = lim
n→∞

fn(ω),

and there exists a measurable function g, with values in [0,∞],2 such that

| fn(ω)| ≤ g(ω) and
∫

g(ω)dµ < ∞.

Then f ∈ L1 (Ω) and

0 = lim
n→∞

∫
| fn − f |dµ = lim

n→∞

∣∣∣∣∫ f dµ −
∫

fndµ

∣∣∣∣
2Note that, since g is allowed to have the value ∞, it is not known that g ∈ L1 (Ω) .
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Proof: f is measurable by Corollary 32.2.7. Since | f | ≤ g, it follows that

f ∈ L1(Ω) and | f − fn| ≤ 2g.

By Fatou’s lemma (Theorem 32.8.2),∫
2gdµ ≤ lim inf

n→∞

∫
2g−| f − fn|dµ

=
∫

2gdµ − lim sup
n→∞

∫
| f − fn|dµ.

Subtracting
∫

2gdµ ,

0 ≤− lim sup
n→∞

∫
| f − fn|dµ.

Hence

0 ≥ lim sup
n→∞

(∫
| f − fn|dµ

)
≥ lim inf

n→∞

(∫
| f − fn|dµ

)
≥ lim inf

n→∞

∣∣∣∣∫ f dµ −
∫

fndµ

∣∣∣∣≥ 0.

This proves the theorem by Lemma 3.3.17 because the limsup and liminf are equal. ■

Example 32.10.6 Let Ω ≡N and let F be the set of all subsets of Ω. Let µ (E)≡ number
of entries in E. Then (N,F ,µ) is a measure space and the Lebesgue integral is summation.
Thus all the convergence theorems mentioned above apply to sums.

First, why is µ a measure? If {Ei} are disjoint, then if each is nonempty, ∪iEi is infinite
and so

µ (∪iEi) = ∞ =
∞

∑
i=1

µ (Ei)≥
∞

∑
i=1

1 = ∞

The alternative is that only finitely many Ei are nonempty and in this case, the assertion
that µ (∪iEi) = ∑

∞
i=1 µ (Ei) is obvious. Hence µ is indeed a measure. Now let f : N→ R.

It is obviously measurable because the inverse image of anything is a subset of N. So if
f (n)≥ 0 for all n, what is

∫
f dµ?

f (i) =
∞

∑
k=1

f (k)X{k} (i) = lim
n→∞

n

∑
k=1

f (k)X{k} (i)≡ fn (i)

Now fn is a simple function and there is exactly one thing in {k}. Therefore,
∫

fndµ =

∑
n
k=1 f (k) . Then, by the monotone convergence theorem,∫

f dµ = lim
n→∞

∫
fndµ = lim

n→∞

n

∑
k=1

f (k)≡
∞

∑
k=1

f (k)

When ∑k | f (k)|< ∞, one has
∫

f dµ = ∑
∞
k=1 f (k) .

This example illustrates how the Lebesgue integral pertains to absolute summability
and absolute integrability. It is not a theory which can include conditional convergence.
The generalized Riemann integral, which I won’t consider here can do this. However, the
Lebesgue integral is very easy to use because of this restriction.



32.11. DYNKIN’S LEMMA 673

32.11 Dynkin’s Lemma
Dynkin’s lemma is a very useful result. It is used quite a bit in books on probability but
here it is used to obtain n dimensional Lebesgue measure without any ugly technicalities.

Lemma 32.11.1 Let C be a set whose elements are σ algebras each containing some
subset K of the set of all subsets. Then ∩C is a σ algebra which contains K .

Proof: /0,Ω are in ∩C because these are each in each σ algebra of C . If Ei ∈ ∩C , then
if F ∈ C it follows that ∪∞

i=1Ei ∈ F and so, since F is arbitrary, this shows this union is
in ∩C . If E ∈ ∩C , then EC ∈ F for each F ∈ ∩C and so, as before, EC ∈ ∩C . Thus ∩C
is a σ algebra. ■

Definition 32.11.2 Let Ω be a set and let K be a collection of subsets of Ω. Then
K is called a π system if /0,Ω ∈K and whenever A,B ∈K , it follows A∩B ∈K . σ (K )
will denote the intersection of all σ algebras containing K . The set of all subsets of Ω

is one such σ algebra which contains K . Thus σ (K ) is the smallest σ algebra which
contains K .

The following is the fundamental lemma which shows these π systems are useful. This
is due to Dynkin.

Lemma 32.11.3 Let K be a π system of subsets of Ω, a set. Also let G be a collection
of subsets of Ω which satisfies the following three properties.

1. K ⊆ G

2. If A ∈ G , then AC ∈ G

3. If {Ai}∞

i=1 is a sequence of disjoint sets from G then ∪∞
i=1Ai ∈ G .

Then G ⊇ σ (K ) , where σ (K ) is the smallest σ algebra which contains K .

Proof: First note that if
H ≡ {G : 1 - 3 all hold}

then ∩H yields a collection of sets which also satisfies 1 - 3. Therefore, I will assume in
the argument that G is the smallest collection satisfying 1 - 3. Let A ∈ K and define

GA ≡ {B ∈ G : A∩B ∈ G } .

I want to show GA satisfies 1 - 3 because then it must equal G since G is the smallest
collection of subsets of Ω which satisfies 1 - 3. This will give the conclusion that for
A ∈ K and B ∈ G , A∩B ∈ G . This information will then be used to show that if A,B ∈ G
then A∩B ∈ G . From this it will follow very easily that G is a σ algebra which will imply
it contains σ (K ). Now here are the details of the argument.

Since K is given to be a π system, K ⊆ G A. Property 3 is obvious because if {Bi} is
a sequence of disjoint sets in GA, then

A∩∪∞
i=1Bi = ∪∞

i=1A∩Bi ∈ G

because A∩Bi ∈ G and the property 3 of G .
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It remains to verify Property 2 so let B ∈ GA. I need to verify that BC ∈ GA. In other
words, I need to show that A∩BC ∈ G . However,

A∩BC =
(
AC ∪ (A∩B)

)C ∈ G

Here is why. Since B ∈ GA, A∩B ∈ G and since A ∈ K ⊆ G it follows AC ∈ G by as-
sumption 2. It follows from assumption 3 the union of the disjoint sets, AC and (A∩B) is
in G and then from 2 the complement of their union is in G . Thus GA satisfies 1 - 3 and
this implies since G is the smallest such, that GA ⊇ G . However, GA is constructed as a
subset of G . This proves that for every B ∈ G and A ∈K , A∩B ∈ G . Now pick B ∈ G and
consider

GB ≡ {A ∈ G : A∩B ∈ G } .

I just proved K ⊆ GB. The other arguments are identical to show GB satisfies 1 - 3 and is
therefore equal to G . This shows that whenever A,B ∈ G it follows A∩B ∈ G .

This implies G is a σ algebra. To show this, all that is left is to verify G is closed under
countable unions because then it follows G is a σ algebra. Let {Ai} ⊆ G . Then let A′

1 = A1
and

A′
n+1 ≡ An+1 \ (∪n

i=1Ai) = An+1 ∩
(
∩n

i=1AC
i
)

= ∩n
i=1
(
An+1 ∩AC

i
)
∈ G

because finite intersections of sets of G are in G . Since the A′
i are disjoint, it follows

∪∞
i=1Ai = ∪∞

i=1A′
i ∈ G Therefore, G ⊇ σ (K ). ■

Example 32.11.4 Suppose you have (U,F ) and (V,S ) , two measurable spaces. Let
K ⊆ U ×V consist of all sets of the form A×B where A ∈ F and B ∈ S . This is easily
seen to be a π system. When this is done, σ (K ) is denoted as F ×S .

Definition 32.11.5 When K is the open sets of Rp, the Borel sets, denoted as
B (Rp) , are defined as B (Rp)≡ σ (K ).

Don’t try to describe a typical Borel set. Just use the definition that these are those sets
in the smallest σ algebra that contains the open sets. However, if you wanted to give this a
try, see Hewitt and Stromberg [20] who do something like this in showing the existence of
Lebesgue measurable sets which are not Borel measurable.

For example, here is a useful result about the product of Borel sets.

Lemma 32.11.6 If Ak is a Borel set in R, then ∏
p
i=1 Ak is a Borel set in Rp.

Proof: Let πk : Rp → R be defined by πk (x)≡ xk, the kth entry of x. Then

π
−1
k (U) = R×·· ·×R×U ×R×·· ·×R

Let G be those Borel sets B such that π
−1
k (B) is Borel in Rp. Then from the above, this

is true if B is open. However, it follows from the definition of inverse image that G is a σ

algebra. Therefore, by definition G = B (Rp). Now note that

p

∏
i=1

Ak = ∩p
k=1π

−1
k (Ak) ∈ B (Rp) . ■
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32.12 Product Measures
First of all is a definition.

Definition 32.12.1 Let (X ,F ,µ) be a measure space. Then it is called σ finite if
there exists an increasing sequence of sets Rn ∈ F such that µ (Rn)< ∞ for all n and also
X = ∪∞

n=1Rn.

Now I will show how to define a measure on ∏
p
i=1 Xi given that (Xi,Fi,µ i) is a σ finite

measure space. The main example I have in mind is the case where each Xi = R and a
measure µ = m to be described a little later, yielding p dimensional Lebesgue measure.
However, there is no good reason not to do this in general. It is no harder, so this is what I
am doing here.

Let K denote all subsets of X ≡ ∏
p
i=1 Xi which are the form ∏

p
i=1 Ei where Ei ∈ Fi.

