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Chapter 1

Introduction

The difference between advanced calculus and calculus is that all the theorems are proved
completely and the role of plane geometry is minimized. Instead, the notion of complete-
ness is of preeminent importance. Formal manipulations are of no significance at all unless
they aid in showing something significant. Routine skills involving elementary functions
and integration techniques are supposed to be mastered and have no place in advanced cal-
culus which deals with the fundamental issues related to existence and meaning. This is a
subject which places calculus as part of mathematics and involves proofs and definitions,
not algorithms and busy work. Roughly speaking, it is nineteenth century calculus rather
than eighteenth century calculus.

An orderly development of the elementary functions is included but I assume the reader
is familiar enough with these functions to use them in problems which illustrate some of
the ideas presented. I have placed the construction of the real numbers at the end in an
appendix to conform with the historical development of analysis. Completeness of the real
line was used as an axiom and all the classical major theorems proved long before Dedekind
and Cantor showed how to construct the real numbers from the rational numbers. However,
this could be presented earlier if it is desired to present this earlier.

There is also a brief discussion of complex analysis of functions of a complex variable
and a few other somewhat unusual topics like the generalized Riemann integral.
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Chapter 2

The Real and Complex Numbers

2.1 Real and Rational Numbers

To begin with, consider the real numbers, denoted by R, as a line extending infinitely far
in both directions. In this book, the notation, = indicates something is being defined. Thus

the integers are defined as
Z={--—1,0,1,---},

the natural numbers, N={1,2,---} and the rational numbers, defined as the numbers which
are the quotient of two integers.

QE{% suchthatm,neZ,n#O}

are each subsets of R as indicated in the following picture.

-4 -3 -2 -1 0 1 2 3 4
I [ A I S A ,
1T 1T T 7 1T 11

A

As shown in the picture, % is half way between the number 0 and the number, 1. By
analogy, you can see where to place all the other rational numbers. It is assumed that R
has the following algebra properties, listed here as a collection of assertions called axioms.
These properties will not be proved which is why they are called axioms rather than theo-
rems. In general, axioms are statements which are regarded as true. Often these are things
which are “self evident” either from experience or from some sort of intuition but this does
not have to be the case. We always assume 0 # 1 because if not, you would end up with
x =x1 =x0 =0 for all x and we are not interested in such a stupid thing.

Axiom 2.1.1 x+y = y-+x, (commutative law for addition)
Axiom 2.1.2 x-+ 0 = x, (additive identity).

Axiom 2.1.3 For each x € R, there exists —x € R such that x + (—x) = 0, (existence of
additive inverse).

Axiom 2.1.4 (x+y)+z=x+ (y+2),(associative law for addition).

9
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Axiom 2.1.5 xy = yx, (commutative law for multiplication).
Axiom 2.1.6 (xy)z=x(yz), (associative law for multiplication).
Axiom 2.1.7 1x = x, (multiplicative identity).

Axiom 2.1.8 For each x # 0, there exists x~' such that xx~' = 1.(existence of multiplica-
tive inverse).

Axiom 2.1.9 x(y+z) = xy+xz.(distributive law).

These axioms are known as the field axioms and any set (there are many others besides
R) which has two such operations satisfying the above axioms is called a field. Division
and subtraction are defined in the usual way by x —y =x+ (—y) and x/y =x (y’l) Ctis
assumed that the reader is completely familiar with these axioms in the sense that he or
she can do the usual algebraic manipulations taught in high school and junior high algebra
courses. The axioms listed above are just a careful statement of exactly what is necessary
to make the usual algebraic manipulations valid. A word of advice regarding division
and subtraction is in order here. Whenever you feel a little confused about an algebraic
expression which involves division or subtraction, think of division as multiplication by the
multiplicative inverse as just indicated and think of subtraction as addition of the additive
inverse. Thus, when you see x/y, think x (y_l) and when you see x — y, think x + (—y).
In many cases the source of confusion will disappear almost magically. The reason for
this is that subtraction and division do not satisfy the associative law. This means there
is a natural ambiguity in an expression like 6 —3 — 4. Do you mean (6 —3) —4 = —1 or
6—(3—4)=6—(—1) =72 It makes a difference doesn’t it? However, the so called
binary operations of addition and multiplication are associative and so no such confusion
will occur. It is conventional to simply do the operations in order of appearance reading
from left to right. Thus, if you see 6 — 3 — 4, you would normally interpret it as the first of
the above alternatives. This is no problem for English speakers, but what if you grew up
speaking Hebrew or Arabic in which you read from right to left?

In the first part of the following theorem, the claim is made that the additive inverse and
the multiplicative inverse are unique. This means that for a given number, only one number
has the property that it is an additive inverse and that, given a nonzero number, only one
number has the property that it is a multiplicative inverse. The significance of this is that if
you are wondering if a given number is the additive inverse of a given number, all you have
to do is to check and see if it acts like one.

Theorem 2.1.10 7ne above axioms imply the following.
1. The multiplicative inverse and additive inverses are unique.
2. 0x=0, — (—x) =x,
3. (-DH(-H=1,(-1)x=—x
4. If xy =0 then either x =0 0ry=0.

Proof: Suppose then that x is a real number and that x+y = 0 = x+z. It is necessary to
verify y = z. From the above axioms, there exists an additive inverse, —x for x. Therefore,

—x4+0=(—x)+ (x+y) = (=x) + (x+2)
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and so by the associative law for addition,
(=0)+x)+y=((=x)+x)+z

which implies 0 4y = 04 z. Now by the definition of the additive identity, this implies
y = z. You should prove the multiplicative inverse is unique.

Consider 2. It is desired to verify Ox = 0. From the definition of the additive identity
and the distributive law it follows that

0x = (0+0)x = Ox+ Ox.
From the existence of the additive inverse and the associative law it follows

0= (—0x) + 0x = (—0x) + (Ox + Ox)
=((—0x)+0x) + 0x=0+0x=0x

To verify the second claim in 2., it suffices to show x acts like the additive inverse of —x
in order to conclude that — (—x) = x. This is because it has just been shown that additive
inverses are unique. By the definition of additive inverse, x+ (—x) = 0 and so x = — (—x)
as claimed.

To demonstrate 3., (—1) (14 (—1)) = (—1)0 = 0 and so using the definition of the
multiplicative identity, and the distributive law, (—1) + (—1) (—1) = 0. It follows from 1.
and 2. that 1 = —(—1) = (—1)(—1). To verify (—1)x = —x, use 2. and the distributive
law to write

x+(=1)x=x(1+(-1)) =x0=0.

Therefore, by the uniqueness of the additive inverse proved in 1., it follows (—1)x = —x as
claimed.

To verify 4., suppose x # 0. Then x~! exists by the axiom about the existence of multi-
plicative inverses. Therefore, by 2. and the associative law for multiplication,

y=(")y=x"(y)=x"'0=0.

This proves 4. B

Recall the notion of something raised to an integer power. Thus y> =y x yand b3 = b%
etc.

Also, there are a few conventions related to the order in which operations are per-
formed. Exponents are always done before multiplication. Thus xy> = x (yz) and is not

equal to (xy)z. Division or multiplication is always done before addition or subtraction.
Thus x—y (z+w) =x— [y (z+w)] and is not equal to (x —y) (z+ w) . Parentheses are done
before anything else. Be very careful of such things since they are a source of mistakes.
When you have doubts, insert parentheses to resolve the ambiguities.

Also recall summation notation.

Definition 2.1.11 7. X1,X2, "+ , Xy be numbers. Then Z’}’zlxj =xi+x+--+
Xm. Thus this symbol, E;":lx ; means to take the numbers, x1,x2,--- , Xy and add them all
together. Note the use of the j as a generic variable which takes values from 1 up to m. This
notation will be used whenever there are things which can be added, not just numbers.

As an example of the use of this notation, you should verify the following.
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Example 2.1.12 Y_, (2k+1) = 48.
Be sure you understand why qujll X = Ypb Xk +Xm+1. As a slight generalization of

this notation, ZT: «Xj =Xg+ -+ +x,. Itis also possible to change the variable of summation.

m
j=1

X1 +x2+---+x, and so ):;":l Xj = Z;”jlr+rxj,r.
Summation notation will be used throughout the book whenever it is convenient to do
SO.

Xj = x| +Xx+---+x, while if r is an integer, the notation requires ZT:{HX =

2.2 Exercises
1. Consider the expression x+y (x+y) —x(y —x) = f (x,y). Find f(—1,2).
2. Show — (ab) = (—a)b.
3. Show on the number line the effect of multiplying a number by —1.

4. Add the fractions

X x—1
x2—1 + x+1-

5. Find a formula for (x+y)*,(x+y)*, and (x+y)*. Based on what you observe for
these, give a formula for (x+y)®.

6. When is it true that (x +y)" = x" +y"?

7. Find the error in the following argument. Let x =y = 1. Then xy = y? and so xy — x> =

y? — x%. Therefore, x (y —x) = (y —x) (y +x) . Dividing both sides by (y —x) yields

x = x+y. Now substituting in what these variables equal yields 1 = 1+ 1.

8. Find the error in the following argument. v/x2+1 = x+ 1 and so letting x = 2,
v/5 = 3. Therefore, 5 = 9.

9. Find the error in the following. Letx =1 and y =2. Then % = % =

+y =1+

+

==
<l
=

%. Then cross multiplying, yields 2 = 9.

10. Find the error in the following argument. Let x =3 and y=1. Then 1 =3 -2 =
3-B-D=x-y@r—y) ==y (x-y) =2"=4

11. Find the error in the following. % =y+y=2y. Now let x =2 and y = 2 to obtain
3=4.

12. Show the rational numbers satisfy the field axioms. You may assume the associative,
commutative, and distributive laws hold for the integers.

13. Show that for n a positive integer, i _ (a+bk) = Y}_ (a+b(n—k)). Explain why

n n
2Y (a+bk)=Y 2a+bn=(n+1)(2a+bn)
k=0 k=0

andso Y (a+bk)=(n+1) M'
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2.3 Set Notation

A set is just a collection of things called elements. Often these are also referred to as points
in calculus. For example {1,2,3,8} would be a set consisting of the elements 1,2,3, and
8. To indicate that 3 is an element of {1,2,3,8}, it is customary to write 3 € {1,2,3,8}.
9 ¢ {1,2,3,8} means 9 is not an element of {1,2,3,8}. Sometimes a rule specifies a set.
For example you could specify a set as all integers larger than 2. This would be written as
S={x€Z:x>2}. This notation says: the set of all integers, x, such that x > 2.

If A and B are sets with the property that every element of A is an element of B, then
A is a subset of B. For example, {1,2,3,8} is a subset of {1,2,3,4,5,8}, in symbols,
{1,2,3,8} C {1,2,3,4,5,8}. The same statement about the two sets may also be written
as {1,2,3,4,5,8} O {1,2,3,8}.

The union of two sets is the set consisting of everything which is contained in at least
one of the sets, A or B. As an example of the union of two sets, {1,2,3,8} U{3,4,7,8} =
{1,2,3,4,7,8} because these numbers are those which are in at least one of the two sets.
In general

AUB={x:x€AorxeB}.

Be sure you understand that something which is in both A and B is in the union. It is not an
exclusive or.

The intersection of two sets, A and B consists of everything which is in both of the sets.
Thus {1,2,3,8}N{3,4,7,8} = {3,8} because 3 and 8 are those elements the two sets have
in common. In general,

ANB={x:x€Aandx € B}.

When with real numbers, [a,b] denotes the set of real numbers x, such that a < x < b
and [a,b) denotes the set of real numbers such that a < x < b. (a,b) consists of the set
of real numbers, x such that a < x < b and (a, b] indicates the set of numbers, x such that
a < x < b. [a,o0) means the set of all numbers, x such that x > a and (—oo,a] means the set
of all real numbers which are less than or equal to a. These sorts of sets of real numbers
are called intervals. The two points, a and b are called endpoints of the interval. Other
intervals such as (—eo, b) are defined by analogy to what was just explained. In general, the
curved parenthesis indicates the end point it sits next to is not included while the square
parenthesis indicates this end point is included. The reason that there will always be a
curved parenthesis next to co or —oo is that these are not real numbers. Therefore, they
cannot be included in any set of real numbers. It is assumed that the reader is already
familiar with order which is discussed in the next section more carefully. The emphasis
here is on the geometric significance of these intervals. That is [a,b) consists of all points
of the number line which are to the right of a possibly equaling a and to the left of b. In the
above description, I have used the usual description of this set in terms of order.

A special set which needs to be given a name is the empty set also called the null set,
denoted by 0. Thus 0 is defined as the set which has no elements in it. Mathematicians
like to say the empty set is a subset of every set. The reason they say this is that if it were
not so, there would have to exist a set A, such that @ has something in it which is not in A.
However, 0 has nothing in it and so the least intellectual discomfort is achieved by saying
0 CA.