These are called measurable rectangles. Let {Rn
i }

∞

n=1 be the sequence of sets in Fi whose
union is all of Xi, Rn

i ⊆ Rn+1
i , and µ i (R

n
i ) < ∞. Thus if Rn ≡ ∏

p
i=1 Rn

i , and E ≡ ∏
p
i=1 Ei,

then

Rn ∩E =
p

∏
i=1

Rn
i ∩Ei

Let I ≡ (i1, · · · , ip) where (i1, · · · , ip) is a permutation of {1, · · · , p}. Also, to save on space,
let F be a subset of ∏

p
i=1 Xi ≡X and denote the iterated integral∫

X11

· · ·
∫

Xip

XF (x1, · · · ,xp)dµ i1 · · ·dµ ip

as
∫
I XF (x1, · · · ,xp)dµI . Let G denote those subsets F of X such that all iterated inte-

grals for XF∩Rn (x1, · · · ,xp) make sense and are independent of the permutation. Thus, for
short,

G ≡
{
F ⊆X : for all n,

∫
I
XF∩Rn (x1, · · · ,xp)dµI is independent of I

}
The iterated integral means exactly what the symbols indicate. First you integrate

XF (x1, · · · ,xp)

with respect to dµ i1 and then you have a function of the other variables other than xi1 . You
then integrate what is left with respect to xi2 and so forth. This is just like what was with
iterated integrals in calculus. In order for this to make sense, every function encountered
must be measurable with respect to the appropriate σ algebra. Now obviously K ⊆ G . In
fact, if F ∈ K , then

∫
I XF∩Rn (x1, · · · ,xp)dµI = ∏

p
i=1 µ i (Fi ∩Rn

i ) for any choice of n.

Proposition 32.12.2 Let K and G be as just defined, then G ⊇ σ (K ) . We define
σ (K ) as F p, better denoted as F1 ×·· ·×Fp. Then if

µ⃗ (F )≡ lim
n→∞

∫
I
XF∩Rn (x1, · · · ,xp)dµI ,

then µ⃗ is a measure which does not depend on I the particular permutation chosen for
the order of integration. µ⃗ often denoted as µ1 × ·· · × µ p is called product measure.
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f : X → [0,∞) is measurable with respect to F p then for any permutation (i1, · · · , ip) of
{1, · · · , p} it follows ∫

f dµ⃗ =
∫

· · ·
∫

f (x1, · · · ,xp)dµ i1 · · ·dµ ip
(32.14)

Proof: I will show that G is closed with respect to complements and countable disjoint
unions. Then the result will follow. Now suppose

{
F k}∞

k=1 are disjoint, each in G . Then
if F ≡ ∪∞

k=1F
k,F ∩Rn = ∪∞

k=1F
k ∩Rn and since these sets are disjoint,

XF∩Rn =
∞

∑
k=1

XF k∩Rn

Therefore, applying the monotone convergence theorem repeatedly for the iterated inte-
grals and using the fact that measurability is not lost on taking limits, then for (i1, · · · , ip),
( j1, · · · , jp) two permutations,∫

· · ·
∫

XF∩Rn (x1, · · · ,xp)dµ i1 · · ·dµ ip

=
∫

· · ·
∫

lim
N→∞

N

∑
k=1

XF k∩Rn (x1, · · · ,xp)dµ i1 · · ·dµ ip

= lim
N→∞

∫
· · ·
∫ N

∑
k=1

XF k∩Rn (x1, · · · ,xp)dµ i1 · · ·dµ ip

= lim
N→∞

N

∑
k=1

∫
· · ·
∫

XF k∩Rn (x1, · · · ,xp)dµ i1 · · ·dµ ip

= lim
N→∞

N

∑
k=1

∫
· · ·
∫

XF k∩Rn (x1, · · · ,xp)dµ j1 · · ·dµ jp

= lim
N→∞

∫
· · ·
∫ N

∑
k=1

XF k∩Rn (x1, · · · ,xp)dµ j1 · · ·dµ jp

=
∫

· · ·
∫

lim
N→∞

N

∑
k=1

XF k∩Rn (x1, · · · ,xp)dµ j1 · · ·dµ jp

=
∫

· · ·
∫

XF∩Rn (x1, · · · ,xp)dµ j1 · · ·dµ jp

Thus G is closed with respect to countable disjoint unions. So suppose F ∈ G . Then
XFC∩Rn = XRn −XF∩Rn . Everything works for both terms on the right and in addition,∫
I XRndµI is finite and independent of I . Therefore, everything works as it should for the

function on the left using similar arguments to the above. You simply verify that all makes
sense for each integral at a time and apply monotone convergence theorem as needed.
Therefore, G is indeed closed with respect to complements. It follows that G ⊇ σ (K ) by
Dynkin’s lemma, Lemma 32.11.3. Now define for F ∈ σ (K ) ,

µ⃗ (F )≡ lim
n→∞

∫
I
XF∩Rn (x1, · · · ,xp)dµI
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By definition of G this definition of µ⃗ does not depend on I . If you have
{
F k}∞

k=1 is a
sequence of disjoint sets in G , then if F is their union,

µ⃗ (F )≡ lim
n→∞

∫
I

∞

∑
k=1

XF k∩Rn (x1, · · · ,xp)dµI

and one can apply the monotone convergence theorem one integral at a time and obtain that
this is

lim
n→∞

∞

∑
k=1

∫
I
XF k∩Rn (x1, · · · ,xp)dµI

Now applying the monotone convergence theorem again, this time for the Lebesgue integral
given by a sum with counting measure, the above is

∞

∑
k=1

lim
n→∞

∫
I
XF k∩Rn (x1, · · · ,xp)dµI ≡

∞

∑
k=1

µ⃗

(
F k
)

which shows that µ⃗ is indeed a measure. Also from the construction, it follows that this
measure does not depend on the particular permutation of the iterated integrals used to
compute it.

The claim about the integral 32.14 follows right away from the monotone convergence
theorem applied in the right side one iterated integral at a time and approximation with
simple functions as in Theorem 32.2.8. The result holds for each of an increasing sequence
simple functions from linearity of integrals and the definition of µ⃗ . Then you apply the
monotone convergence theorem to obtain the claim of the theorem. ■

32.13 Exercises
1. Show carefully that if S is a set whose elements are σ algebras which are subsets of

P (Ω) , then ∩S is also a σ algebra. Now let G ⊆ P (Ω) satisfy property P if G
is closed with respect to complements and countable disjoint unions as in Dynkin’s
lemma, and contains /0 and Ω. If H ⊆ G is any set whose elements are subsets of
P (Ω) which satisfies property P, then ∩H also satisfies property P. Thus there is a
smallest subset of G satisfying P.

2. Show B (Rp) = σ (P) where P consists of the half open rectangles which are of
the form ∏

p
i=1[ai,bi). Recall B (Rp) is the smallest σ algebra containing the open

sets.

3. Show that f : (Ω,F )→ R is measurable if and only if f−1 (open) ∈ F . Show that
if E is any set in B (R) , then f−1 (E) ∈ F . Thus, inverse images of Borel sets
are measurable. Next consider f : (Ω,F )→ R being measurable and g : R→ R is
Borel measurable, meaning that g−1 (open) ∈ B (R). Explain why g ◦ f is measur-
able. Hint: You know that (g◦ f )−1 (U) = f−1

(
g−1 (U)

)
. For your information,

it does not work the other way around. That is, measurable composed with Borel
measurable is not necessarily measurable. In fact examples exist which show that if
g is measurable and f is continuous, then g◦ f may fail to be measurable. However,
these things are not for this book.
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4. Let Xi ≡ Rni and let X = ∏
n
i=1 Xi and let the distance between two points in X be

given by
∥x−y∥ ≡ max{∥xi −yi∥ , i = 1,2, · · · ,n}

Show that any set of the form

n

∏
i=1

Ei, Ei ∈ B (Xi)

is a Borel set. That is, the product of Borel sets is Borel. Hint: You might consider
the continuous functions π i : ∏

n
j=1 X j → Xi which are the projection maps. Thus

π i (x)≡ xi. Then π
−1
i (Ei) would have to be Borel measurable whenever Ei ∈B (Xi).

Explain why. You know π i is continuous. Why would π
−1
i (Borel) be a Borel set?

Then you might argue that ∏
n
i=1 Ei = ∩n

i=1π
−1
i (Ei) . Set the text for a special case

that Xi = R in the next chapter.

5. You have two finite measures defined on B (X) µ,ν . Suppose these are equal on
every open set. Show that these must be equal on every Borel set. Hint: You should
use Dynkin’s lemma to show this very easily.

6. Let µ (E) = 1 if 0 ∈ E and µ (E) = 0 if 0 /∈ E. Show this is a measure on P (R).

7. Give an example of a measure µ and a measure space and a decreasing sequence of
measurable sets {Ei} such that limn→∞ µ (En) ̸= µ (∩∞

i=1Ei).

8. If you have a finite measure µ on B (Rp), and if E ∈ B (Rp) , show that there exist
sets F,G such that G is a countable intersection of open sets, called a Gδ set and F a
countable union of closed sets, called an Fσ set, such that F ⊆E ⊆G and µ (G\F) =
0. Hint: Show first for G open. Then you might try to use Dynkin’s lemma to extend
to Borel sets. Recall that B (Rp) = σ (K ) where K consists of the open sets. In
the first part, you might want to use Proposition 15.6.4 to produce an increasing
sequence closed sets whose union is the open set G.

9. You have a measure space (Ω,F ,P) where P is a probability measure on F . Then
you also have a measurable function X : Ω →Rp, meaning that X−1 (U) ∈ F when-
ever U is open. Now define a measure on B (Rp) denoted by λ X and defined by
λ X (E) = P({ω : X (ω) ∈ E}) . Explain why this yields a well defined probability
measure on B (Rn). This is called the distribution measure.

10. Let K ⊆V where K is closed and V is open. Consider the following function.

f (x) =
dist
(
x,VC

)
dist(x,K)+dist(x,VC)

Explain why this function is continuous, equals 0 off V and equals 1 on K. The
needed function is in Proposition 15.6.4.

11. Let (Ω,F ) be a measurable space and let f : Ω → Rp be a measurable function
meaning that f−1 (U) ∈ F whenever U is open. Then σ ( f ) denotes the smallest σ

algebra such that f is measurable with respect to this σ algebra. Show that σ ( f ) ={
f−1 (E) : E ∈ B (Rp)

}
.
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12. There is a monumentally important theorem called the Borel Cantelli lemma. It says
the following. If you have a measure space (Ω,F ,µ) and if {Ei} ⊆ F is such
that ∑

∞
i=1 µ (Ei) < ∞, then there exists a set N of measure 0 (µ (N) = 0) such that if

ω /∈ N, then ω is in only finitely many of the Ei. Hint: You might look at the set of
all ω which are in infinitely many of the Ei. First explain why this set is of the form
∩∞

n=1 ∪k≥n Ek.

13. Let (Ω,F ,µ) be a measure space. A sequence of functions { fn} is said to converge
in measure to a measurable function f if and only if for each ε > 0,

lim
n→∞

µ ({ω : | fn (ω)− f (ω)|> ε}) = 0

Show that if this happens, then there exists a subsequence
{

fnk

}
and a set of measure

N such that if ω /∈ N, then

lim
nk→∞

fnk (ω) = f (ω) .

Also show that if µ is finite and limn→∞ fn (ω)= f (ω) , then fn converges in measure
to f .

14. Let {rn}∞

n=1 be an enumeration of the rational numbers in [0,1] meaning that every
rational number is included in {rn}∞

n=1 for some n and let fn (x) = 0 except for when
x ∈ {r1, · · · ,rn} when it is 1. Explain why fn is Riemann integrable and has Riemann
integral 0. However, limn→∞ fn (x) ≡ f (x) is 1 on rationals and 0 elsewhere so this
isn’t even Riemann integrable. It will be shown later that the two integrals give
the same answer whenever the function is Riemann integrable. Thus the Lebesgue
integral of fn will be 0. So what is the Lebesgue integral of the function which is 1
on the rationals and 0 on the irrationals? Explain why this is so.

15. Prove Chebyshev’s inequality mp ({x : | f (x)|> λ})≤ 1
λ
∥ f∥L1 ≡ 1

λ

∫
| f |dmp.
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Chapter 33

The Lebesgue Measure and
Integral in Rp

33.1 An Outer Measure on P (R)
It is needed to find a measure which delivers length. Recall P (S) denotes the set of all
subsets of S. To begin with, it is shown there is an outer measure which gives length.

Theorem 33.1.1 There exists a function m : P (R)→ [0,∞] which satisfies the fol-
lowing properties.

1. If A ⊆ B, then 0 ≤ m(A)≤ m(B) ,m( /0) = 0.

2. m
(
∪∞

k=1Ai
)
≤ ∑

∞
i=1 m(Ai)

3. m([a,b]) = b−a = m((a,b)).

Proof: First it is necessary to define the function m. This is contained in the following
definition.

Definition 33.1.2 For A ⊆ R,

m(A) = inf

{
∞

∑
i=1

(bi −ai) : A ⊆ ∪∞
i=1 (ai,bi)

}

In words, you look at all coverings of A with open intervals. For each of these open
coverings, you add the lengths of the individual open intervals and you take the infimum of
all such numbers obtained.

Then 1.) is obvious because if a countable collection of open intervals covers B, then it
also covers A. Thus the set of numbers obtained for B is smaller than the set of numbers for
A. Why is m( /0) = 0? Then /0 ⊆ (a−δ ,a+δ ) and so m( /0) ≤ 2δ for every δ > 0. Letting
δ → 0, it follows that m( /0) = 0.

Consider 2.). If any m(Ai) = ∞, there is nothing to prove. The assertion simply is
∞ ≤ ∞. Assume then that m(Ai)< ∞ for all i. Then for each m ∈N there exists a countable

681
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set of open intervals, {(am
i ,b

m
i )}

∞

i=1 whose union contains Am such that

m(Am)+
ε

2m >
∞

∑
i=1

(bm
i −am

i ) .

Then using Theorem 6.6.4 on Page 175,

m(∪∞
m=1Am) ≤ ∑

i,m
(bm

i −am
i ) =

∞

∑
m=1

∞

∑
i=1

(bm
i −am

i )

≤
∞

∑
m=1

m(Am)+
ε

2m =
∞

∑
m=1

m(Am)+ ε,

and since ε is arbitrary, this establishes 2.).
Next consider 3.). By definition, there exists a sequence of open intervals, {(ai,bi)}∞

i=1
whose union contains [a,b] such that m([a,b]) + ε ≥ ∑

∞
i=1 (bi −ai) . Since [a,b] is com-

pact, finitely many of these intervals also cover [a,b]. It follows there exist finitely many
of these intervals, denoted as {(ai,bi)}n

i=1 , which overlap, such that a ∈ (a1,b1) ,b1 ∈
(a2,b2) , · · · ,b ∈ (an,bn) . Therefore, m([a,b])≤ ∑

n
i=1 (bi −ai) . It follows

n

∑
i=1

(bi −ai)≥ m([a,b])≥
n

∑
i=1

(bi −ai)− ε ≥ (b−a)− ε

Therefore, since
(
a− ε

2 ,b+
ε

2

)
⊇ [a,b] ,

(b−a)+ ε ≥ m([a,b])≥ (b−a)− ε

Since ε is arbitrary, (b−a)=m([a,b]) . Consider [a+δ ,b−δ ] . From what was just shown,
m([a+δ ,b−δ ]) = (b−a)−2δ ≤ m((a,b)) and so, since this holds for every δ ,(b−a)≤
m((a,b))≤ m([a,b]) = (b−a). This shows 3.) ■

33.2 One Dimensional Lebesgue Measure

Theorem 33.2.1 Let F denote the σ algebra of Theorem 32.4.4, associated with
the outer measure m in Theorem 33.1.1, on which m is a measure. Then every open interval
is in F . All open sets are in F and all half open and closed intervals are in F .

Proof: The first task is to show (a,b) ∈ F . I need to show that for every S ⊆ R,

m(S)≥ m(S∩ (a,b))+m
(

S∩ (a,b)C
)

(33.1)

Suppose first S is an open interval, (c,d) . If (c,d) has empty intersection with (a,b) or
is contained in (a,b) there is nothing to prove. The above expression reduces to nothing
more than m(S) = m(S). Suppose next that (c,d) ⊇ (a,b) . In this case, the right side of
the above reduces to

m((a,b))+m((c,a]∪ [b,d))≤ b−a+a− c+d −b

= d − c = m((c,d))
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The only other cases are c ≤ a < d ≤ b or a ≤ c < d ≤ b. Consider the first of these cases.
Then the right side of 33.1 for S = (c,d) is

m((a,d))+m((c,a]) = d −a+a− c = m((c,d))

The last case is entirely similar. Thus 33.1 holds whenever S is an open interval. Now it is
clear 33.1 also holds if m(S) = ∞. Suppose then that m(S)< ∞ and let

S ⊆ ∪∞
k=1 (ak,bk)

such that

m(S)+ ε >
∞

∑
k=1

(bk −ak) =
∞

∑
k=1

m((ak,bk)) .

Then since m is an outer measure, and using what was just shown,

m(S∩ (a,b))+m
(

S∩ (a,b)C
)

≤ m(∪∞
k=1 (ak,bk)∩ (a,b))+m

(
∪∞

k=1 (ak,bk)∩ (a,b)C
)

≤
∞

∑
k=1

m((ak,bk)∩ (a,b))+m
(
(ak,bk)∩ (a,b)C

)
≤

∞

∑
k=1

m((ak,bk))≤ m(S)+ ε.

Since ε is arbitrary, this shows 33.1 holds for any S and so any open interval is in F . By
Theorem 32.1.5, every open set is a countable union of open intervals. Therefore, all open
sets are in F . As to half open intervals, (a,b] =∩∞

n=1
(
a,b+ 1

n

)
=
(
∪∞

n=1
(
a,b+ 1

n

))C ∈F .
A similar argument shows that closed intervals are in F also. ■

33.3 The Lebesgue Integral and Riemann Integral
How does the Lebesgue integral taken with respect to Lebesgue measure compare with the
one dimensional Riemann integral of a nonnegative continuous bounded function? First of
all, to save space, I will write

∫ b
a f dm for the Lebesgue integral

∫
X[a,b] f dm. The following

proposition shows that when a function is Riemann integrable, it is also Lebesgue integrable
and the two integrals give the same answer.