If A and B are two sets, A \ B denotes the set of things which are in A but not in B. Thus

A\B={xcA:x¢B}.

Set notation is used whenever convenient.
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2.4 Order

The real numbers also have an order defined on them. This order may be defined by ref-
erence to the positive real numbers, those to the right of 0 on the number line, denoted by
R™ which is assumed to satisfy the following axioms.

Axiom 2.4.1 The sum of two positive real numbers is positive.
Axiom 2.4.2 The product of two positive real numbers is positive.

Axiom 2.4.3 For a given real number x one and only one of the following alternatives
holds. Either x is positive, x =0, or —x is positive.

Definition 2.4.4 x <y exactly when y+ (—x) =y—x € RT. In the usual way, x <y
is the same as 'y > x and x <y means either x <y or x =Y. The symbol > is defined
similarly.

Theorem 2.4.5 7he following hold for the order defined as above.

1. Ifx<yandy < zthen x < z (Transitive law).

2. If x <y then x+z < y+ z (addition to an inequality).

3. Ifx<0andy <0, then xy > 0.

4. If x>0 thenx™' > 0.

5. Ifx<0thenx™' <O0.

6. If x <ythen xz < yzifz> 0, (multiplication of an inequality).

7. If x <yand z <0, then xz > zy (multiplication of an inequality).

8. Each of the above holds with > and < replaced by > and < respectively except for
4 and 5 in which we must also stipulate that x # 0.

9. For any x and y, exactly one of the following must hold. Either x =y, x <y, orx >y
(trichotomy).

10. xy > 0 if and only if both x,y are positive or both —x,—y are positive. Thus xy =0
means x,y have the same sign.

Proof: First consider 1, the transitive law. Suppose x <y and y < z. Why is x < z? In
other words, why is z—x € R™? It is because z—x = (z—y)+ (y—x) and both z—y,y—x €
R™. Thus by 2.4.1 above, z—x € R" and so z > x.

Next consider 2, addition to an inequality. If x <y why is x +z < y+z? it is because

+z)+—(x+z) = (G+2)+(-1)(x+2)
y+(=Dx+z+(—1)z
= y—xeR".
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Next consider 3. If x <0 and y <0, why is xy > 0? First note there is nothing to show if
either x or y equal 0 so assume this is not the case. By 2.4.3 —x > 0 and —y > 0. Therefore,
by 2.4.2 and what was proved about —x = (—1)x,

(=x) (=) = (=1)*xy e R™.

Is (—1)* = 1? If so the claim is proved. But —(—1) = (—1)? and —(—1) = 1 because
—-1+1=0.

Next consider 4. If x > 0 why is x| > 0? By 2.4.3 either x ! =0 or —x~ ! e R*. It
can’t happen that x~! = 0 because then you would have to have 1 = Ox and as was shown
earlier, Ox = 0. Therefore, consider the possibility that —x~! € R*. This can’t work either
because then you would have

(—Dxx=(=1)(1)= -1

and it would follow from 2.4.2 that —1 € R*. But this is impossible because if x € R,
then if —1 € R, (—1)x = —x € R and contradicts 2.4.3 which states that either —x or x is
in R™ but not both.

Next consider 5. If x < 0, why is x~! < 0? As before, x~! # 0. If x_! > 0, then as
before,

—x (xfl) =—-1eR"

which was just shown not to occur.

Next consider 6. If x < y why is xz < yz if z > 0? This follows because

yz—xz=z(y—x) € RT

since both z and y —x € R™.
Next consider 7. If x < y and z < 0, why is xz > zy? This follows because

w—zy=z(x—y) R

by what was proved in 3.

The next two claims are obvious and left for you.

Now suppose xy > 0. If —x > 0 and y > 0, then —xy > 0 contrary to xy > 0. It is similar
if x > 0. Thus if xy > 0 either both x,y are positive or both —x, —y are positive. In the
second case, we say both x,y are negative. If both x,y are positive, then xy > 0 by the order
axioms. If —x, —y both positive, then xy = (—=1)*xy = (=x) (—y) > 0. B

Note that trichotomy could be stated by saying x <yory < x.

Definition 2.4.6 |<|= { *§r20,

—x ifx <0.
Note that |x| can be thought of as the distance between x and 0.
Theorem 2.4.7 |xy| = |x||y|.
Proof: You can verify this by checking all available cases. Do so. B
Theorem 2.4.8 7he following inequalities hold.
eyl < el Iyl [l = Iyl < =yl

Either of these inequalities may be called the triangle inequality.
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Proof: First note that if a,b € R* U {0} then a < b if and only if a> < b?. Here is
why. Suppose a < b. Then by the properties of order proved above, a> < ab < b* because
b?> —ab =b(b—a) € R*U{0}. Next suppose a*> < b%. If both a, b = 0 there is nothing to
show. Assume then they are not both 0. Then

P —a*=(b+a)(b—a) R,
By the above theorem on order, (a + b)_1 € R™ and so using the associative law,
(a+b)"' ((b+a)(b—a)) = (b—a) eRT
Now

4ty = () =2+
2 2 2
x| “ 4 |y[” 42 x| [y = (]x] +[y])

IA

and so the first of the inequalities follows. Note I used xy < |xy| = |x||y| which follows
from the definition.

To verify the other form of the triangle inequality, x =x —y+y so |x| < |x—y|+|y| and
so |x| = |y| < |x—y| = [y —x|. Now repeat the argument replacing the roles of x and y to
conclude |y| — |x| < |y — x| .Therefore, ||y| — |x|| < [y—x|. W

Example 2.4.9 Solve the inequality 2x+4 <x—38

Subtract 2x from both sides to yield 4 < —x — 8. Next add 8 to both sides to get 12 < —x.
Then multiply both sides by (—1) to obtain x < —12. Alternatively, subtract x from both
sides to get x+4 < —8. Then subtract 4 from both sides to obtain x < —12.

Example 2.4.10 Solve the inequality (x+1) (2x—3) > 0.

If this is to hold, either both of the factors, x4+ 1 and 2x — 3 are nonnegative or they
are both non-positive. The first case yields x+1 >0and 2x—3 >0sox > —1 and x > %
yielding x > % The second case yields x+ 1 < 0 and 2x — 3 < 0 which implies x < —1 and
x < % Therefore, the solution to this inequality is x < —1 or x > %

Example 2.4.11 Solve the inequality (x) (x+2) > —4

Here the problem is to find x such that x2+2x+4 > 0. However, x> +2x+4 =
(x4 1)*+3 > 0 for all x. Therefore, the solution to this problem is all x € R.

Example 2.4.12 Solve the inequality 2x+4 < x—8
This is written as (—oo, —12].
Example 2.4.13 Solve the inequality (x+1) (2x—3) > 0.

This was worked earlier and x < —1 or x > % was the answer. In terms of set notation
this is denoted by (—e0, —1]U[3, o).

Example 2.4.14 Solve the equation |x — 1| =2
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This will be true when x — 1 = 2 or when x — 1 = —2. Therefore, there are two solutions
to this problem, x =3 orx = —1.

Example 2.4.15 Solve the inequality |2x — 1| <2

From the number line, it is necessary to have 2x — 1 between —2 and 2 because the
inequality says that the distance from 2x — 1 to 0 is less than 2. Therefore, -2 <2x—1 < 2
and so —1/2 < x < 3/2. In other words, —1/2 < x and x < 3/2.

Example 2.4.16 Solve the inequality |2x— 1] > 2.

This happens if 2x— 1 > 2 or if 2x — 1 < —2. Thus the solution is x > 3/2 orx < —1/2.

Written in terms of intervals this is (%,00) U (—00, —%) .

Example 2.4.17 Solve |x+ 1| = |2x—2]

There are two ways this can happen. It could be the case that x+ 1 = 2x — 2 in which
case x = 3 or alternatively, x+ 1 = 2 — 2x in which case x = 1/3.

Example 2.4.18 Solve |x+ 1| < |2x—2]

In order to keep track of what is happening, it is a very good idea to graph the two
relations, y = [x+ 1| and y = |2x — 2| on the same set of coordinate axes. This is not a hard
job. |x+1|=x+1 whenx > —1 and |x+ 1| = —1 —x when x < —1. Therefore, it is not
hard to draw its graph. Similar considerations apply to the other relation. Functions and
their graphs are discussed formally later but I assume the reader has seen these things. The
result is

y=|x+1]

Equality holds exactly when x =3 or x = % as in the preceding example. Consider x

between % and 3. You can see these values of x do not solve the inequality. For example

x =1 does not work. Therefore, (%, 3) must be excluded. The values of x larger than 3
do not produce equality so either |x+ 1| < |2x — 2| for these points or |2x —2| < |x+ 1| for
these points. Checking examples, you see the first of the two cases is the one which holds.
Therefore, [3, ) is included. Similar reasoning obtains (—co, 1]. It follows the solution set
to this inequality is (—e0, ] U [3,0).

Example 2.4.19 Suppose € > 0 is a given positive number. Obtain a number, § > 0, such
that if [x — 1| < &, then |x* — 1| < e.

First of all, note [x* — 1| =[x — 1|[x+ 1| < (|x[+1) |x— 1. Now if [x— 1| < 1, it fol-
lows |x| <2 and so for |x— 1| < I,|x? — 1| < 3|x—1|.Now let § = min (1,%) . This nota-
tion means to take the minimum of the two numbers, 1 and §. Thenif [x — 1| < &, |x* — 1| <
3x—1] <3 =e.
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2.5 Exercises

1. Solve (3x+2)(x—3) <0. 18. Tell when equality holds in the trian-
gle inequality.

N

Solve (3x+2) (x—3) > 0.

19. Sol 2| <8+ 1[2x—4|.
Solve 22 <. olve [x+2 <8+ [2x—4|

et

20. Solve (x+1)(2x—2)x > 0.

4. Solvety < 1. .
21. Solve % 1.
5. Solve (x— 1) (2x+1) < 2. Ve 2eT =~
+2
6. Solve (x— 1) (2x+1) > 2. 22. Solve 3777 > 2.
7. Solve x2 —2x < 0. 23. Describe the set of numbers, a such
B that there is no solution to |x+ 1| =

8. Solve (x+2) (x—2)* <0. 4—|x+al.

9. Solve % > 0. 24. Suppose 0 < a < b. Showa ! > b~!.
10. Solve 22— > 1. 25. Show that if [x— 6| < 1, then [x| < 7.
11. Solve ¥d2xtl | 26. Suppose |x —8| < 2. How large can

: 3x+7 :
|x—5] be?

12. Solve |x+ 1] = |2x—3|.
27. Obtain a number, 6 > 0, such that if
13. Solve |3x+ 1| < 8. Give your answer lx—1| < §, then ’x2 _ 1| < 1/10.
in terms of intervals on the real line.

) 28. Obtain a number, 6 > 0, such that if
14. Sketch on the number line the solu- lx—4| < §, then |\/x—2| < 1/10.

tion to the inequality |x — 3| > 2.
29. Suppose € > 0 is a given positive

15. Sketch on the number line the solu- number. Obtain a number, § >

tion to the inequality |x — 3| < 2. 0, such that if [x—1] < &, then
16. Show |x| = V2. |\/?c—.1\ < €. Hint: This 6 will de-
pend in some way on €. You need to

17. Solve |x+2| < |3x—3|. tell how.

2.6 The Binomial Theorem

Consider the following problem: You have the integers S,, = {1,2,--- ,n} and k is an integer
no larger than n. How many ways are there to fill £ slots with these integers starting from
left to right if whenever an integer from S, has been used, it cannot be re used in any
succeeding slot?

k of these slots

This number is known as permutations of n things taken k at a time and is denoted by
P (n,k). Tt is easy to figure it out. There are n choices for the first slot. For each choice
for the fist slot, there remain n — 1 choices for the second slot. Thus there are n(n— 1)
ways to fill the first two slots. Now there remain n — 2 ways to fill the third. Thus there are
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n(n—1)(n—2) ways to fill the first three slots. Continuing this way, you see there are
P(nk)=n(n—1)(n=2)---(n—k+1)

ways to do this.

Now define for k a positive integer, k! = k(k—1)(k—2)---1, 0! = 1. This is called
k factorial. Thus P (k,k) = k! and you should verify that P (n,k) = (nf—'k), Now consider
the number of ways of selecting a set of k different numbers from S,,. For each set of k
numbers there are P (k,k) = k! ways of listing these numbers in order. Therefore, denoting

by Z the number of ways of selecting a set of kK numbers from §,,, it must be the case
that
n n!
k! =P(n,k) =
(4 )r=ron=g"
Therefore, < Z = ﬁlk), How many ways are there to select no numbers from S,?

Obviously one way. Note the above formula gives the right answer in this case as well as
in all other cases due to the definition which says 0! = 1.