Proposition 33.3.1 Let f ≥ 0 and let it be in R([a,b]) . Then f is Lebesgue integrable
and ∫ b

a
f (x)dx =

∫ b

a
f dm

Proof: By the Riemann criterion, there exist upper sums U ( f ,Pn) and lower sums
L( f ,Pn) such that U ( f ,Pn)−L( f ,Pn) < 2−n. Let an (x) be a step function corresponding
to U ( f ,Pn) such that

∫ b
a andm =

∫ b
a an (x)dx and let bn (x) be a step function correspond-

ing to L( f ,Pn) ,
∫ b

a bndm =
∫ b

a bn (x)dx. Thus bn (x) ≥ f (x) ≥ an (x) . We can also arrange
to have the partitions be increasing so that bn (x)≤ bn+1 (x) · · · ,an (x)≥ an+1 (x) · · · .These
step functions are constant on intervals or half open intervals. Now every interval is a Borel
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set (Why?) and so these functions are Borel measurable. Let g(x)≡ limn→∞ bn (x) ,h(x)≡
limn→∞ an (x) Then g(x)≤ f (x)≤ h(x) and

∫ b
a (h−g)dm = 0. Therefore, off a set of mea-

sure zero h(x) = g(x) . By completeness of Lebesgue measure, it follows that f must be
Lebesgue measurable because it is not equal to the Borel function g only on a subset of the
set of measure zero where h(x) ̸= g(x). Also, by the monotone convergence theorem,∫ b

a
f dm =

∫ b

a
gdm = lim

n→∞

∫ b

a
bndm = lim

n→∞

∫ b

a
bn (x)dx

= lim
n→∞

L( f ,Pn) =
∫ b

a
f (x)dx ■

What if f is bounded, continuous but maybe not nonnegative? Then you can write
f = f+− f− where, as before, f+ ≡ | f |+ f

2 , f− ≡ | f |− f
2 . These x→ x+,x→ x− are continuous

and so f+, f− are measurable. You know that∫ b

a
f dx =

∫ b

a
f+dx−

∫ b

a
f−dx =

∫ b

a
f+dm−

∫ b

a
f−dm ≡

∫ b

a
f dm

Theorem 33.3.2 If f ∈ R([a,b]) , then the Riemann and Lebesgue integral are the
same. Thus you can apply the fundamental theorem of calculus to compute the integral.

33.4 p Dimensional Lebesgue Measure and Integrals

33.4.1 Iterated Integrals

Let m denote one dimensional Lebesgue measure. Also let the σ algebra of measurable sets
be denoted by F . Recall this σ algebra contained the open sets. Also from the construction
given above,

m([a,b]) = m((a,b)) = b−a

Definition 33.4.1 Let f be a function of p variables and consider the s ymbol∫
· · ·
∫

f (x1, · · · ,xp)dxi1 · · ·dxip . (33.2)

where (i1, · · · , ip) is a permutation of the integers {1,2, · · · , p} . The symbol means to first
do the Lebesgue integral ∫

f (x1, · · · ,xp)dxi1

yielding a function of the other p−1 variables given above. Then you do∫ (∫
f (x1, · · · ,xp)dxi1

)
dxi2

and continue this way. The iterated integral is said to make sense if the process just de-
scribed makes sense at each step. Thus, to make sense, it is required

xi1 → f (x1, · · · ,xp)
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can be integrated. Either the function has values in [0,∞] and is measurable or it is a
function in L1. Then it is required

xi2 →
∫

f (x1, · · · ,xp)dxi1

can be integrated and so forth. The symbol in 33.2 is called an iterated integral.

With the above explanation of iterated integrals, it is now time to define p dimensional
Lebesgue measure.

33.4.2 p Dimensional Lebesgue Measure and Integrals
Consider (R,F ,m) the measure space corresponding to one dimensional Lebesgue mea-
sure. Then from Proposition 32.12.2, we obtain the existence of p dimensional Lebesgue
measure.

Proposition 33.4.2 There exists a measure mp defined on F p such that if f : Rp →
[0,∞) is measurable with respect to F p then for any permutation (i1, · · · , ip) of {1, · · · , p}
it follows ∫

Rp
f dmp =

∫
· · ·
∫

f (x1, · · · ,xp)dxi1 · · ·dxip (33.3)

In particular, this implies that if Ai is a Borel set for each i = 1, · · · , p then

mp

(
p

∏
i=1

Ai

)
=

p

∏
i=1

m(Ai) .

and all such ∏
p
i=1 Ai is in F p.

This will suffice for this book. Actually, you use the completion of this measure space
and this completion is Lebesgue measure. Writing such a measurable function as a differ-
ence between positive and negative parts, gives the following corollary.

Corollary 33.4.3 In the context of the above Proposition 33.4.2, if f ∈ L1 (Rp) , then
for any permutation (i1, · · · , ip) of {1, · · · , p} it follows∫

Rp
f dmp =

∫
· · ·
∫

f (x1, · · · ,xp)dxi1 · · ·dxip (33.4)

Note that this implies that if
∫
· · ·
∫ ∣∣ f (x1, · · · ,xp)

∣∣dxi1 · · ·dxip <∞, the integration taken
in any order, then 33.4 holds for all permutations.

The next big theorem about the integral is the change of variables formula. Recall
Lemma 32.1.6.

Lemma 33.4.4 Every open set in Rp is the countable disjoint union of half open boxes
of the form

p

∏
i=1

(ai,ai +2−k]

where ai = l2−k for some integers, l,k where k ≥ m. If Bm denotes this collection of half
open boxes, then every box of Bm+1 is contained in a box of Bm or equals a box of Bm.
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33.5 Lebesgue Measure and Linear Maps
Lemma 33.5.1 Let A : Rp → Rp be linear and invertible. Then A maps open sets to
open sets.

Proof: This follows from the observation that if B is any linear transformation, then B is
continuous. Indeed, it is realized by matrix multiplication and so it is clear that if xn → x,
then Bxn → Bx. Now it follows that A−1 is continuous. Let U be open. Let y ∈ A(U) .
Then is y an interior point of A(U)? if not, there exists yn → y where yn /∈ A(U). But then
A−1yn → A−1y ∈U. Since U is open, A−1yn ∈U for all n large enough and so yn ∈ A(U)
after all. Thus y is an interior point of A(U) showing that A(U) is open. ■

Corollary 33.5.2 Let A : Rp → Rp be linear and invertible. Then A maps Borel sets to
Borel sets.

Proof: Let the pi system be K the open sets. Then let G be those Borel sets E such that
A(E) is Borel. Then it is clear that G contains K and is closed with respect to complements
and countable disjoint unions. By Dynkin’s lemma, G = B (Rp) = σ (K ). This last
equality holds by definition of the Borel sets B (Rp). ■

From Linear algebra, Chapter 18 the chapter on row operations and elementary matri-
ces, if A is such an invertible linear transformation, it is the composition of finitely many
invertible linear transformations which are of the following form.(

x1 · · · xr · · · xs · · · xp
)T

→
(

x1 · · · xr · · · xs · · · xp
)T

(
x1 · · · xr · · · xp

)T →
(

x1 · · · cxr · · · xp
)T

,c ̸= 0(
x1 · · · xr · · · xs · · · xp

)T

→
(

x1 · · · xr · · · xs + xr · · · xp
)T

where these are the actions obtained by multiplication by elementary matrices. Denote
these special linear transformations by E (r ↔ s) ,E (cr) ,E (s → s+ r) .

Let R = ∏
p
i=1 (ai,bi) . Then it is easily seen that

mp (E (r ↔ s)(R)) = mp (R) = |det(E (r ↔ s))|mp (R)

mp (E (cr)(R)) = |c|mp (R) = |det(E (cr))|mp (R)

The other linear transformation which represents a sheer is a little harder. However,

mp (E (s → s+ r)(R)) =
∫

E(s→s+r)(R)
dmp

=
∫
R
· · ·
∫
R

∫
R

∫
R

XE(s→s+r)(R)dxsdxrdxp1 · · ·dxpp−2

Now recall Theorem 33.3.2 which says you can integrate using the usual Riemann
integral when the function involved is continuous. Thus the above becomes∫ bpp−2

app−2

· · ·
∫ bp1

ap1

∫ br

ar

∫ bs+xr

as+xr

dxsdxrdxp1 · · ·dxpp−2

= mp (R) = |det(E (s → s+ r))|mp (R)
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Recall that when a row (column) is added to another row (column), the determinant of the
resulting matrix is unchanged.

Lemma 33.5.3 Let L be any of the above elementary linear transformations. Then

mp (L(F)) = |det(L)|mp (F)

for any Borel set F. Also L(F) is Borel if F is Borel.

Proof: Let Rk = ∏
p
i=1 (−k,k) . Let G be those Borel sets F such that

mp (L(F ∩Rk)) = |det(L)|mp (F ∩Rk) (33.5)

Letting K be the open boxes, it follows from the above discussion that the pi system K
is in G . It is also obvious that if Fi ∈ G the Fi being disjoint, then

mp (L(∪∞
i=1Fi ∩Rk)) =

∞

∑
i=1

mp (L(Fi ∩Rk)) = |det(L)|
∞

∑
i=1

mp (Fi ∩Rk)

= |det(L)|mp (∪∞
i=1Fi ∩Rk)

Thus G is closed with respect to countable disjoint unions. If F ∈ G then

mp
(
L
(
FC ∩Rk

))
+mp (L(F ∩Rk)) = mp (L(Rk))

mp
(
L
(
FC ∩Rk

))
+ |det(L)|mp (F ∩Rk) = |det(L)|mp (Rk)

mp
(
L
(
FC ∩Rk

))
= |det(L)|mp (Rk)−|det(L)|mp (F ∩Rk)

= |det(L)|mp
(
FC ∩Rk

)
It follows that G is closed with respect to complements also. Therefore, G = σ (K ) =
B (Rp). Now let k → ∞ in 33.5 to obtain the desired conclusion. ■

Theorem 33.5.4 Let L be a linear transformation which is invertible. Then for any
Borel F, L(F) is Borel and

mp (L(F)) = |det(L)|mp (F)

Proof: From linear algebra, there are Li each elementary such that L = L1 ◦L2 ◦· · ·◦Ls.
By Corollary 33.5.2, each Li maps Borel sets to Borel sets. Hence, using Lemma 33.5.3

mp (L(F)) = |det(L1)|mp (L2 ◦ · · · ◦Ls (F))

= |det(L1)| |det(L2)|mp (L3 ◦ · · · ◦Ls (F))

= · · ·=
s

∏
i=1

|det(Li)|mp (F) = |det(L)|mp (F)

the last claim from properties of the determinant. ■
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33.6 Change of Variables for Nonlinear Maps
Assume the following:

1. V = h(U) ,U,V open and bounded, h one to one.

2. h,h−1 are C1
(
Û
)
,C1
(
V̂
)

respectively where Û ⊇U ,V̂ ⊇V .

Let the balls be defined in terms of the norm

∥x∥ ≡ max{|xk| : k = 1, · · · , p}

Note that |x| ≥ ∥x∥ ≥ 1√
p |x| so it doesn’t matter which norm you use in the definition of

differentiability. ∥·∥ happens to be a little more convenient here.
Then define

φ (x,v)≡ ∥h(x+v)− (h(x)+Dh(x)v)∥
∥v∥

(33.6)

Then φ is continuous on U × B(0,1) with the convention that φ (x,0) ≡ 0. Thus it is
uniformly continuous on this compact set and so there exists δ > 0 such that if ∥v∥ < δ ,
then

|φ (x,v)−φ (x,0)|= |φ (x,v)|< ε, (33.7)

this for all x ∈U .

h(x+v)−h(x) = Dh(x)v+o(v)

= Dh(x)
(
v+Dh−1 (h(x))o(v)

)
Let f : V → R be a bounded, uniformly continuous function.

Let Bm be a collection of disjoint half open rectangles as in Lemma 32.1.6 such that
each has diameter no more than 2−m and each rectangle of Bm+1 is either a subset of a
rectangle of Bm or is equal to a rectangle of Bm such that ∪Bm = U . Let m be large
enough that the diameters of all these half open rectangles are less than δ . Denote the
rectangles of Bm as {Rm

i }
∞

i=1 and let the center of these be denoted by xm
i . Also let m be

large enough that

| f (h(xm
i )) |det(Dh(xm

i ))|− f (h(x)) |det(Dh(x))||< ε for all x ∈ Rm
i

A basic version of the theorems to be presented is the following.

Lemma 33.6.1 Let U and V be bounded open sets in Rp and let h,h−1 be C1 defined
respectively on Û ⊇ Ū and V̂ ⊇ V̄ such that h(U) = V and let f be a bounded uniformly
continuous function defined on U. Then∫

V
f (y)dmp =

∫
U

f (h(x)) |det(Dh(x))|dmp

Proof: Let x ∈U. By the assumption that h and h−1 are C1,

h(x+v)−h(x) = Dh(x)v+o(v)

= Dh(x)
(
v+Dh−1 (h(x))o(v)

)
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Let an upper bound for
∥∥Dh−1 (h(x))

∥∥ be C. It exists because V is compact and h−1 is
C1 on an open set containing this compact set. Therefore, since all the boxes in Bm are in
diameter less than δ ,

h(B(x,r))−h(x) =

h(x+B(0,r))−h(x)⊆ Dh(x)(B(0,(1+Cε)r)) . (33.8)

Then choose m still larger if necessary so that f (y) is uniformly approximated by

∑
i

f (h(xm
i ))Xh(Rm

i )
(y) , xm

i ∈ Rm
i ,

to within ε. Let rm
i be half the diameter of Rm

i . Thus ∑i mp (B(0,rm
i )) = mp (U). This is

by the formula for the measure of a box. It is just the product of the lengths of the sides.
Recall the norm is ∥·∥

∞
so the balls are boxes.

mp (Rm
i ) = mp (B(xm

i ,r
m
i )) = mp (B(0,rm

i ))

Then ∫
V f (y)dmp = ∑

∞
i=1
∫
h(Rm

i )
f (y)dmp

≤ εmp (V )+∑
∞
i=1
∫
h(Rm

i )
f (h(xm

i ))dmp

≤ εmp (V )+∑
∞
i=1 f (h(xm

i ))mp (h(Rm
i ))

≤ εmp (V )+∑
∞
i=1 f (h(xm

i ))mp (Dh(xm
i )(B(0,(1+Cε)ri)))

= εmp (V )+(1+Cε)p
∑

∞
i=1
∫

Rm
i

f (h(xm
i )) |det(Dh(xm

i ))|dmp

≤ εmp (V )+(1+Cε)p
∑

∞
i=1

(∫
Rm

i
f (h(x)) |det(Dh(x))|dmp +2εmp (Rm

i )
)

≤ εmp (V )+(1+Cε)p
∑

∞
i=1
∫

Rm
i

f (h(x)) |det(Dh(x))|dmp

+(1+Cε)p 2εmp (U)

Since ε > 0 is arbitrary, this shows∫
V

f (y)dmp ≤
∫

U
f (h(x)) |det(Dh(x))|dmp (33.9)

whenever f is uniformly continuous and bounded on V. Now

x→ f (h(x)) |det(Dh(x))|

has the same properties as f and so, using the same argument with U and V switching roles
and replacing h with h−1, ∫

U
f (h(x)) |det(Dh(x))|dmp

≤
∫

V
f
(
h
(
h−1 (y)

))∣∣det
(
Dh
(
h−1 (y)

))∣∣ ∣∣det
(
Dh−1 (y)

)∣∣dmp =
∫

V
f (y)dmp

by the chain rule. This with 33.9 proves the lemma. ■
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The Lebesgue integral is defined for nonnegative functions and then you break up an
arbitrary function into positive and negative parts. Thus the most convenient theorems
involve nonnegative functions which do not involve assumptions of uniform continuity and
such things. The next corollary gives such a result. This will remove assumptions that U,V
are bounded and the need for larger open sets on which h,h−1 are defined and C1.

Corollary 33.6.2 Let U be an open set in Rp and let h be a one to one C1 function
such that h(U) = V and |detDh(x)| ̸= 0 for all x. Let f be continuous and nonnegative
defined on V. Then ∫

V
f (y)dmp =

∫
U

f (h(x)) |det(Dh(x))|dmp

Proof: Let Uk ≡ (−k,k)p ∩
{
x ∈U : dist

(
x,UC

)
> 1

k

}
. Thus Uk ⊆Uk+1 for all k and

Uk is closed and bounded, hence compact. The inverse function theorem 24.0.5 implies
Vk ≡ h(Uk) is open and h−1 is C1 on Vk. Also f is uniformly continuous on Uk hence on
Uk as well. It follows that∫

V
Xh(Uk) (y) f (y)dmp =

∫
U

XUk (x) f (h(x)) |det(Dh(x))|dmp

Now use the monotone convergence theorem and let k → ∞. ■
It is easy to generalize this corollary to the case where f is nonnegative and only Borel

meaurable. Let R = ∏
p
i=1 (ai,bi) , a open rectangle. Then let gk (x) ≡ ∏

p
i=1 gk

i (xi) where
gk

i (t) ≥ 0, is continuous, piecewise linear, equals 0 off (ai,bi) and 1 on
[
ai +

1
k ,bi − 1

k

]
.

Thus limk→∞ gk (x) = XR (x) and gk (x)≤ gk+1 (x) for all k. Therefore, apply the mono-
tone convergence theorem to obtain∫

U
XR (h(x)) |det(Dh(x))|dmp = lim

k→∞

∫
U

gk (h(x)) |det(Dh(x))|dmp

= lim
k→∞

∫
h(U)

gk (y)dmp =
∫
h(U)

XR (y)dmp

Now let K be the pi system of open rectangles. Thus σ (K ) = B (Rp). Let Rk ≡
∏

p
i=1 (−k,k)

G ≡
{

E ∈ B (Rp) :
∫

U
XE∩Rk (h(x)) |det(Dh(x))|dmp =

∫
h(U)

XE∩Rk (y)dmp

}
Then it is routine to verify that G is closed with respect to countable disjoint unions and
complements. The assertion about disjoint unions is obvious. Consider the one about
complements. Say E ∈ G . Then

B∫
h(U)

XE∩Rk (y)dmp +
∫
h(U)

XEC∩Rk
(y)dmp =

∫
h(U)

XRk (y)dmp

=
∫

U
XRk (h(x)) |det(Dh(x))|dmp =

A∫
U

XE∩Rk (h(x)) |det(Dh(x))|dmp +
∫

U
XEC∩Rk

(h(x)) |det(Dh(x))|dmp
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It is known that A = B so subtracting from both sides yields∫
h(U)

XEC∩Rk
(y)dmp =

∫
U

XEC∩Rk
(h(x)) |det(Dh(x))|dmp

Therefore, by Dynkin’s lemma, G equals B (Rp) . Now let k → ∞ and apply the monotone
convergence theorem. The following theorem is now almost obvious because it was just
shown that the change of variables formula holds for indicator functions of Borel sets and
hence for every nonnegative simple function.

Theorem 33.6.3 Let f (y)≥ 0 and let it be Borel measurable. Also let h be a one
to one C1 function on the open set U such that h(U) =V and |detDh(x)| ̸= 0. Then∫

V
f (y)dmp =

∫
U

f (h(x)) |det(Dh(x))|dmp

Proof: By Theorem 32.2.8, there exists an increasing sequence of Borel measurable
simple functions {sk} which converges pointwise to f (y). Then by the monotone conver-
gence theorem,∫

V
f (y)dmp = lim

k→∞

∫
V

sk (y)dmp = lim
k→∞

∫
U

sk (h(x)) |det(Dh(x))|dmp

=
∫

U
f (h(x)) |det(Dh(x))|dmp ■

A lot more can be done. See a more advanced book for these things. My on line
book Calculus of real and complex variables has it. You don’t need to have h be C1.
Differentiable is enough. You also don’t need to assume |detDh(x)| ̸= 0 or even that h is
differentiable everywhere, but this is a good beginning result.

33.7 Exercises
1. Show

∫M
0 sin t

∫
∞

0 e−xtdxdt =
∫M

0
sin t

t dt. Use Fubini’s theorem to interchange the
order of integration and eventually conclude that the improper Riemann integral∫

∞

0
sin t

t dt exists and is 1
2 π.