Now consider the problem of writing a formula for (x +y)" where 7 is a positive integer.
Imagine writing it like this:

n times

(x4+y) (x+y) - (x+y)

Then you know the result will be sums of terms of the form a;x*y" . What is a;? In other
words, how many ways can you pick x from k of the factors above and y from the other

n — k. There are n factors so the number of ways to do it is . Therefore, ay, is the

n
k
above formula and so this proves the following important theorem known as the binomial
theorem.

Theorem 2.6.1 7re following formula holds for any n a positive integer.

(ty) = Z": ( Z )xkynk_

k=0

2.7 Well Ordering and Archimedean Property

Definition 2.7.1 A set is well ordered if every nonempty subset S, contains a small-
est element 7 having the property that z < x for all x € S.

Axiom 2.7.2 Any set of integers larger than a given number is well ordered.

In particular, the natural numbers defined as N={1,2,---} is well ordered.
The above axiom implies the principle of mathematical induction.

Theorem 2.7.3 (Mathematical induction) A set S C Z, having the property that a €
Sand n+1 € S whenever n € S contains all integers x € Z such that x > a.
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Proof: Let T = ([a,e0) NZ)\ S. Thus T consists of all integers larger than or equal
to a which are not in S. The theorem will be proved if 7 = 0. If T # 0 then by the well
ordering principle, there would have to exist a smallest element of T, denoted as b. It must
be the case that b > a since by definition, a ¢ T. Then the integer, b— 1 >aandb—1¢ S
because if b—1 € S, then b—1+1 = b € § by the assumed property of S. Therefore,
b—1€ ([a,0)NZ)\ S =T which contradicts the choice of b as the smallest element of 7.
(b —1is smaller.) Since a contradiction is obtained by assuming T # 0, it must be the case
that 7 = 0 and this says that everything in [a,c0)NZ is also in S. B

Mathematical induction is a very useful device for proving theorems about the integers.
Example 2.7.4 Prove by induction that Y} _, k* = w.

By inspection, if n = 1 then the formula is true. The sum yields 1 and so does the
formula on the right. Suppose this formula is valid for some n > 1 where n is an integer.
Then 1

v 2 2 n(n+1)(@2n+1) 2
Zk Zk +(n+1)° 6 +(n+1)".
The step going from the first to the second equality is based on the assumption that the
formula is true for n. This is called the induction hypothesis. Now simplify the expression
in the second line,
n(n+1)2n+1)

6 +(n+1)%

This equals (n+1) ( 22D 4 (4 1)) and

n(2n+1) _6(n+1)+2%+n  (n+2)(2n+3)
— b= 6 - 6

Therefore,

! (n+1)(n+2)(2n+3)  (n+1)((n+1)+1)2(n+1)+1)
Zkz 6 - 6 )

showing the formula holds for n 4 1 whenever it holds for n. This proves the formula by
mathematical induction.

1.3, 201 1

Example 2.7.5 Show that foralln €N, 5-7--- 55 = < NeTERE

If n =1 this reduces to the statement that % < % which is obviously true. Suppose
then that the inequality holds for n. Then

2n—1 2n+1 1 2n+1 \/2}1—1—1
2n 2n+2 V2n+12n+2 2n+2°

N —
I

The theorem will be proved if this last expression is less than \/7 This happens if and
only if

( 1 >2 1o el
V2n+3 2n+37 (2n+2)*
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which occurs if and only if (224 2)? > (224 3) (2n+ 1) and this is clearly true which may
be seen from expanding both sides. This proves the inequality.

Lets review the process just used. If S is the set of integers at least as large as 1 for which
the formula holds, the first step was to show 1 € S and then that whenever n € S, it follows
n+1 € S. Therefore, by the principle of mathematical induction, S contains [1,e0) N Z,
all positive integers. In doing an inductive proof of this sort, the set, S is normally not
mentioned. One just verifies the steps above. First show the thing is true for some a € Z
and then verify that whenever it is true for m it follows it is also true for m + 1. When this
has been done, the theorem has been proved for all m > a.

Definition 2.7.6 The Archimedean property states that whenever x € R, and a > 0,
there exists n € N such that na > x.

This is not hard to believe. Just look at the number line. Imagine the intervals
[0,a),]a,2a),[2a,3a),--- .

If x < 0, you could consider a and it would be larger than x. If x > 0, surely, it is reasonable
to suppose that x would be on one of these intervals, say [pa, (p+ 1)a). This Archimedean
property is quite important because it shows every fixed real number is smaller than some
integer. It also can be used to verify a very important property of the rational numbers.

Axiom 2.7.7 R has the Archimedean property.

Theorem 2.7.8 Suppose x <y and y —x > 1. Then there exists an integer, | € Z,
such that x <1 <y. If x is an integer, there is no integer y satisfying x <y <x+ 1.

Proof: Let x be the smallest positive integer. Not surprisingly, x = 1 but this can be
proved. If x < I then x?> < x contradicting the assertion that x is the smallest natural number.
Therefore, 1 is the smallest natural number. This shows there is no integer y, satisfying
x <y < x+ 1 since otherwise, you could subtract x and conclude 0 < y —x < 1 for some
integer y —x.

Now suppose y —x > 1 and let S = {w € N:w >y}. The set S is nonempty by the
Archimedean property. Let k be the smallest element of S. Therefore, k — 1 < y. Either

k—1<xork—1>x.Ifk—1<x, then
<0

~ =
y—x<y—(k—=1)=y—k+1<1

contrary to the assumption that y —x > 1. Therefore, x < k— 1 < y and this proves the
theorem with / =k — 1. B

It is the next theorem which gives the density of the rational numbers. This means that
for any real number, there exists a rational number arbitrarily close to it.

Theorem 2.7.9 If x <y then there exists a rational number r such that x <r < y.

Proof: Let n € N be large enough that n (y —x) > 1. Thus (y — x) added to itself n times
is larger than 1. Therefore,

n(y—x)=ny+n(—x)=ny—nx> 1.

It follows from Theorem 2.7.8 there exists m € Z such that nx < m < ny and so take r = m/n.
|
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Definition 2.7.10 A set S C R is dense in R if whenever a < b, S0 (a,b) # 0.

Thus the above theorem says Q is “dense” in R.

You probably saw the process of division in elementary school. Even though you saw it
at a young age it is very profound and quite difficult to understand. Suppose you want to do
the following problem %. What did you do? You likely did a process of long division which
gave the following result. % = 3 with remainder 13. This meant 79 = 3 (22) + 13.You were
given two numbers, 79 and 22 and you wrote the first as some multiple of the second added
to a third number which was smaller than the second number. Can this always be done?
The answer is in the next theorem and depends here on the Archimedean property of the
real numbers.

Theorem 2.7.11 Suppose 0 < a and let b > 0. Then there exists a unique integer p
and real number r such that 0 <r < aand b = pa+r.

Proof: Let S = {n € N:an > b}. By the Archimedean property this set is nonempty.
Let p+ 1 be the smallest element of S. Then pa < b because p + 1 is the smallest in S.
Therefore, r = b— pa > 0. If r > a then b — pa > a and so b > (p+ 1)a contradicting
p—+1 € S. Therefore, r < a as desired.

To verify uniqueness of p and r, suppose p; and r;, i = 1,2, both work and ry > ry.
Then a little algebra shows p; — p, = - € (0,1). Thus p; — ps is an integer between 0
and 1, contradicting Theorem 2.7.8. The case that r| > r, cannot occur either by similar
reasoning. Thus r; = r, and it follows that p; = p,. B

This theorem is called the Euclidean algorithm when a and b are integers. In this case,
you would have r is an integer because it equals an integer.

2.8 Arithmetic of Integers

Here we consider some very important algebraic notions including the Euclidean algorithm
just mentioned and issues related to whether two numbers are relatively prime, prime num-
bers and so forth. The following definition describes what is meant by a prime number and
also what is meant by the word “divides”.

Definition 2.8.1 7he number a divides the number b if, in Theorem 2.7.11, r = 0.
That is, there is zero remainder. The notation for this is a|b, read a divides b and a is called
a factor of b. A prime number is one which has the property that the only numbers which
divide it are itself and I and it is at least 2. The greatest common divisor of two positive
integers m,n is that number p which has the property that p divides both m and n and also
if g divides both m and n, then q divides p. Two integers are relatively prime if their greatest
common divisor is one. The greatest common divisor of m and n is denoted as (m,n) .

There is a phenomenal and amazing theorem which relates the greatest common divisor
to the smallest number in a certain set. Suppose m,n are two positive integers. Then if x,y
are integers, so is xm + yn. Consider all integers which are of this form. Some are positive
such as 1m+ 1n and some are not. The set S in the following theorem consists of exactly
those integers of this form which are positive. Then the greatest common divisor of m and
n will be the smallest number in S. This is what the following theorem says.
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Theorem 2.8.2 L. m,n be two positive integers and define
S={xm+yneN:x,yeZ}.
Then the smallest number in S is the greatest common divisor, denoted by (m,n) .

Proof: First note that both m and n are in S so it is a nonempty set of positive integers.
By well ordering, there is a smallest element of S, called p = xom + yon. Either p divides m
or it does not. If p does not divide m, then by Theorem 2.7.11, m = pg+r where 0 < r < p.
Thus m = (xom + yon) g + r and so, solving for r,

r=m(l—x0)+(—yoq)n€s.

However, this is a contradiction because p was the smallest element of S. Thus p|m. Simi-
larly p|n.
Now suppose ¢ divides both m and n. Then m = gx and n = gy for integers, x and y.
Therefore,
p = mxo +nyo = Xogx +yoqy = q (XoX +yoy)

showing g|p. Therefore, p = (m,n). B

This amazing theorem will now be used to prove a fundamental property of prime
numbers which leads to the fundamental theorem of arithmetic, the major theorem which
says every integer can be factored as a product of primes.

Theorem 2.8.3 1t p is a prime and plab then either p|a or plb.

Proof: Suppose p does not divide a. Then since p is prime, the only factors of p are 1
and p so follows (p,a) = 1 and therefore, there exists integers, x and y such that 1 = ax+yp.
Multiplying this equation by b yields b = abx + ybp. Since p|ab, ab = pz for some integer
2. Therefore, b = abx +ybp = pzx+ybp = p (xz+yb) and this shows p divides b. B

Theorem 2.8.4 (Fundamental theorem of arithmetic) Let a € N\ {1}. Then a =
[T, pi where p; are all prime numbers. Furthermore, this prime factorization is unique
except for the order of the factors.

Proof: If a equals a prime number, the prime factorization clearly exists. In particular
the prime factorization exists for the prime number 2. Assume this theorem is true for all
a <n—1.If nis a prime, then it has a prime factorization. On the other hand, if n is not
a prime, then there exist two integers k and m such that n = km where each of k and m are
less than n. Therefore, each of these is no larger than n — 1 and consequently, each has a
prime factorization. Thus so does n. It remains to argue the prime factorization is unique
except for order of the factors.

Suppose [T, pi = H;f'zl q; where the p; and g; are all prime, there is no way to reorder
the gy such that m = n and p; = g; for all i, and n+ m is the smallest positive integer such
that this happens. Then by Theorem 2.8.3, p1|g; for some j. Since these are prime numbers
this requires p; = g;. Reordering if necessary it can be assumed that g; = ¢;. Then dividing
both sides by p; = ql,H;‘:—]l Dirl = H’]’.’:_ll gj+1- Since n+m was as small as possible for
the theorem to fail, it follows that n — I = m — 1 and the prime numbers, ¢, - - ,¢,, can be
reordered in such a way that py = g for all k =2,--- ,n. Hence p; = g; for all i because it
was already argued that p; = g1, and this results in a contradiction. ll
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Exercises

By Theorem 2.7.9 it follows that for a < b, there exists a rational number between a
and b. Show there exists an integer k such that a < % < b for some k,m integers.

Show there is no smallest number in (0,1). Recall (0,1) means the real numbers
which are strictly larger than 0 and smaller than 1.

Show there is no smallest number in QN (0,1).

Show that if § C R and S is well ordered with respect to the usual order on R then §
cannot be dense in R.

Prove by induction that ;' 1k3 4n + 1n3 + 1n2

It is a fine thing to be able to prove a theorem by induction but it is even better to
be able to come up with a theorem to prove in the first place. Derive a formula for
Yi k* in the following way. Look for a formula in the form An> 4+ Bn* 4+ Cn® +
Dn? + En + F. Then try to find the constants A,B,C,D,E, and F such that things
work out right. In doing this, show

(n+1)*" =
(A(n+1)5+B(n+1)4+C(n+1)3+D(n+1)2+E(n+1)+F)

—AR’ +Bn* +Cn® +Dn* +En+F

and so some progress can be made by matching the coefficients. When you get your
answer, prove it is valid by induction.

Prove by induction that whenever n > 2,Y7_, ﬁ > \/n.