2. This problem will help to understand that a certain kind of function exists.

f (x) =
{

e−1/x2
if x ̸= 0

0 if x = 0

show that f is infinitely differentiable. Note that you only need to be concerned with
what happens at 0. There is no question elsewhere. This is a little fussy but is not too
hard.

3. ↑Let f (x) be as given above. Now let

f̂ (x)≡
{

f (x) if x ≤ 0
0 if x > 0
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Show that f̂ (x) is also infinitely differentiable. Now let r > 0 and define g(x) ≡
f̂ (−(x− r)) f̂ (x+ r). show that g is infinitely differentiable and vanishes for |x| ≥ r.
Let ψ (x) = ∏

p
k=1 g(xk). For U = B(0,2r) with the norm given by

∥x∥= max{|xk| ,k ≤ p} ,

show that ψ ∈C∞
c (U).

4. ↑Using the above problem, let ψ ∈ C∞
c (B(0,1)) . Also let ψ ≥ 0 as in the above

problem. Show there exists ψ ≥ 0 such that ψ ∈C∞
c (B(0,1)) and

∫
ψdmp = 1. Now

define ψk (x)≡ kpψ (kx) . Show that ψk equals zero off a compact subset of B
(
0, 1

k

)
and

∫
ψkdmp = 1. We say that spt(ψk) ⊆ B

(
0, 1

k

)
. spt( f ) is defined as the closure

of the set on which f is not equal to 0. Such a sequence of functions as just defined
{ψk} where

∫
ψkdmp = 1 and ψk ≥ 0 and spt(ψk)⊆ B

(
0, 1

k

)
is called a mollifier.

5. If you have f ∈ L1 (Rp) with respect to Lebesgue measure and ψk is a mollifier, show
that f ∗ ψk (x) ≡

∫
Rp f (x−y)ψk (y)dmp is infinitely differentiable. Hint: First

show it equals
∫
Rp f (y)ψk (x−y)dmp. Then use dominated convergence theorem.

6. Let φ : R→ R be convex. This means

φ(λx+(1−λ )y)≤ λφ(x)+(1−λ )φ(y)

whenever λ ∈ [0,1]. The following picture illustrates what is about to be shown.

(y,φ(y))

φ(x)≥ φ(y)+λ y(x− y)

(a) Show that for x < y < z, φ(z)−φ(x)
z−x ≤ φ(z)−φ(y)

z−y .

(b) Next show φ(z)−φ(x)
z−x ≥ φ(y)−φ(x)

y−x . To do these, use convexity applied to y.

(c) Conclude φ(z)−φ(y)
z−y ≥ φ(z)−φ(x)

z−x ≥ φ(y)−φ(x)
y−x . In particular, φ(z)−φ(y)

z−y ≥ φ(y)−φ(x)
y−x .

(Difference quotients increase from left to right.)

(d) Let λ y ≡ inf
{

φ(z)−φ(y)
z−y : z > y

}
. Then for y ≥ x,

φ (y)−φ (x)≤ λ y (y− x)

Show that even if x > y, the same inequality holds. Thus for all x,

φ (y)+λ y (x− y)≤ φ (x)

(e) Next show that for x ∈ (y,z) ,

φ (y)+λ y (x− y)≤ φ (x)≤ φ (y)+az (x− y)

for some az and for x ∈ (w,y) , there is aw such that

φ (y)+λ y (x− y)≤ φ (x)≤ φ (y)+aw (x− y) .

Thus φ is continuous. Note that there is no change if φ is convex on an open
interval.
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7. ↑ Prove Jensen’s inequality. If φ : R→ R is convex, µ(Ω) = 1, and f : Ω → R is in
L1(Ω), then φ(

∫
Ω

f du)≤
∫

Ω
φ( f )dµ . Hint: Let s =

∫
Ω

f dµ and use Problem 6.

8. B(p,q) =
∫ 1

0 xp−1(1− x)q−1dx,Γ(p) =
∫

∞

0 e−tt p−1dt for p,q > 0. The first of these
is called the beta function, while the second is the gamma function. Show a.) Γ(p+
1) = pΓ(p); b.) Γ(p)Γ(q) = B(p,q)Γ(p+q).

9. If X : Ω → Rp is measurable, where (Ω,F ) is a measurable space, show that

X−1 (B) ∈ F

for every B a Borel set.

10. ↑Let (Ω,F ,P) be a probability space. This means the measure P has the prop-
erty that P(Ω) = 1. A random vector is a measurable function X : Ω → Rp. The
probability distribution measure λX is defined as follows. For E Borel, λX (E) ≡
P(X ∈ E). Show this gives a probability measure on the Borel sets of Rp. Some-
times this measure can be realized as an integral of the form

∫
Rp f (x)dmp but in

general, this will not be the case. However, it is a perfectly good measure and all the
theory of the Lebesgue integral developed above can be used.

11. ↑In the context of the above problem, suppose E is a Borel set in Rp. Note first that
the concept of a Borel set is not even defined on Ω. Explain the following equations:∫

XE (x)dλX = λX (E)≡ P(X ∈ E) = P
(
X−1 (E)

)
=

∫
XX−1(E) (ω)dP =

∫
XE (X (ω))dP

Be sure to explain why everything makes sense and is appropriately measurable.
Extend this to conclude that if f is a Borel measurable nonnegative function, then∫

f dλX =
∫

f (X (ω))dP

Hopefully you will see from this that there are lots of measures which are of interest
other than Lebesgue measure.

12. Show that if f is any bounded Borel measurable function, then∫
f dλX =

∫
f (X (ω))dP

13. To integrate complex valued functions f : Ω → C, first note that these are defined to
be measurable if the real and imaginary parts are measurable. Then∫

f dµ =
∫

(Re f )dµ + i
∫

(Im f )dµ

In the context of probability distribution measures described above, explain why
everything makes sense and for t ∈ Rp∫

Ω

eiX(ω)·tdP =
∫
Rp

eix·tdλX ≡ φX (t)

This is called the characteristic function. It turns out that these completely character-
ize the probability distribution measures but this is a topic for a more advanced book
which has important representation theorems not discussed here.
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14. Show that there exists a subset of R consisting of everything off a set of measure no
more than ε which contains no intervals.

15. This problem outlines an approach to Stirling’s formula following [26] and [8]. From
the above problems, Γ(n+1) = n! for n ≥ 0. Consider more generally Γ(x+1) for
x > 0. Actually, we will always assume x > 1 since it is the limit as x → ∞ which is
of interest. Γ(x+1) =

∫
∞

0 e−ttxdt. Change variables letting t = x(1+u) to obtain

Γ(x+1) = xx+1e−x
∫

∞

−1

(
(1+u)e−u)x du

Next let h(u) be such that h(0) = 1 and

(1+u)e−u = exp
(
−u2

2
h(u)

)
Show that the thing which works is h(u) = 2

u2 (u− ln(1+u)). Use L’Hospital’s rule
to verify that the limit of h(u) as u → 0 is 1. The graph of h is illustrated in the
following picture. Verify that its graph is like this, with an asymptote at u = −1
decreasing and equal to 1 at 0 and converging to 0 as u → ∞.

−1

1

Next change the variables again letting u = s
√

2
x . This yields, from the original

description of h

Γ(x+1) = xxe−x
√

2x
∫

∞

−
√

x/2
exp

(
−s2h

(
s

√
2
x

))
ds

For s < 1,h
(

s
√

2
x

)
> 2−2ln2 = 0.61371 so the above integrand is dominated by

e−(2−2ln2)s2
. Consider the integrand in the above for s > 1. The exponent part is

−s2

 2(
s
√

2
x

)2

(
s

√
2
x
− ln

(
1+ s

√
2
x

))
= −s2

(√
2

s
√

x− 1
s2 x ln

(
1+ s

√
2
x

))
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=−

(
√

2
√

xs− x ln

(
1+ s

√
2
x

))

The expression
(√

2
√

xs− x ln
(

1+ s
√

2
x

))
is increasing in x. You can show this

by fixing s and taking a derivative with respect to x. Therefore, it is larger than(
√

2
√

1s− ln

(
1+ s

√
2
1

))

and so

exp

(
−s2h

(
s

√
2
x

))
≤ exp

(
−

(
√

2
√

1s− ln

(
1+ s

√
2
1

)))
=

(
1+ s

√
2
)

e−
√

2s

Thus, there exists a dominating function for X[−
√ x

2 ,∞]
(s)exp

(
−s2h

(
s
√

2
x

))
and

these functions converge pointwise to exp
(
−s2

)
so by the dominated convergence

theorem,

lim
x→∞

∫
∞

−
√

x/2
exp

(
−s2h

(
s

√
2
x

))
ds =

∫
∞

−∞

e−s2
ds =

√
π

See Problem 10 on Page 249. This yields a general Stirling’s formula,

lim
x→∞

Γ(x+1)
xxe−x

√
2x

=
√

π .

16. This problem is on the Dirichlet integral which is
∫

∞

0
sinx

x dx. Show that the integrand
is not in L1 (0,∞). However, verify that limr→∞

∫ r
0

sinx
x dx exists and equals π

2 . Hint:
Explain why

∫ r
0

sinx
x dx =

∫ r
0 sinx

∫
∞

0 e−txdtdx. Then use Fubini’s theorem to write this
last is equal to ∫

∞

0

∫ r

0
sin(x)e−txdxdt

Integrate by parts in the inside integral to obtain

=
∫

∞

0

1
t2 +1

− e−rt
(

cosr
1+ t2 + t

sinr
1+ t2

)
dt

=
π

2
−
∫

∞

0

1√
1+ t2

e−rt cos(r−φ (t))dt

Explain why the second integral converges to 0 as r → ∞.



696 CHAPTER 33. THE LEBESGUE MEASURE AND INTEGRAL IN Rp



Bibliography

[1] Apostol, T. M., Calculus second edition, Wiley, 1967.

[2] Apostol T.M. Calculus Volume II Second edition, Wiley 1969.

[3] Apostol, T. M., Mathematical Analysis, Addison Wesley Publishing Co., 1974.

[4] Baker, R, Linear Algebra, Rinton Press 2001.

[5] Baker, R., Christenson, C., and Orde, H., Collected papers / Bernhard Riemann
; translated from the 1892 edition by Roger Baker, Charles Christenson and Henry
Orde. Kendrick Press, 2004.

[6] Bartle R.G., A Modern Theory of Integration, Grad. Studies in Math., Amer. Math.
Society, Providence, RI, 2000.

[7] Bartle R. G. and Sherbert D.R. Introduction to Real Analysis third edition, Wiley
2000.

[8] Buck, R. C. Advanced Calculus 2 edition. McGraw-Hill, 1965.

[9] Chahal J. S. , Historical Perspective of Mathematics 2000 B.C. - 2000 A.D.

[10] Davis H. and Snider A., Vector Analysis Wm. C. Brown 1995.

[11] D’Angelo, J. and West D. Mathematical Thinking Problem Solving and Proofs, Pren-
tice Hall 1997.

[12] Edwards C.H. Advanced Calculus of several Variables, Dover 1994.

[13] Euclid, The Thirteen Books of the Elements, Dover, 1956.

[14] Eves, H. An Introduction To The History of Mathematics, Holt Rinehart and Winston
1976.

[15] Fitzpatrick P. M., Advanced Calculus a course in Mathematical Analysis, PWS Pub-
lishing Company 1996.

[16] Fleming W., Functions of Several Variables, Springer Verlag 1976.

[17] Greenberg, M. Advanced Engineering Mathematics, Second edition, Prentice Hall,
1998

[18] Gurtin M. An introduction to continuum mechanics, Academic press 1981.

697



698 BIBLIOGRAPHY

[19] Hardy G., A Course Of Pure Mathematics, Tenth edition, Cambridge University Press
1992.

[20] Hewitt E. and Stromberg K. Real and Abstract Analysis, Springer-Verlag, New
York, 1965.

[21] Kuttler K., Calculus Theory and Applications, Volumes 1 and 2., World Scientific.
2011.

[22] McLeod R. The Generalized Riemann Integral, Mathematical Association of Amer-
ica, Carus Mathematical Monographs number 20 1980.

[23] McShane E. J. Integration, Princeton University Press, Princeton, N.J. 1944.

[24] Nobel B. and Daniel J. Applied Linear Algebra, Prentice Hall, 1977.

[25] Rose, David, A., The College Math Journal, vol. 22, No.2 March 1991.

[26] Rudin, W., Principles of mathematical analysis, McGraw Hill third edition 1976

[27] Rudin W., Real and Complex Analysis, third edition, McGraw-Hill, 1987.

[28] Salas S. and Hille E., Calculus One and Several Variables, Wiley 1990.

[29] Sears and Zemansky, University Physics, Third edition, Addison Wesley 1963.

[30] Spivak M., Calculus On Manifolds, Benjamin 1965.

[31] Tierney, John, Calculus and Analytic Geometry, fourth edition, Allyn and Bacon,
Boston, 1969.

[32] Widder, D. Advanced Calculus, second edition, Prentice Hall 1961.



Index

C1, 486
Ck, 486
∆, 588
∩, 21
∪, 21
∇

2, 588
π systems, 673
nth term test, 169

absolute convergence, 166, 173
rearrangement, 166

absolute value, 24
complex number, 41

acceleration, 148, 203
additive inverse

unique, 18
adjugate, 433, 460
agony, pain and suffering, 543
alternating series, 172
alternating series test, 172
amplitude, 68
angle between planes, 314
angle between vectors, 297
angles

degrees, 54
radian measure, 54

angular velocity, 310
angular velocity vector, 376
annuity

ordinary, 32
antiderivative, 181
antiderivatives

integration by parts, 205
partial fractions, 214
tabular integration, 206

arc length, 350
Archimedian property, 30
area

circular sector, 65

area between two graphs, 209
area of a parallelogram, 304
areas

surfaces of revolution, 228
arithmetic mean, 520
augmented matrix, 401
auspicious substitutions, 213
average velocity, 148

balance of momentum, 600
basis, 417
basis, 633
Bernoulli law, 496
Bernstein polynomials, 118
Bezier curves, 357
binomial series, 258
binomial theorem, 28, 33

infinite series, 260
binormal, 363
Borel sets, 674
bounded, 97, 325
box product, 306

Caratheodory’s procedure, 662
cardioid, 273
Cartesian coordinates, 282
Cartesian product, 52, 324
Cauchy, 104
Cauchy condensation test, 168
Cauchy criterion for sums, 165
Cauchy mean value theorem, 147
Cauchy product, 175
Cauchy Schwarz inequality, 290, 296
Cauchy sequence, 98

convergence, 99
Cauchy stress, 603
Cavendish, 371
Cayley Hamilton theorem, 460
center of mass, 309
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central force, 365
central force field, 370
centripetal force, 276
chain rule, 132

functions of many variables, 490
change of variables formula, 186, 571
characteristic polynomial, 435, 460
chi-squared, 251
circular functions, 76
circulation density, 630
classical adjoint, 433
closed and bounded

sequentially compact, 97
closed set, 322
closed subset of compact set, 97
coefficient of thermal conductivity, 502
cofactor, 426, 428, 456
cofactor matrix, 428
column space, 415
compact, 341
compactness

preservation, 110
continuous function, 110

comparison test, 166, 167
complement, 322
complement of a set, 95
completeness, 34

convergence of Cauchy sequence, 99
completeness axiom, 35
completing the square, 37
complex conjugate, 41
complex numbers, 40

roots, 44
complex numbers

arithmetic, 40
triangle inequality, 42

component, 302
component of a force, 300
conditional convergence, 166
conjugate

of a product, 47
conservation of mass, 600
conservative, 625

path independent line integral, 536
vector field, 536

constitutive laws, 606
continuity

equivalent formulations, 106

inverse function, 112
limits of sequences, 106
litany of properties, 106
on a compact set, 114
one to one, 111
preservation of inequality, 106
uniform, 114

continuous
at one point, 105

continuous and one to one
monotone, 111

continuous function, 104
only at irrationals, 108

continuous functions
combinations, 106
supremum and infimum, 121

continuous image of compact set, 110
contitional convergence, 173
contour graph, 467
convergence

pointwise, 336
uniform, 336

Coordinates, 281
Coriolis acceleration

earth, 381
Coriolis force, 276
countable, 652
Cramer’s rule, 462
critical point, 506
critical points, 141
cross product, 303

area of parallelogram, 304
coordinate description, 304
geometric description, 303

curl, 587
curvature, 359, 363

independence, 360
cycloid, 630

D’Alembert, 476
Darboux integral, 190
De Moivre theorem, 46
De Moivre’s theorem, 43
deformation gradient, 601
degree, 55
DeMorgan’s laws, 21
dense, 31
density and mass, 544
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density of rationals, 30
dependent, 416
derivative, 479, 480

chain rule, 132
equals zero, then function is constant,

148
equivalent difference quotient, 132
higher order derivatives, 133
intermediate value property, 149
inverse function, 133
mean value theorem, 147
product rule, 132
quotient rule, 133
sum, product, quotient, chain rule, 132

derivative of a function, 344
derived series, 255
determinant, 451

alternating property, 454
cofactor, 426
cofactor expansion, 456
expanding along row or column, 427
expansion along row (column), 456
matrix inverse formula, 433, 459
minor, 426
product, 430, 455
row operations, 429
transpose, 453

determinant rank
row rank, 458

difference quotient, 344
differentiable, 477, 480
differential equations, 641
differentiation rules, 132, 347
dimension, 417
directed line segment, 286
direction vector, 286
directional derivative, 469, 500
Dirichlet function, 50
Dirichlet integral, 695
Dirichlet test, 172
discriminant, 46
distance, 56, 207
distance formula, 288
divergence, 587
divergence, 646

general curvilinear coordinates, 647
divergence theorem, 592
domain, 49

dominated convergence theorem, 671
donut, 580
dot product, 295

geometric description, 297
double series

absolute convergence, 175
interchange order of summation, 175

double sum
interchange of order, 175

dual basis, 634
dual basis, 638
Dynkin’s lemma, 673

eigenvalue, 519
eigenvalues, 460
eigenvectors, 424
Einstein summation convention, 312
elementary matrices, 397
elementary matrix, 419

inverse, 400
properties, 400

epigraph, 121
equal area rule, 372
equality of mixed partial derivatives, 474
Euclidean algorithm, 31
Euler’s number, 75
Eulerian coordinates, 601
exponential growth, 242
exponential growth and decay, 77
extreme value theorem, 109