If r # 0, show by induction that Y'{_, ark = arn—i] —a*y.

. . n +1
Prove by induction that Y7_, k = "<"2 )
Let a and d be real numbers. Find a formula for Y}, (a+ kd) and then prove your

result by induction.

Consider the geometric series, Yy, ar*=!. Prove by induction that if r # 1, then
__ a—ar”

Y 1ar =452

This problem is a continuation of Problem 11. You put money in the bank and
it accrues interest at the rate of r per payment period. These terms need a little
explanation. If the payment period is one month, and you started with $100 then
the amount at the end of one month would equal 100 (14 7) = 100 + 1007 In this
the second term is the interest and the first is called the principal. Now you have
100 (1 +r) in the bank. How much will you have at the end of the second month?
By analogy to what was just done it would equal

100 (14 7) +100 (1 4 r) r =100 (1+ 7).
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13.

14.

15.

16.

The amount you would have at the end of n months would be 100(1+r)". (When
a bank says they offer 6% compounded monthly, this means 7, the rate per payment
period equals .06/12.) In general, suppose you start with P and it sits in the bank
for n payment periods. Then at the end of the n/” payment period, you would have
P(1+47r)" in the bank. In an ordinary annuity, you make payments, P at the end of
each payment period, the first payment at the end of the first payment period. Thus
there are n payments in all. Each accrue interest at the rate of » per payment period.
Using Problem 11, find a formula for the amount you will have in the bank at the end
of n payment periods? This is called the future value of an ordinary annuity. Hint:
The first payment sits in the bank for n — 1 payment periods and so this payment
becomes P (1+ r)"fl . The second sits in the bank for n — 2 payment periods so it
grows to P (14r)""2, etc.

Now suppose you want to buy a house by making n equal monthly payments. Typi-
cally, n is pretty large, 360 for a thirty year loan. Clearly a payment made 10 years
from now can’t be considered as valuable to the bank as one made today. This is be-
cause the one made today could be invested by the bank and having accrued interest
for 10 years would be far larger. So what is a payment made at the end of k payment
periods worth today assuming money is worth r per payment period? Shouldn’t it
be the amount, Q which when invested at a rate of r per payment period would yield
P at the end of k payment periods? Thus from Problem 12 Q(1+ r)k = P and so
O=P(1+ r)_k. Thus this payment of P at the end of n payment periods, is worth
P(1+ r)_k to the bank right now. It follows the amount of the loan should equal
the sum of these “discounted payments”. That is, letting A be the amount of the
loan, A =Y}, P(1+ r)fk. Using Problem 11, find a formula for the right side of
the above formula. This is called the present value of an ordinary annuity.

Suppose the available interest rate is 7% per year and you want to take a loan for
$100,000 with the first monthly payment at the end of the first month. If you want to
pay off the loan in 20 years, what should the monthly payments be? Hint: The rate
per payment period is .07/12. See the formula you got in Problem 13 and solve for
P.

Consider the first five rows of Pascal’s’ triangle

1
11
121
1331
14641

What is the sixth row? Now consider that (x+y)' = 1x+ 1y, (x+y)? =2+ 2xy+
y?, and (x+ y)3 = x> +3x?y+3xy*> +y>. Give a conjecture about that (x + y)5.

Based on Problem 15 conjecture a formula for (x+y)" and prove your conjecture by
induction. Hint: Letting the numbers of the n'" row of Pascal’s triangle be denoted by
(), (1),-+++(2) in reading from left to right, there is a relation between the numbers

I Blaise Pascal lived in the 1600’s and is responsible for the beginnings of the study of probability.
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on the (n+1)* row and those on the 1'" row, the relation being ("1') = (§) +(,",)-
This is used in the inductive step.

Let (}) = (n_"ik'),k, where 0! = 1 and (n+1)! = (n+ 1)n! for all n > 0. Prove that

whenever k > 1 and k < n, then (”f) = (’,Z) + (kfl). Are these numbers, (Z) the

same as those obtained in Pascal’s triangle? Prove your assertion.

The binomial theorem states (a +b)" = ¥ (;)a"*b*. Prove the binomial theorem
by induction. Hint: You might try using the preceding problem.

Show that for p € (0,1), X4 (D) kp* (1—p)"* = np.

Show that for all n € N, (1+14)" < (1+-1)""". Hint: Show first that () =
W By the binomial theorem,

k factors

R O

n-(n—1)-+(n—k+1)
knk +1

binomial expansion for (1 + #)n except that n is replaced with n+ 1 wherever

this occurs. Argue the term got bigger and then note that in the binomial expansion

for (1+ nlﬁ)ﬁ

Now consider the term and note that a similar term occurs in the

1
s there are more terms.

Prove by induction that for all k > 4, 2k < k!
Use the Problems 21 and 20 to verify for all n € N, (1 + %)n <3.
Prove by induction that 1 + Y7 ,i(i!) = (n+1)!.

I can jump off the top of the Empire State Building without suffering any ill effects.
Here is the proof by induction. If I jump from a height of one inch, I am unharmed.
Furthermore, if I am unharmed from jumping from a height of n inches, then jumping
from a height of n+ 1 inches will also not harm me. This is self evident and provides
the induction step. Therefore, I can jump from a height of n inches for any n. What
is the matter with this reasoning?

All horses are the same color. Here is the proof by induction. A single horse is the
same color as himself. Now suppose the theorem that all horses are the same color
is true for n horses and consider n+ 1 horses. Remove one of the horses and use the
induction hypothesis to conclude the remaining n horses are all the same color. Put
the horse which was removed back in and take out another horse. The remaining n
horses are the same color by the induction hypothesis. Therefore, all n+ 1 horses are
the same color as the n — 1 horses which didn’t get moved. This proves the theorem.
Is there something wrong with this argument?

Let ( K I:l K ) denote the number of ways of selecting a set of k; things, a set of
1,K2,K3

k; things, and a set of k3 things from a set of »n things such that Z?Zl ki = n. Find a
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formula for < > . Now give a formula for a trinomial theorem, one which

n
ki,ka, k3
expands (x+y+z)". Could you continue this way and get a multinomial formula?

2.10 Completeness of R

By Theorem 2.7.9, between any two real numbers, points on the number line, there exists
a rational number. This suggests there are a lot of rational numbers, but it is not clear from
this Theorem whether the entire real line consists of only rational numbers. Some people
might wish this were the case because then each real number could be described, not just as
a point on a line but also algebraically, as the quotient of integers. Before 500 B.C., a group
of mathematicians, led by Pythagoras believed in this, but they discovered their beliefs were
false. It happened roughly like this. They knew they could construct the square root of two
as the diagonal of a right triangle in which the two sides have unit length; thus they could
regard v/2 as a number. Unfortunately, they were also able to show v/2 could not be written
as the quotient of two integers. This discovery that the rational numbers could not even
account for the results of geometric constructions was very upsetting to the Pythagoreans,
especially when it became clear there were an endless supply of such “irrational” numbers.

This shows that if it is desired to consider all points on the number line, it is necessary
to abandon the attempt to describe arbitrary real numbers in a purely algebraic manner
using only the integers. Some might desire to throw out all the irrational numbers, and
considering only the rational numbers, confine their attention to algebra, but this is not
the approach to be followed here because it will effectively eliminate every major theorem
of calculus and analysis. In this book real numbers will continue to be the points on the
number line, a line which has no holes. This lack of holes is more precisely described in
the following way.

Definition 2.10.1 A non empty set, S C R is bounded above (below) if there exists
x € R such that x > (<) s for all s € S. If S is a nonempty set in R which is bounded above,
then a number; | which has the property that [ is an upper bound and that every other upper
bound is no smaller than 1 is called a least upper bound, l.u.b. (S) or often sup (S). If Sis a
nonempty set bounded below, define the greatest lower bound, g.1.b. (S) or inf (S) similarly.
Thus g is the g.1.b.(S) means g is a lower bound for S and it is the largest of all lower
bounds. If S is a nonempty subset of R which is not bounded above, this information is
expressed by saying sup (S) = 4o and if S is not bounded below, inf (§) = —oo.

In an appendix, there is a proof that the real numers can be obtained as equivalence
classes of Cauchy sequences of rational numbers but in this book, we follow the historical
development of the subject and accept it as an axiom. In other words, we will believe in
the real numbers and this axiom.

The completeness axiom was identified by Bolzano as the reason for the truth of the in-
termediate value theorem for continuous functions around 1818. However, every existence
theorem in calculus depends on some form of the completeness axiom.

Axiom 2.10.2 (completeness) Every nonempty set of real numbers bounded above has a
least upper bound and every nonempty set of real numbers which is bounded below has a
greatest lower bound.
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It is this axiom which distinguishes Calculus from Algebra. A fundamental result about
sup and inf is the following.

Proposition 2.10.3 Let S be a nonempty set and suppose sup (S) exists. Then for every
>0,
SN (sup(S)—6,sup(S)] #0.

If inf (S) exists, then for every 6 > 0,
SN [inf(S),inf (S)+ &) # 0.

Proof: Consider the first claim. If the indicated set equals @, then sup(S) — 6 is an
upper bound for S which is smaller than sup (S), contrary to the definition of sup (S) as the
least upper bound. In the second claim, if the indicated set equals @, then inf (S) 4+ & would
be a lower bound which is larger than inf (S) contrary to the definition of inf(S) .l

The wonderful thing about sup is that you can switch the order in which they occur.
The same thing holds for inf. It is also convenient to generalize the notion of sup and inf
so that we don’t have to worry about whether it is a real number.

Definition 2.10.4 Let f(a,b) € [—o0,] for a € A and b € B where A,B are non-
empty sets which means that f(a,b) is either a number, o, or —co. The symbol, +oo is
interpreted as a point out at the end of the number line which is larger than every real
number. Of course there is no such number. That is why it is called oo. The symbol, —c is
interpreted similarly. Then sup,c, f (a,b) means sup (Sp) where Sp, = {f (a,b) :a € A}. A
similar convention holds for inf .

Unlike limits, you can take the sup in different orders, same for inf.

Lemma 2.10.5 Let f (a,b) € [—o,)| for a € A and b € B where A, B are sets. Then

supsup f (a,b) = supsup f (a,b).
acA beB beB acA

Also, you can replace sup with inf.

Proof: Note that for all a,b, f(a,b) < sup,cpsup,c4 f (a,b) and therefore, for all a,
suppep f (a,b) < suppcpsup,ecq f (a,b). Therefore,
supsup f (a,b) < supsup f (a,b).
acA beB beB acA

Repeat the same argument interchanging a and b, to get the conclusion of the lemma.
Similar considerations give the same result for inf. ll

2.11 Ecxistence of Roots

What is v/7 and does it even exist? You can ask for it on your calculator and the calculator
will give you a number which multiplied by itself 5 times will yield a number which is close
to 7 but it isn’t exactly right. Why should there exist a number which works exactly? Every
one you find, appears to be some sort of approximation at best. If you can’t produce one,
why should you believe it is even there? The following is an argument that roots exist. You
fill in the details of the argument. Basically, roots exist in analysis because of completeness
of the real line. Here is a lemma.
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Lemma 2.11.1 Suppose n € N and a > 0. Then if X" — a # 0, there exists § > 0 such
that whenever'y € (x — 8,x+ 8), it follows Yy — a # 0 and has the same sign as x" — a.

Proof: From the binomial theorem and the triangle inequality, assuming always that
y—x[<1l,and (y' —a) = ((y—x+x)" —a),

n—1 n
wﬂMWw>=<ﬂw%2(kywwH%Hﬂw0

k=0

n—1

= werr-a ¥ (§)o-arts

k=0

n—1
maP el T (f )bt
k=0

n—1
aP -l X ()
k=0

Y

v

—1
. . i n .
Therefore, if also, [y —x| < ‘xnz d ( "~ ( © ) xk) , the above is at least as large as

|x" —a|* /2 which is larger than 0 and so X" —a and y* — a have the same sign when

—1
X' — n—1
ly—x| < min [ 1, 2“‘ (Z(Z)ﬂ) N

k=0

Theorem 2.11.2 Leta > 0andlet n> 1. Then there exists a unique x > 0 such that
X"=a.

Proof: Let S denote those numbers y > 0 such that " —a < 0 for all ¢ € [0,y]. Now
note that from the binomial theorem,

(1+a)”—a:Z ( Z )akl”k—a21+a—a:1>0
k=0

Thus S is bounded above and 0 € S. Let x = sup (S). Then by definition of sup, for every
0 > 0, there exists r € § with [x —#]| < 8.
If " —a > 0, then by the above lemma, for ¢ € S sufficiently close to x,

(t"—a)(x"—a)>0

which is a contradiction because the first factor is negative and the second is positive.
Hence x" —a < 0. If x¥* —a < 0, then from the above lemma, there is a § > 0 such that if
t € (x—908,x+0),x" —aand " — a have the same sign. This is also a contradiction because
then x = sup (S). It follows X" = a. B

From now on, we will use this fact that n'”* roots exist whenever it is convenient to do
SO.
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2.12 Exercises

1.