Fatou’s lemma, 669
Fibonacci sequence, 84
Fick’s law, 502, 612
field axioms, 18, 40
finite intersection property, 99

compact sets, 100
first derivative test, 150
focus, 293
force

on a dam, 232
force field, 370, 533
Foucalt pendulum, 381
Fourier law of heat conduction, 502
Frenet Serret formulas, 364
Frobinius norm, 446
frustum of a cone, 228
Fubini’s theorem, 675
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Fubini’s theorem., 248
function

even, 144
odd, 144
uniformly continuous, 114

fundamental matrix, 632
group property, 632

fundamental theorem line integrals, 625
fundamental theorem of algebra, 45, 277,

337
fundamental theorem of algebra

plausibility argument, 277
future value of an annuity, 32

Gamma function, 693
gamma function

existence and convergence, 240
properties, 241

Gauss’s theorem, 592
geometric mean, 520
geometric series, 164

sum, 32
geometric series, 164
gradient, 470
gradient

contravariant components, 646
covariant components, 646

Gram Schmidt process, 438
graph of function, 52
greatest lower bound, 35
Green’s theorem, 615, 625
gronwall’s inequality, 196

half life, 79
hanging chain, 385
harmonic, 474
heat equation, 474
Heine Borel, 94
Heine Borel theorem, 341
Hessian matrix, 508, 522
Holder continuous, 339
Holder’s inequality, 198
homogeneous coordinates, 414
hyperbolic functions, 76

image, 415
implicit differentiation, 139, 140
implicit function theorem, 527, 530
improper integral, 247

improper Riemann integral, 240
inconsistent, 396
increment of volume

increment of area, 571
independent, 416
index

lowering, 635
raising, 635

infinite series
raised to a power, 266

infinite sums
properties, 164

inner product, 295
integral

continuous function, 185
decreasing function, 665
definition, 190
uniform convergence, 188

integration by parts, 186, 205
intercepts, 316
interest

compounded continuously, 159
interior point, 95, 322
intermediate value theorem, 110, 111
interval of convergence, 254
inverse, 406

left inverse, 460
right inverse, 460

inverse function theorem, 530, 531
inverse image, 51
inverses and determinants, 459
invertible, 406
iterated integral, 539, 685
iterated integrals, 248, 684

Jacobian determinant, 571
Jensens inequality, 693
joule, 301

Kepler’s first law, 372
Kepler’s laws, 371
Kepler’s third law, 374
kilogram, 309
kinetic energy, 640
Kroneker delta, 312

L’Hopital’s rule, 155
L’Hopitals rule, 157
Lagrange multipliers, 517, 531, 532
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Lagrange remainder, 152, 153, 522
Lagrangian coordinates, 601
Lagrangian formalism, 641
Laplace expansion, 456
Laplace transform, 243

obvious properties, 243
Laplacian, 474

polar coordinates, 500
Laplacian

general curvilinear coordinates, 647
law of cosines, 61
least squares regression, 475
least upper bound, 35
Lebesgue integral

desires to be linear, 670
nonnegative function, 666
simple function, 668

Lebesgue number, 341
length of smooth curve, 351
Leontief model, 413
lim inf, 120
lim sup, 120
liminf, 90
limit comparison test, 167
limit of a function, 329
limit of a subsequence, 90
limit of nth root of n, 253
limit point, 96, 465
limit points

closed sets, 97
limitfore, 93
limits

at infinity, 121
properties, 123
squeezing theorem, 88, 124
uniqueness, 86, 122
well defined, 122

limits and continuity, 331
limits of sequences

preservation of order, 90
properties, 87

limsup, 90
line integral, 534
linear combination, 390, 414, 454
linear functions, 389
linear initial value problem, 195
linear map, 389
linear transformation, 389

lines
parametric equation, 286

Lipschitz, 120, 338, 339
lizards

surface area, 578
local extrema, 141
local extremum, 505

derivative equals 0, 141
local maximum, 141, 505
local minimum, 141, 505
locating loca extreemum, 506
logistic function, 79
Lotka Volterra equations, 334
lower semicontinuous, 120
lower sums, 71, 188

main diagonal, 429
mass balance, 600
material coordinates, 601
mathematical induction, 29
matrices

eigenvalues exist, 435
matrix

left inverse, 460
lower triangular, 428
right inverse, 460
upper triangular, 428

maximizing sequence, 120
mean value theorem

Cauchy, 147
usual version, 147

measurability
limit of simple functions, 658

measurable, 661
measurable sets, 661
measurable space, 655
measure, 655

properties, 656
measure space, 655
measures

decreasing sequences of sets, 656
increasing sequences of sets, 656

measures from outer measures, 662
Merten’s theorem, 176, 266
metric tensor, 579, 634, 636
metric tensor, 645
minimal polynomial, 424
minimizing sequence, 120
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minor, 426, 428, 456
mixed partial derivatives, 473
moment of a force, 308
monic

polynomial, 39
monotone convergence theorem, 669
motion, 601
multi-index, 329
multiplicative inverse

unique, 18

Navier, 613
nested interval lemma, 92
Neuman series, 413
Newton Ralphson procedure, 155
Newton’s second law, 641
nonremovable discontinuity, 104
normal vector to plane, 314

one to one
rank, 423

open set, 95, 322
order, 23
ordered fields, 23
orientable, 622, 623
orientation, 533
oriented curve, 533
origin, 281
orthogonal matrix, 437
orthonormal, 438
osculating plane, 359, 362
outer measure

measurable, 661
on R, 681

p series, 169
parallelepiped

definition, 306
volume, 306, 462

parameter, 286
parametric curve, 343
parametric equation, 286
parametric function, 277
parametrization, 76, 350

space curve, 343
partial derivative, 470
partial derivatives, 249
partial fractions

expansion, 48

rules, 218
theory, 48

partial summation formula, 172
Pascal

triangle, 33
permutation, 451
permutation matrices, 397
permutation symbol, 312
permutations, 27
perpendicular, 298
phase shift, 68
pi systems, 673
piecewise continuous, 186
Piola Kirchhoff stress, 605
pivot columns, 406
planes, 314
pointwise convergence, 115

series, 178
polar coordinates, 497
polar form complex number, 43
polynomial, 38, 51

addition, 38
degree, 38
division, 38
equality, 38
monic, 39
multiplication, 38

polynomial
leading term, 38
monic, 38

polynomials
factoring, 44
greatest common divisor, 39

polynomials in n variables, 329
position vector, 284
postive number raised to real power, 76
power series, 253

multiplication, 262
of a quotient, 268
raising to a power, 267

present value of an annuity, 33
preservation of compactness, 110
prime numbers less given number, 178
principal normal, 359, 363
product measure, 675
product of Borel sets, 674
product rule, 132

cross product, 347
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dot product, 347
projection, 420
projection of a vector, 300
Pythagorean theorem, 55

quotient rule, 133

radius of convergence, 254
radius of curvature, 359, 362
range, 49
rank, 406, 419
rank of a matrix, 457
ratio test, 169
rational function, 51
rational function of cosines and sines, 220
rational functions

sines and cosines, 220
rational numbers, 17

dense, 31
density, 30

real numbers, 17
rearranged series

convergence, 166
recurrence relation, 83
recursively defined sequence, 83
regular Sturm Liouville problem, 236
related rates, 139
relations

graph, 53
removable discontinuity, 103
Rieman integrable

functions of, 193
Riemann integrable, 541, 546
Riemann integral, 541, 546
Riemann integral and Lebesgue integral, 683
Riemann sum, 195
Riemann sums, 541
right handed system, 303
Rolle’s theorem, 147
root

polynomial, 38
root test, 170
roots

existence, 36
rot, 587
rotation matrix, 424
row operations, 397, 430
row reduced echelon form, 403

existence, 404
unique, 405

saddle point, 508
scalar field, 587
scalar multiplication, 283
scalar potential, 625
scalar product, 295
scalars, 283
second derivative test, 150, 523
sequence of partial sums, 163
sequences, 83
sequentially compact

closed and bounded, 97
series

absolute convergence, 166
conditional convergence, 166
convergence criterion, 165
double sum, 174
meaning of convergence, 163
multiplication of series, 175
nonnegative terms, 164
p series test, 168
ratio test, 169
root test, 170

series of functions
uniform convergence, 178

set
complement, 95

sgn, 449
uniqueness, 451

sigma algebra, 655
sigma finite, 675
sign of a permutation, 451
singular point, 506
skew symmetric, 395, 410
smooth and not analytic, 162
smooth curve, 350
smoothness more general than analytic, 161
spacial coordinates, 601
span, 414, 454
speed, 148
spherical coordinates, 639
squeezing theorem, 88
step function, 187
Stirling’s formula, 240, 695
Stoke’s theorem, 620
Stokes, 613
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subspace, 415
subtend, 54
summation notation, 19
sup

increasing sequence, 163
interchange of order, 174

symmetric, 395, 410
symmetric form of a line, 287, 288
symmetric matrices

diagonalization, 439

tangent plane, 502
Taylor polynomial

sine, 153
Taylor series, 254

coefficients, 257
convergence and divergence, 254
differentiation, 255
multiplication, 262
of quotient, 268
raising to a power, 267
uniqueness, 257

Taylor’s formula, 152, 224, 522
torque vector, 308
torsion, 363
torus, 580
trace, 446
traces, 316
transformation rules, 642
transpose of a matrix, 395
triangle inequality, 24, 291, 296

complex numbers, 42
trichotomy, 23
trigonometric functions, 57
trigonometric substitutions, 209

uniform continuity, 335
uniform convergence, 116

series, 178
uniform norm, 336
uniformly Cauchy

sequence of functions, 117
uniformly continuous, 114, 247, 339, 341
unit tangent vector, 359, 363
upper semicontinuous, 120
upper sums, 71, 188
Urysohn’s lemma, 342

vector

scalar multiplication, 283
vector addition, 283

vector
contravariant components, 635
covariant components, 635

vector field, 533, 587
vector fields, 332
vector identities, 312
vector potential, 589
vector space axioms, 393
vector valued function

continuity, 328
derivative, 344
integral, 344
limit theorems, 330

vector valued functions, 327
vectors, 281
velocity, 148, 203
volume

parallelepiped, 462
volume element, 571
volume increment, 571
volume of parallelepiped, 569
volume of unit ball in n dimensions, 610
volumes

cross section, 183

Wallis formula, 239
wave equation, 474
Weierstrass approximation

estimate, 117
Weierstrass approximation theorem, 119
Weierstrass Bolzano theorem, 337
Weierstrass M test, 178
well ordered, 28, 29
work, 232, 534

zero
polynomial, 38
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