10.

11.

Let S = [2,5]. Find supS. Now let S = [2,5). Find supS. Is supS always a number
in §? Give conditions under which sup S € S and then give conditions under which
inf§S € S.

Show that if § # @ and is bounded above (below) then sup S (infS) is unique. That is,
there is only one least upper bound and only one greatest lower bound. If § = @ can
you conclude that 7 is an upper bound? Can you conclude 7 is a lower bound? What
about 13.5? What about any other number?

Let S be a set which is bounded above and let —S denote the set {—x:x € S}. How
are inf (—S) and sup (S) related? Hint: Draw some pictures on a number line. What
about sup (—S) and infS where S is a set which is bounded below?

Which of the field axioms is being abused in the following argument that 0 = 2? Let
x=y=1.Then
0=x"—y"=(x—y) (x+y)

and so 0 = (x—y) (x+y). Now divide both sides by x —y to obtain 0 = x+y =
1+1=2.

Give conditions under which equality holds in the triangle inequality.

Let k < n where k and n are natural numbers. P (n,k), permutations of » things taken
k at a time, is defined to be the number of different ways to form an ordered list of k
of the numbers, {1,2,--- ,n}. Show

P(nk)y=n-(n—1)---(n—k+1)=

(n—k)!’

Using the preceding problem, show the number of ways of selecting a set of k things
from a set of n things is (}).

Prove the binomial theorem from Problem 7. Hint: When you take (x+y)" , note that
the result will be a sum of terms of the form, akx”’kyk and you need to determine
what a; should be. Imagine writing (x+y)" = (x+y) (x+)--- (x+y) where there
are n factors in the product. Now consider what happens when you multiply. Each
factor contributes either an x or a y to a typical term.

Prove by induction that n < 2" for all natural numbers, n > 1.

Prove by the binomial theorem and Problem 7 that the number of subsets of a given
finite set containing n elements is 2".

Let n be a natural number and let k; + k» + -- -k, = n where k; is a non negative

integer. The symbol
n
kiky -k,

denotes the number of ways of selecting r subsets of {1,--- ,n}, which subsets con-
tain k1, k» - - - k, elements in them. Find a formula for this number.
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Is it ever the case that (a+b)" = a" + b" for a and b positive real numbers?
Is it ever the case that va% 4+ b = a+ b for a and b positive real numbers?

Is it ever the case that )ﬁy = % + )l for x and y positive real numbers?

Derive a formula for the multinomial expansion, (¥_, ax)" which is analogous to
the binomial expansion. Hint: See Problem 8.

Suppose a > 0 and that x is a real number which satisfies the quadratic equation,
ax’ +bx+c=0.

Find a formula for x in terms of a and b and square roots of expressions involving
these numbers. Hint: First divide by a to get x> + Zer 2 =0. Then add and subtract
the quantity b? /4a>. Verify that

x2+éx+b—2— x+£ 2
a 4a2 2a )

Now solve the result for x. The process by which this was accomplished in adding
in the term b?/4a? is referred to as completing the square. You should obtain the

quadratic formula,
—b++Vb?—4ac
X=—
2a

The expression b> — 4ac is called the discriminant. When it is positive there are two
different real roots. When it is zero, there is exactly one real root and when it equals
a negative number there are no real roots.

Find u such that —% +u and —%’ — u are roots of x> 4 bx + ¢ = 0. Obtain the quadratic
formula from this. >

Suppose f(x) = 3x> 4+ 7x — 17. Find the value of x at which f(x) is smallest by
completing the square. Also determine f (R) and sketch the graph of f. Hint:

7 17 7 49 49 17
— 2020 = 2,y 2727
flx) = 3(x +3x 3) <x +3x+36 36 3)

Il

w
VR
N

=

+
AN
~
[\e)

|
w‘-lk
[e)Y I\~

|
@[3
~—

Suppose f (x) = —5x>+8x — 7. Find f(R). In particular, find the largest value of
f(x) and the value of x at which it occurs. Can you conjecture and prove a result
about y = ax? + bx + ¢ in terms of the sign of a based on these last two problems?

Show that if it is assumed R is complete, then the Archimedean property can be
proved. Hint: Suppose completeness and let a > 0. If there exists x € R such that
na < x for all n € N, then x/a is an upper bound for N. Let / be the least upper bound
and argue there exists n € NN [l —1/4,1]. Now what about n+ 1?

2The ancient Babylonians knew how to solve these quadratic equations sometime before 1700 B.C.
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21. Suppose you numbers a; for each k a positive integer and that a; < ay <---. Let A
be the set of these numbers just described. Also suppose there exists an upper bound
L such that each a; < L. Then there exists N such that if n > N, then (supA — & <
a, < supA].

22. If A C B for A # 0 and A, B are sets of real numbers, show that inf (A) > inf (B) and
sup (A) < sup(B).

2.13 The Complex Numbers

Just as a real number should be considered as a point on the line, a complex number is
considered a point in the plane which can be identified in the usual way using the Cartesian
coordinates of the point. Thus (a,b) identifies a point whose x coordinate is a and whose
y coordinate is b. In dealing with complex numbers, such a point is written as a + ib. For
example, in the following picture, I have graphed the point 3 4 2i. You see it corresponds
to the point in the plane whose coordinates are (3,2).

342

Multiplication and addition are defined in the most obvious way subject to the conven-
tion that i2 = —1. Thus,

(a+ib)+ (c+id) = (a+c)+i(b+d)
and
(a+ib) (c+id) = ac + iad + ibc + i*bd = (ac — bd) +i(bc +ad) .

Every non zero complex number, a + ib, with a®> 4+ b # 0, has a unique multiplicative

inverse.
1 a—1ib a b

atib  @+Db a2+ b2 _laz—l—bz'

You should prove the following theorem.

Theorem 2.13.1 7re complex numbers with multiplication and addition defined as
above form a field satisfying all the field axioms listed on Page 9.

The field of complex numbers is denoted as C. An important construction regarding
complex numbers is the complex conjugate denoted by a horizontal line above the number.
It is defined as follows.

a+ib=a—ib.

What it does is reflect a given complex number across the x axis. Algebraically, the follow-
ing formula is easy to obtain.

a+ib)(a+ib)=a*+b.
(a+ib) (a+ib)
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Definition 2.13.2 Define the absolute value of a complex number as follows.

la+ib| = \/a%+b2.
Thus, denoting by z the complex number z = a+ ib,
\1/2

2| = (2)

Be sure to verify the last claim in this definition. With this definition, it is important to
note the following. Be sure to verify this. It is not too hard but you need to do it.

Remark 2.13.3 : Letz=a+iband w=c+id. Then

lz—w| = \/(a—c)2+(b—d)2.

Thus the distance between the point in the plane determined by the ordered pair, (a,b) and
the ordered pair (c,d) equals |z — w| where z and w are as just described.

For example, consider the distance between (2,5) and (1,8) . From the distance formula
which you should have seen in either algebra or calculus, this distance is defined as

V=17 +(5-8) = VIO,
On the other hand, letting z=2+i5and w=1+4i8,z—w =1—i3 and so
(z=w)(z—w)=(1-i3)(1+i3) =10
s0 |z —w| = V/10, the same thing obtained with the distance formula.

Notation 2.13.4 From now on I will sometimes use the symbol F to denote either C or R,
rather than fussing over which one is meant because it often does not make any difference.

The triangle inequality holds for the complex numbers just like it does for the real
numbers.

Theorem 2.13.5 Letz,w e C. Then
wtz| < w2, |zl = wl| < |z —wl.
Proof: First note |zw| = |z| |w|. Here is why: If z = x+ iy and w = u+ iv, then
ol =[x+ iy) (et v)[* = e — yv+i (v -+ yu)
= (xu—y)? + (v +yu)* = i +y? +x7 + v
Now look at the right side.

22 [w]? = (x4iy) (x—iy) (u+iv) (u — iv) = x2u® + ¥y + 327 + Y2,
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the same thing. Thus the rest of the proof goes just as before with real numbers. Using the
results of Problem 6 on Page 39, the following holds.

lz4w)? = (z+w)@+W) =Z+W+wi+ww

= |+ WP+ +wz

= |z2*+|wf* +2Rezw
22+ W +2[2w] = |2 + [w]* + 22| |w]
(2] + [w])®

N

and so |z+w| < |z] +|w| as claimed. The other inequality follows as before.
o] < lz—wl+|w|

and so |z| — |w| < |z —w| = |w —z| . Now do the same argument switching the roles of z and
w to conclude

lz| = w| < [z —w|, [w|—|z] < |z—w]

which implies the desired inequality. l
Since R C C and the absolute value is consistently defined, the inequality holds also on
R.

2.14 Dividing Polynomials

It will be very important to be able to work with polynomials, especially in subjects like
linear algebra and with the technique of partial fractions. It is surprising how useful this
junior high material will be. In this section, a polynomial is an expression. Later, the
expression will be used to define a function. These two ways of looking at a polynomial
are very different.

Definition 2.14.1 A polynomial is an expression of the form p(A) =
a A" +ay A" 4 a A+ ao,

a, # 0 where the a; are (real or complex) numbers, more generally elements of a field of
scalars. Two polynomials are equal means that the coefficients match for each power of
A. The degree of a polynomial is the largest power of A. Thus the degree of the above
polynomial is n. Addition of polynomials is defined in the usual way as is multiplication of
two polynomials. The leading term in the above polynomial is a,A". The coefficient of the
leading term is called the leading coefficient. It is called a monic polynomial if a, = 1. A
root of a polynomial p (L) is W such that p (1) = 0. This is also called a zero.

Note that the degree of the zero polynomial is not defined in the above. The following
is called the division algorithm. First is an important property of multiplication.

Lemma 2.14.2 If f (1) g(X) =0, then either f(A) =0 or g(A) = 0. That is, there are
no nonzero divisors of 0.
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Proof: Let f (1) have degree n and g (1) degree m. If m+n = 0, it is easy to see that the
conclusion holds because both polynomials are constants. Suppose the conclusion holds
form+n < M and suppose m+n =M+ 1. Then f (1) g (L) =

(ao +aA+--- —&-an,l}.n_l —|—an),"> (b() +biA A+ +bm,1)um_1 —l—bm)vm)

— (@A) @A) (b (1) + bud™)

= a(A)bA)+buA"a(A) +a,A"b (L) + apb A"
Either a, = 0 or b,, = 0. Suppose b,, = 0. Then it must be the case that you have

(a(A)+a,A")b(A)=0.
By induction, one of these polynomials in the product is 0. If b (1) # 0, then this shows
ap=0anda(A)=0so0 f(1)=0.Ifb(A) =0, then g(A) = 0. The argument is the same
ifa,=0. 1
Say the degree of r (A ) is m > n where the degree of g (1) is n. Say r (1) = aAd™ +1(A)

with the degree of (1) < m and g(A) = bA" + n(A) where the degree of n (1) is less

than n. Then r(A) — $A™ "g(A) has degree smaller than m. This is used in the following
fundamental lemma.

Lemma 2.14.3 Let f (1) and g (L) # 0 be polynomials. Then there exist polynomials,
q(A) and r(A) such that

FA)=qA)g(A)+r(A)
where the degree of r(A) is less than the degree of g (L) or r(A) = 0. These polynomials
q(A) and r(A) are unique.

Proof: Suppose that (1) — g (4)g(A) is never equal to O for any ¢ (4). If it is, then
the conclusion follows. Now suppose

r(A)=f*)—q(A)g(A) ()

where the degree of r (1) is as small as possible. Let it be m. Suppose m > n where n is the
degree of g(1). Say r(4) = bA™ +a(2) where a(A) is 0 or has degree less than m while
g(A)=bA"+a(A) where @a(A) is 0 or has degree less than n. Then

r(4)
r(A)— %km”‘g (A)=bA"+a(A)— (blm + %lmf"éz (l)) =a(A)—a(A),
a polynomial having degree less than m. Therefore, from the above,
=r(4) )
a(d)=a(d)=(f(2)—q()g(A)) = zA""¢(2) = f (A1) ~4(A)g(A)

which is of the same form as * having smaller degree. However, m was as small as possible.
Hence m < n after all.
As to uniqueness, if you have r(1),7(1),q(1),4(A) which work, then you would

have

(G(A)—q(R)g(2) =r(A)=#(2)
Now if the polynomial on the right is not zero, then neither is the one on the left. Hence
this would involve two polynomials which are equal although their degrees are different.
This is impossible. Hence r (1) = #(A) and so, the above lemma shows §(1) =¢(1). B
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Definition 2.14.4 et all coefficients of all polynomials come from a given field TF.
For us, T will be the real numbers R. Let p(L) = a,A" + -+ a1 A +ag be a polynomial.
Recall it is called monic if a, = 1. If you have polynomials

{p1(2),---pm (1)},

the greatest common divisor q(A) is the monic polynomial which divides each, py (L) =
q(A) Ik (L) for some I (L), written as q(A) /pr (A) and if (L) is any polynomial which
divides each py (L), then §(1) /q(A). A set of polynomials

{pl (A)v yPm ()L>}

is relatively prime if the greatest common divisor is 1.
Lemma 2.14.5 There is at most one greatest common divisor.

Proof: If you had two, §(A) and g(A), then § (A1) /g(A) and ¢(A) /§(A) so g(A) =
G(A)I(A) =q(A)1(A)I(A) and now it follows, since both §(A) and ¢ (A) are monic that
[(A)and [ (A) are both equal to 1. B

The next proposition is remarkable. It describes the greatest common divisor in a very

useful way.

Proposition 2.14.6 The greatest common divisor of {p1 (1), -, pm (L)} exists and is
characterized as the monic polynomial of smallest degree equal to an expression of the
form

(ngE

ax (L) pr (L), the ar (A) being polynomials. 2.1

k=1

Proof: First I need show that if g(4) is monic of the above form with smallest de-
gree, then it is the greatest common divisor. If ¢(A) fails to divide pi (1), then pi (1) =
q(A)I(A)+r(A) where the degree of r (1) is smaller than the degree of ¢ (4). Thus,

F() = () —1(A) Y @ (M) pe (1)
k=1

which violates the condition that ¢ (A1) has smallest degree. Thus g (1) /py (A) for each k.
If §(A) divides each py (1) then it must divide g (1) because g (A) is given by 2.1. Hence
q (M) is the greatest common divisor.

Next, why does such greatest common divisor exist? Simply pick the monic polynomial
which has smallest degree which is of the form Y}" | ax (1) pr (A). Then from what was
just shown, it is the greatest common divisor. ll

Proposition 2.14.7 Let p(A) be a polynomial. Then there are polynomials p; (1) such
that

p(A)= aHpi (A)™ 2.2)

where m; € N and {p1 (L), ,pm (L)} are monic and relatively prime. Every subset of
{p1(A), -, pm (X))} having at least 2 elements is also relatively prime.
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Proof: If there is no polynomial of degree larger than O dividing p (1), then we are
done. Simply pick a such that p(4) is monic. Otherwise p(A) = ap; (A1) p2 (A) where
pi(A) is monic and each has degree at least 1. These could be the same polynomial. If
some nonconstant polynomial divides each p; (1), factor further. Continue doing this.
Eventually the process must end with a factorization as described in 2.2 because the degrees
of the factors are decreasing. The claim about the subsets is clear because each polynomial
is irreducible so the only monic polynomial dividing any of them is itself and 1. Il

2.15 The Cauchy Schwarz Inequality

This fundamental inequality takes several forms. I will present the version first given by
Cauchy although I am not sure if the proof is the same.

Proposition 2.15.1 Let zj,w; be complex numbers. Then

(g0) (5)

Proof: First note that Y.7_, z,z; = ¥7_, |z j,z > 0. Next, if a+ ib is a complex number,
' : a—ib
a2+b?
Thus, in either case, there exists a complex number 6 such that || =1 and 0 (a+ib) =
la+ib| = Va?>+b> Now let |6] = 1 and

)4
0 ZZ;WJ‘:
=1

)4
Y zwi
j=1

consider 6 = 1 if both a,b are zero and 0 = if the complex number is not zero.

)4
Y zwi
j=1

Then for ¢ a real number,

p L
0 < p()= Z (zj+16w;) (z*jthij)
=1

a? b?
— ——
P P _ P P
= ZQTj—l- thewj'—l- l9WjTj+IZZWjo
J=1 Jj=1 Jj=1 Jj=1
P P
=a’+2tRe® Y wT+1°0* =a> +2t| Y wizj| +17b
J=1 J=1

Since this is always nonnegative for all real ¢, it follows from the quadratic formula that

2
P P
_4<ZZJ'ZJ> <ZW/W1> <0
= =

Indeed, p (¢) = 0 either has exactly one real root or no real roots. Thus the desired inequality
follows. l

2

4 —4a*h? =4

J

p
WjZj
=1

)4
Y wiz
j=1
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2.16 Integer Multiples of Irrational Numbers

This section will give a proof of a remarkable result. I think its proof, based on the pigeon
hole principle, is even more interesting than the result obtained. Dirichlet proved it in
the 1830’s. Jacobi used similar ideas around the same time in studying elliptic functions.
The theorem involves the sum of integer multiples of numbers whose ratio is irrational.
If a/b is irrational, then it is not possible that ma + nb = 0,m,m € Z because if this were
s0, you would have —* = g and so the ratio of a,b is rational after all. Even though you
cannot get 0 (which you can get if the ratio of a and b is rational) you can get such an
integer combination arbitrarily small. Dirichlet did this in the 1830’s long before Dedekind

constructed the real numbers in 1858, published in 1872.

Theorem 2.16.1 If a,b are real numbers and a/b is not rational, then for every
€ > 0 there exist integers m,n such that |ma -+ nb| < €.

Proof: Let Py denote all combinations of the form ma + nb where m, n are integers and
Im|,|n| < N. Thus there are (2N + 1)* of these integer combinations and all of them are
contained in the interval I = [—N (|a| +|b|) ,N (|a| + |b|)] . Now pick an integer M such that

(2N)* <M < (2N +1)?

I know such an integer exists because (2N +1)* = 4N+ 4N + 1 and so (2N +1)> —
(2N )2 =4N +1 > 2. Now partition the interval  into M equal intervals. If / is the length
of one of these intervals, then

IM = 2N(|a|+1b]),
; — 2N(al+bl) _2N(al+]b)) _ 2(lal+[B)) 1 _ C
M (2N)? 4 N N

Now as mentioned, all of the points of Py are contained in / and there are more of these
points than there are intervals in the partition of  which has only M intervals. Therefore,
some interval contains two points of Py.> But each interval has length no more than C/N
and so there exist k,lAc, l,f integers such that

ka+1b— (lAca+lAb)’ = |ma+ nb| <%

Now let € > 0 be given. Choose N large enough that C/N < €. Then the above inequality
holds for some integers m,n. B

2.17 Exercises

1. Letz=5+1i9. Find z7!.

3This is called the pigeon hole principle. It was used by Jacobi and Dirichlet. Later, Besicovitch used it in
his amazing covering theorem. In terms of pigeons, it says that if you have more pigeons than holes and they
each need to go in a hole, then some hole must have more than one pigeon. In contrast to Dirichlet, Jacobi and
others, (those who had common sense) this simple observation seems to have not been understood by people
like Brigham Young the Utah Mormon leader who made polygyny (multiple wives for a single man) a religious
expectation. In Utah there were more males than females.
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Let z=2+i7 and let w = 3 — 8. Find zw,z +w,z%, and w/z.

If z is a complex number, show there exists @ a complex number with |@| = 1 and
0z = [z].

For those who know about the trigonometric functions 4, De Moivre’s theorem says
[r(cost +isint)]" = r*(cosnt +isinnt) for n a positive integer. Prove this formula
by induction. Does this formula continue to hold for all integers n, even negative
integers? Explain.

. Using De Moivre’s theorem from Problem 4, derive a formula for sin (5x) and one for

cos (5x). Hint: Use Problem 18 on Page 26 and if you like, you might use Pascal’s
triangle to construct the binomial coefficients.

If z,w are complex numbers prove Zw = zw and then show by induction thatz; -z, =
Z1---Zm. Also verify that )" | zx = Y/ Z. In words this says the conjugate of a
product equals the product of the conjugates and the conjugate of a sum equals the
sum of the conjugates.

Suppose p (x) = apx" +a,_1xX* ' + -+ ayx+ap where all the a;, are real numbers.
Suppose also that p (z) = 0 for some z € C. Show it follows that p (z) = 0 also.

I claim that 1 = —1. Here is why.—1 = i = /—1/—1 = 1/(—1)* = v/1 = 1. This
is clearly a remarkable result but is there something wrong with it? If so, what is
wrong? Hint: When we push symbols without consideration of their meaning, we
can accomplish many strange and wonderful but false things.

De Moivre’s theorem of Problem 4 is really a grand thing. I plan to use it now for ra-
tional exponents, not just integers. 1 =101/4) = (cosZn+isin27r)l/4 =cos(m/2)+
isin(7/2) = i. Therefore, squaring both sides it follows 1 = —1 as in the previous
problem. What does this tell you about De Moivre’s theorem? Is there a profound
difference between raising numbers to integer powers and raising numbers to non
integer powers?

Review Problem 4 at this point. Now here is another question: If n is an integer, is it
always true that (cos 6 —isin )" = cos (n6) — isin (n6)? Explain.

Suppose you have any polynomial in cos 0 and sin 8. By this [ mean an expression
of the form Y7 ):’Z;:O agpcos” sin® @ where agp € C. Can this always be written

in the form Z;’:*f (ntmy Dy €O Y0 + yrtm e sin76? Explain.

n-+m) T=—(n+m

Does there exist a subset of C, C* which satisfies 2.4.1 - 2.4.3? Hint: You might
review the theorem about order. Show —1 cannot be in C*. Now ask questions about
—i and i. In mathematics, you can sometimes show certain things do not exist. It is
very seldom you can do this outside of mathematics. For example, does the Loch
Ness monster exist? Can you prove it does not?

Show that if a/b is irrational, then {ma+nb},, ., is dense in R, each an irra-
tional number. If a/b is rational, show that {ma+nb}, ., is not dense. Hint:

41 will present a treatment of the trig functions which is independent of plane geometry a little later.
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From Theorem 2.16.1 there exist integers, my,n; such that |ma+nb| < 27, Let
P, = Urez {k(mja+mn;b)}. Thus this is a collection of numbers which has succes-
sive numbers 2~/ apart. Then consider U;enP;. In case the ratio is rational and
{ma+nb},, ., is dense, explain why there are relatively prime integers p,q such
that p/q = a/b is rational and {mp+nq},, ,c; would be dense. Isn’t this last a
collection of integers?

This problem will show, as a special case, that the rational numbers are dense in R.
Referring to the proof of Theorem 2.16.1.

(a) Suppose o € (0,1) and is irrational. Show that if N is a positive integer, then
there are integers m,n such that 0 < n < N and |na —m| < %% (I+a) < %
Thus [a — 2| < 5 < 5.

(b) Show that if B is any nonzero irrational number, and N is a positive integer,
there exists 0 < n < N and an integer m such that ]ﬂ — %‘ < ﬁ < n% Hint:
You might consider 8 — [] = o where [B] is the integer no larger than 8 which
is as large as possible.

(c) Next notice that from the proof, the same will hold for any 8 a positive number.
Hint: In the proof, if there is a repeat in the list of numbers, then you would
have an exact approximation. Otherwise, the pigeon hole principle applies as
before. Now explain why nothing changes if you only assume f is a nonzero
real number.

This problem outlines another way to see that rational numbers are dense in R. Pick
x € R. Explain why there exists m;, the smallest integer such that 2~/m; > x so
x € (271 (m; —1),27!my]. Now note that 2~/m; is rational and closer to x than 27/,

You have a rectangle R having length 4 and height 3. There are six points in R. One
is at the center. Show that two of them are as close as /5. You might use pigeon
hole principle.

Do the same problem without assuming one point is at the center. Hint: Consider
the pictures. If not, then by pigeon hole principle, there is exactly one point in each
of the six rectangles in first two pictures.

a(A)
p(A)"
nomial meaning that the only polynomials dividing p(A) are numbers and scalar
multiples of p(A). That is, you can’t factor it any further. Show that r (1) is of the

form

Suppose r(A) = where a(A) is a polynomial and p (1) is an irreducible poly-

b (1)
p(A)

r(A)=q(A)+ Z where degree of b (1) < degree of p (1)
k=1

a(A)

1Suppose you have a rational function IOk




2.17. EXERCISES 41

20.

21.

22.

m where {p1 (1), -, pm (L)} are rela-

tively prime and the degree of n () is less than the degree of [T/, p; (A)™.

(a) Show it is of the form p (1) +

(b) Using Proposition 2.14.6 and the division algorithm for polynomials, show that
the original rational function is of the form

where the degree of ny; (A) is less than the degree of p; (A) and p (1) is some
polynomial.

This is the partial fractions expansion of the rational function. Actually carrying out
this computation may be impossible, but this shows the existence of such a partial
fractions expansion. Hint: You might induct on the sum of the m; and use Proposition
2.14.6.

One can give a fairly simple algorithm to find the g.c.d., greatest common divisor
of two polynomials. The coefficients are in some field. For us, this will be either
the real, rational, or complex numbers. However, in general, the algorithm for long
division would be carried out in whatever field includes the coefficients. Explain the
following steps. Let ro (1), r; (A) be polynomials with the degree of ro (1) at least
as large as the degree of r| (). Then do division.

) (l) =n (l)fl A)+nr (l)

where r; (A) has smaller degree than | (1) or else is 0. If 7, (1) is 0, then the g.c.d.
of ri (A),ro (L) is 1 (). Otherwise, [ (A) /ro (A),r; (1) if and only if

LX) /ri(4),r2(A).

Do division again

r(A)=r2(A) f2(A)+r3(A)

where deg (r3 (1)) < deg(ra(A)) orr3(A)is 0. Thenl(A) /rp (A),r3 (1) if and only
if 1 (A) divides both r; (A) and r, (A) if and only if [ (A) /ro (A1) ,r1 (X).If r3 (1) =0,
then rp (1) /ra(A),r1 (A) soalso rp (A) /ro(A),r (1) and also, if

L(A) /ro(4),ri(A),

then /(A1) /ri (),r2 (A) and in particular, [ (1) /r; (A) so if this happens, then r; (1)
isthe g.c.d. of ry (A) and r; (A) . Continue doing this. Eventually either r,,, .1 (A) =0
or has degree 0. If r,,,1 (1) = 0, then r,,, (A) multiplied by a suitable scalar to make
the result a monic polynomial is the g.c.d. of ro (A) and r; (A). If the degree is 0,
then the two polynomials rg (A1), (A) must be relatively prime. It is really signif-
icant that this can be done because fundamental theorems in linear algebra depend
on whether two polynomials are relatively prime having g.c.d. equal to 1. In this
application, it is typically a question about a polynomial and its derivative.

Find the g.c.d. for (x4 +3x2 —|—2) , (x2 + 3) .

Find g.c.d. of (x5 +3x83 +x2 4 3) , (x2 + 3) .
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Find the g.c.d. of (x6+2x5 +x* 4323 +2x2—|—x+2) , (x4+2x3 —|—x+2) .

Find the g.c.d. of (x4 +33 +2x+ 1), (4x3 +9x2+ 2). If you do this one by hand, it
might be made easier to note that the question of interest is resolved if you multiply
everything with a nonzero scalar before you do long division.

Prove the pigeon hole principle by induction.



Chapter 3

Set Theory

3.1 Basic Definitions

This chapter has more on set theory. Recall a set is a collection of things called elements
of the set. For example, the set of integers, the collection of signed whole numbers such
as 1,2,—4, etc. This set whose existence will be assumed is denoted by Z. Other sets
could be the set of people in a family or the set of donuts in a display case at the store.
Sometimes parentheses, { } specify a set by listing the things which are in the set between
the parentheses. For example the set of integers between —1 and 2, including these numbers
could be denoted as {—1,0,1,2}. The notation signifying x is an element of a set S, is
written as x € S. Thus, 1 € {—1,0,1,2,3}. Here are some axioms about sets.

Axiom 3.1.1 Two sets are equal if and only if they have the same elements.

Axiom 3.1.2 To every set, A, and to every condition S (x) there corresponds a set B, whose
elements are exactly those elements x of A for which S (x) holds.

Axiom 3.1.3 For every collection of sets there exists a set that contains all the elements
that belong to at least one set of the given collection.

Axiom 3.1.4 The Cartesian product of a nonempty family of nonempty sets is nonempty.

Axiom 3.1.5 If A is a set there exists a set & (A), such that & (A) is the set of all subsets
of A. This is called the power set.

These axioms are referred to as the axiom of extension, axiom of specification, axiom
of unions, axiom of choice, and axiom of powers respectively.

It seems fairly clear you should want to believe in the axiom of extension. It is merely
saying, for example, that {1,2,3} = {2,3, 1} since these two sets have the same elements
in them. Similarly, it would seem you should be able to specify a new set from a given set
using some ‘“condition” which can be used as a test to determine whether the element in
question is in the set. For example, the set of all integers which are multiples of 2. This set
could be specified as follows.

{x€Z:x=2yforsomeycZ}.

43
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In this notation, the colon is read as “such that” and in this case the condition is being a
multiple of 2.

Another example of political interest, could be the set of all judges who are not judicial
activists. I think you can see this last is not a very precise condition since there is no way
to determine to everyone’s satisfaction whether a given judge is an activist. Also, just
because something is grammatically correct does not mean it makes any sense. For
example consider the following nonsense.

S = {x esetof dogs : it is colder in the mountains than in the winter} .

So what is a condition?

We will leave these sorts of considerations and assume our conditions “make sense”.
The axiom of unions states that for any collection of sets, there is a set consisting of all
the elements in each of the sets in the collection. Of course this is also open to further
consideration. What is a collection? Maybe it would be better to say “set of sets” or, given
a set whose elements are sets there exists a set whose elements consist of exactly those
things which are elements of at least one of these sets. If . is such a set whose elements
are sets,

U{A:Ae .S} or U

signifies this union.

Something is in the Cartesian product of a set or “family” of sets if it consists of a single
thing taken from each set in the family. Thus (1,2,3) € {1,4,.2} x {1,2,7} x {4,3,7,9}
because it consists of exactly one element from each of the sets which are separated by x.
Also, this is the notation for the Cartesian product of finitely many sets. If . is a set whose
elements are sets, [[4<.~ A signifies the Cartesian product.

The Cartesian product is the set of choice functions, a choice function being a function
which selects exactly one element of each set of .. Functions will be described precisely
soon. The idea is that there is something, which will produce a set consisting of exactly one
element of each set of .. You may think the axiom of choice, stating that the Cartesian
product of a nonempty family of nonempty sets is nonempty, is innocuous but there was a
time when many mathematicians were ready to throw it out because it implies things which
are very hard to believe, things which never happen without the axiom of choice.

A is a subset of B, written A C B, if every element of A is also an element of B. This can
also be written as B D A. A is a proper subset of B, written A C B or B D A if A is a subset
of B but A is not equal to B,A # B. However, this is not entirely consistent. Sometimes
people write A C B when they mean A C B. AN B denotes the intersection of the two sets,
A and B and it means the set of elements of A which are also elements of B. The axiom
of specification shows this is a set. The empty set is the set which has no elements in it,
denoted as 0. AU B denotes the union of the two sets, A and B and it means the set of all
elements which are in either of the sets. It is a set because of the axiom of unions.

The complement of a set, (the set of things which are not in the given set ) must be
taken with respect to a given set called the universal set, a set which contains the one
whose complement is being taken. Thus, the complement of A, denoted as A ( or more
precisely as X \ A) is a set obtained from using the axiom of specification to write

A={xecX:x¢A}

The symbol ¢ means: “is not an element of”. Note the axiom of specification takes place
relative to a given set. Without this universal set, it makes no sense to use the axiom of
specification to obtain the complement.
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Words such as “all” or “there exists” are called quantifiers and they must be understood
relative to some given set. For example, the set of all integers larger than 3. Or there
exists an integer larger than 7. Such statements have to do with a given set, in this case the
integers. Failure to have a reference set when quantifiers are used turns out to be illogical
even though such usage may be grammatically correct. Quantifiers are used often enough
that there are symbols for them. The symbol V is read as “for all” or “for every” and the
symbol J is read as “there exists”. Thus ¥V33 could mean for every upside down A there
exists a backwards E.

DeMorgan’s laws are very useful in mathematics. Let .# be a set of sets each of which
is contained in some universal set, U. Then

u{AC:ae 7} =(N{A:Ae 7})°

and
N{AC:Ae .7} =(Uf{A:Ac 7})°.
These laws follow directly from the definitions. Also following directly from the definitions

are:
Let . be a set of sets then

BUU{A:Ae Y} =U{BUA:Ac Y}.
and: Let . be a set of sets show
BNU{A:Ae ¥} =U{BNA:Ae€ .V}.

Unfortunately, there is no single universal set which can be used for all sets. Here is
why: Suppose there were. Call it S. Then you could consider A the set of all elements of
S which are not elements of themselves, this from the axiom of specification. If A is an
element of itself, then it fails to qualify for inclusion in A. Therefore, it must not be an
element of itself. However, if A is not an element of itself, it qualifies for inclusion in A so
it is an element of itself and so this can’t be true either. Thus the most basic of conditions
you could imagine, that of being an element of, is meaningless and so allowing such a
set causes the whole theory to be meaningless. The solution is to not allow a universal
set. As mentioned by Halmos in Naive set theory, “Nothing contains everything”. Always
beware of statements involving quantifiers wherever they occur, even this one. This little
observation described above is due to Bertrand Russell and is called Russell’s paradox.

Example 3.1.6 Various religions, including my own, use the word “omnipotent” as an
attribute of god. It “means” god can do all things. Isn’t there a universal quantifier with
no universal set specified? Incidentally, when speaking to religious people, it is often best
not to call attention to this fact so they won’t think you are an atheist like Russell. Many
of the same people who believe in an “omnipotent” god are concerned with the problem of
evil (theodicy). Why does god allow evil, suffering, and sorrow? This leads to: Why does
an omnipotent god allow these things? Is god even “good”? I have heard much agonizing
over the latter question in my life, but never any consideration whether it makes sense.
Theodicy has concerned intelligent people since the time of Jeremiah. See Chapter 12
of Jeremiah for example, and the profound discussion in the book of Job. However, linking
theodicy to illogical words only makes it even more difficult and challenges the existence of
God for those who don’t realize that the omni words don’t make good sense. It only takes
one of these to make their god’s existence meaningless, but religious people usually insist
on saddling god with several of them. If they knew about Russell’s paradox it would help.



46 CHAPTER 3. SET THEORY

3.2 The Schroder Bernstein Theorem

It is very important to be able to compare the size of sets in a rational way. The most useful
theorem in this context is the Schroder Bernstein theorem which is the main result to be
presented in this section. The Cartesian product is discussed above. The next definition
reviews this and defines the abstract notion of a function.

Definition 3.2.1 et X, v be sets. X xY = {(x,y) :x€X and y €Y} . A relation is
defined to be a subset of X X Y. A function f, also called a mapping, is a relation which has
the property that if (x,y) and (x,y;) are both elements of the f, then y =y;. The domain of
f is defined as
D(f)={x:(xy) € f},
written as f : D(f) — Y and we write y = f(x). Another notation which is used is the
following
) ={xeD(f): f(x) =y}

This is called the inverse image.

It is probably safe to say that most people do not think of functions as a type of relation
which is a subset of the Cartesian product of two sets. A function is like a machine which
takes inputs, x and makes them into a unique output, f(x). Of course, that is what the
above definition says with more precision. An ordered pair, (x,y) which is an element of
the function or mapping has an input, x and a unique output y, denoted as f (x) while the
name of the function is f. “mapping” is often a noun meaning function. However, it also
is a verb as in “f is mapping A to B . That which a function is thought of as doing is also
referred to using the word “maps” as in: f maps X to Y. However, a set of functions may
be called a set of maps so this word might also be used as the plural of a noun. There is no
help for it. You just have to suffer with this nonsense.

The following theorem which is interesting for its own sake will be used to prove the
Schroder Bernstein theorem, proved by Dedekind in 1887. The shortest proof I have seen
is in Hewitt and Stromberg [ 1 6] and this is the version given here. There is another version
in Halmos [14].

Theorem 3.2.2 L f:X—=Yandg:Y — X be two functions. Then there exist sets
A,B,C,D, such that

AUB=X,CUD=Y,ANB=0,CND =0,
f(A)=C, g(D)=B.
The following picture illustrates the conclusion of this theorem.

X Y

A — |C=f(A)
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Proof: Consider the empty set, 0 C X. If y € Y\ £(0), then g(y) ¢ 0 because 0 has
no elements. Also, if A,B,C, and D are as described above, A also would have this same
property that the empty set has. However, A is probably larger. Therefore, say A9 C X
satisfies &7 if whenevery € Y\ f (Ao), g(y) ¢ Ao.

o ={Ag C X : Ay satisfies #}.

LetA=Ug. Ifye Y\ f(A), then foreach Ag € &7,y €Y \ f (Ao) and so g (y) ¢ Ap. Since
g(y) ¢ A forall Ag € &7, it follows g (y) ¢ A. Hence A satisfies & and is the largest subset
of X which does so. Now define

C=f(A),D=Y\C, B=X\A.

It only remains to verify that g (D) = B. It was just shown that g (D) C B.

Suppose x € B=X \ A. Then AU {x} does not satisfy &2 because it is too large, and so
there exists y € Y\ f (AU{x}) C D such that g (y) e AU{x}. Buty ¢ f(A) and so since A
satisfies 2, it follows g (y) ¢ A. Hence g(y) = x and so x € g(D). Hence g(D) =B. &

Theorem 3.2.3 (Schroder Bernstein) If f : X — Y and g : Y — X are one to one,
then there exists h : X — Y which is one to one and onto.

Proof: Let A, B,C, D be the sets of Theorem 3.2.2 and define

[ fx) ifxeA
h() _{ g '(x)ifxeB

Then 4 is the desired one to one and onto mapping. l
Recall that the Cartesian product may be considered as the collection of choice func-
tions.

Definition 3.2.4 Let 1 be a set and let X; be a nonempty set for each i € 1. fisa
choice function written as
fe HXi

icl
if f (i) € X; for each i € I. The axiom of choice says that if X; # 0 for each i € I, for I a set,
then
[Tx: #o0.
icl
Sometimes the two functions, f and g are onto but not one to one. It turns out that with

the axiom of choice, a similar conclusion to the above may be obtained.

Corollary 3.2.5 Iff: X — Y isonto and g : Y — X is onto, then there exists h: X — Y
which is one to one and onto.

Proof: Foreachyc Y, f~'(y) = {x€ X : f(x) =y} # 0. Therefore, by the axiom of
choice, there exists f; le [Ler f ~1(y) which is the same as saying that for each y € Y,

fo—l (v) € £~ (y). Similarly, there exists 8o '(x) € g~ ' (x) for all x € X. Then fo_l is one to
one because if f; ' (vi) = f; ' (y2). then

=" 0n0) =1 02) =y
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Similarly g ! is one to one. Therefore, by the Schroder Bernstein theorem, there exists
h: X — Y which is one to one and onto. l

We have already made reference to finite sets in the pigeon hole principle. The follow-
ing is just a more formal definition of what is meant by a finite set and this is generalized
to what is meant by a countable set.

Definition 3.2.6 A set S, is finite if there exists a natural number n and a map 0
which maps {1,--- ,n} one to one and onto S. S is infinite if it is not finite. A set S, is called
countable if there exists a map 0 mapping N one to one and onto S.(When 0 maps a set A
to a set B, is written as 0 : A — B in the future.) Here N = {1,2,--- }, the natural numbers.
S is at most countable if there exists a map 0 : N — S which is onto.

The property of being at most countable is often referred to as being countable because
the question of interest is normally whether one can list all elements of the set, designating
a first, second, third etc. in such a way as to give each element of the set a natural number.
The possibility that a single element of the set may be counted more than once is often not
important.

Theorem 3.2.7 If X and Y are both at most countable, then X XY is also at most
countable. If either X orY is countable, then X X Y is also countable.

Proof: It is given that there exists a mapping 1 : N — X which is onto. Define 1 (i) = x;
and consider X as the set {x1,x,x3,--- }. Similarly, consider Y as the set {y;,y2,y3,---}. It
follows the elements of X x Y are included in the following rectangular array.

(x1,y1)  (x1,02) (x1,y3) -+ < Those which have x; in first slot.
(x2,y1) (x2,y2) (x2,y3) -+ < Those which have x; in first slot.

(x3,y1) (x3,02) (x3,y3) -+ < Those which have x3 in first slot. -

Follow a path through this array as follows.

(x1,01) = (x1,2) (x1,y3) —
v A
(x2,31) (x2,y2)
{ a
(x3,y1)

Thus the first element of X x Y is (x1,y1), the second element of X x ¥ is (x1,y2), the third
element of X X Y is (x»,y1) etc. This assigns a number from N to each element of X x Y.
Thus X x Y is at most countable.

It remains to show the last claim. Suppose without loss of generality that X is countable.
Then there exists o : N — X which is one to one and onto. Let § : X x ¥ — N be defined
by B((x,y)) = a~!(x). Thus B is onto N. By the first part there exists a function from
Nonto X xY. Therefore, by Corollary 3.2.5, there exists a one to one and onto mapping
fromX xY toN. H

Theorem 3.2.8 If X and Y are at most countable, then X UY is at most countable.
If either X orY is infinite, then X UY is countable.
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Proof: As in the preceding theorem,

X = {)Cl,x2,)63," }

and
Y:{)’17)’2»)’3,"'}~

Consider the following array consisting of X UY and path through it.

X1 — X2 X3 —
vd S
yr — »

Thus the first element of X UY is x1, the second is x, the third is y; the fourth is y, etc.

Consider the second claim. By the first part, there is a map from N onto X x Y. Suppose
without loss of generality that X is countable and & : N — X is one to one and onto. Then
define B (y) =1, forall y € Y,and B (x) = a~' (x). Thus, 8 maps X x Y onto N and this
shows there exist two onto maps, one mapping X UY onto N and the other mapping N onto
X UY. Then Corollary 3.2.5 yields the conclusion. ll

Note that by induction this shows that if you have any finite set whose elements are
countable sets, then the union of these is countable. In fact, you can say that a countable
union of countable sets is countable.

=

Theorem 3.2.9 Let A; be a countable set. Thus A; = {r;} " Then U7 |A; is also
J:
at most a countable set. If it is an infinite set, then it is countable.

Proof: This is proved like Theorem 3.2.7 arrange U7, A; as follows.

11
177
T30
non n

Now take a route through this rectangular array as in Theorem 3.2.7, identifying an enumer-
ation in the order in which the displayed elements are encountered as done in that theorem.
Thus there is an onto mapping from N to U | A; and so U7, A; is at most countable, mean-
ing its elements can be enumerated. However, if any of the A; is infinite or if the union is,
then there is an onto map from U;Z | A; onto N and so from Corollary 3.2.5, there would be
a one to one and onto map between N and U ;| A;. B

As mentioned, in virtually all applications to analysis, the topic of main interest is “at
most countable” meaning that the elements of a set S can be listed with subscripts from
N to obtain them all. More precisely, there is a map from N onto the set S. Often people
simply refer to such a set as countable.

3.3 Equivalence Relations

There are many ways to compare elements of a set other than to say two elements are equal
or the same. For example, in the set of people let two people be equivalent if they have the
same weight. This would not be saying they were the same person, just that they weighed
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the same. Often such relations involve considering one characteristic of the elements of a
set and then saying the two elements are equivalent if they are the same as far as the given
characteristic is concerned.

Definition 3.3.1 Let S be a set. ~ isan equivalence relation on S if it satisfies the
following axioms.

1. x~x forall x €S. (Reflexive)
2. Ifx ~y theny ~ x. (Symmetric)
3. Ifx~yandy~ z then x ~ z. (Transitive)

Definition 3.3.2 [x] denotes the set of all elements of S which are equivalent to x
and [x] is called the equivalence class determined by x or just the equivalence class of x.

With the above definition one can prove the following simple theorem.

Theorem 3.3.3 Let ~ be an equivalence relation defined on a set, S and let ¢
denote the set of equivalence classes. Then if [x] and [y] are two of these equivalence
classes, either x ~y and [x] = [y] or it is not true that x ~y and [x| N [y] = 0.

3.4 Hausdorff Maximal Theorem*

The Hausdorff maximal theorem is equivalent to the axiom of choice. Hausdorff proved
it in 1914. The useful direction is what I will prove below. It will not be used much in
the rest of the book which is mostly nineteenth century material. I am including it because
it or something like it is either absolutely essential, as in the Hahn Banach theorem, or
extremely useful to have.

Definition 3.4.1 ror any set S, (S) denotes the set of all subsets of S. It is some-
times called the power set of S and is also sometimes denoted as 25. A nonempty set F is
called a partially ordered set if it has a partial order denoted by <. This means it satisfies
the following. If x <y and y < z, then x < z. Also x < x. It is like C on the set of all subsets
of a given set. It is not the case that given two elements of F that they are related. In other
words, you cannot conclude that either x <y ory < x. A chain, denoted by € C .F has the
property that it is totally ordered meaning that if x,y € €, either x <y ory < x. A maximal
chain is a chain € which has the property that there is no strictly larger chain. In other
words, ifx € F\UE, then €U{x} is no longer a chain so x fails to be related to something
ine.

Here is the Hausdorff maximal theorem. The proof is a proof by contradiction. We
assume there is no maximal chain and then show that this cannot happen. The axiom of
choice is used in choosing the x4 right at the beginning of the argument. See Hewitt and
Stromberg [16] for more of this kind of thing.

Theorem 3.4.2 Let F bea nonempty partially ordered set with order <. Then there
exists a maximal chain.
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Proof: Suppose no chain is maximal. Then for each chain € there exists xy € F\U%¥
such that € U {x¢} is a chain. Call two chains comparable if one is a subset of the other.
Let 2 be the set of all chains. Thus the elements of 2" are chains and .2 is a subset of
P (F). For € a chain, let 0% denote € U {x4}. Pick xo € .%. A subset & of 2 will
be called a “tower” if 0€ € % whenever € € %', xo € U€ forall € € %, and if .¥ is a
subset of " such that all pairs of chains in .% are comparable, then U.¥ is in %'. Note that
A is a tower. Let % be the intersection of all towers. Then % is also a tower, the smallest
one. This follows from the definition.

Claim 1: If 6 € %) is comparable to every chain € € %, then if 6y C €, it must be
the case that 8%y C %. The symbol C indicates proper subset.

Proof of Claim 1: Consider Z= {2 € % : 2 C € or x4, € UZ}. Let %) = %N AB.
I want to argue that % is a tower. Obviously all chains of %] contain x in their unions. If
DeW,is09 € %?

case 1: 7 2 6. Then x4 € UZ and so x¢, € UOZ 50 0 € 2.

case 2: 9 C €. Then if 02 2 %, it follows that 2 C 6y & 2U{xg}. fx € 6\ 2
then x = x¢. But then

6o & @U{x@} Q%U{xg} =%

which is nonsense, and so 6y = 2 s0 xg = x4, € UO%) = UOZ and so 07 € #. If
02 C %) then right away 02 € A. Thus B = %) because %] cannot be smaller than %.
In particular, if 2 2 €, then x¢, € UZ or in other words, 8%, C 2.

Claim 2: Any two chains in % are comparable so if € C 2, then 04 C 2.

Proof of Claim 2: Let % consist of all chains of % which are comparable to every
chain of %. (Like % above.) I want to show that %] is a tower. Let € € %] and Z € %.
Since ¥ is comparable to all chains in %, either € C Z or € 2 2. 1need to show that
0% is comparable with &. The second case is obvious so consider the first that 4 C 2.
By Claim 1, 64 C 2. Since ¥ is arbitrary, this shows that %] is a tower. Hence %] = %)
because % is as small as possible. It follows that every two chains in % are comparable
and so if € C 2, then 64 C 2.

Since every pair of chains in %y are comparable and % is a tower, it follows that
U%) € % so U% is a chain. However, 6 U % is a chain which properly contains U%
and since % is a tower, 8 U% € %,. Thus U(60U%) 2 U(U%p) 2 U(6U%) whichis a
contradiction. Therefore, it is impossible to obtain the x¢ described above for some chain
% and so, this ¥ is a maximal chain.

3.5 Exercises

1. The Barber of Seville is a man and he shaves exactly those men who do not shave
themselves. Who shaves the Barber?

2. Do you believe each person who has ever lived on this earth has the right to do
whatever he or she wants? (Note the use of the universal quantifier with no set in
sight.) If you believe this, do you really believe what you say you believe? What of
those people who want to deprive others their right to do what they want? (This is
not hypothetical. Tyrants usually seek to deprive others of their agency to do what
they want. Do they have a right to do this if they want to?)

3. Only the good die young. It says so in a song. Which is the correct diagram to
correspond to this statement? Sometimes such pictures are helpful.
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10.

11.

12.

13.
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the good die young

die young the good

DeMorgan’s laws are very useful in mathematics. Let . be a set of sets each of
which is contained in some universal set, U. Show

U{A:Ae s} =(N{a:Ae 7})°

and
N{AC:Ae 7} =(Uf{A:Ae 7})°.

Let . be a set of sets show BUU{A:A € .} =U{BUA:Aec ¥}.

Let . be a set of sets show BNU{A:A € .Y} =U{BNA:Aec V}.

. Show the rational numbers are countable, this is in spite of the fact that between any

two integers there are infinitely many rational numbers. What does this show about
the usefulness of common sense and instinct in mathematics?

From Problem 7 the rational numbers can be listed as {r;};-, . Let j € N. Show that

o oo 1 1 o | oo 1 1
Q=UZ, Nj=1 (r,'— ;J’i"‘ ]> , R= M= Uiz (”i— j,ri—|—j)
Thus you can’t switch intersections and unions in general.

Show the set of all subsets of N, the natural numbers, which have 3 elements, is
countable. Is the set of all subsets of N which have finitely many elements countable?
How about the set of all subsets of N?

We say a number is an algebraic number if it is the solution of an equation of the
form a,x" +---+ajx+ap = 0 where all the a; are integers and all exponents are
also integers. Thus /2 is an algebraic number because it is a solution of the equation
x> —2 = 0. Using the observation that any such equation has at most n solutions,
show the set of all algebraic numbers is countable.

Let A be a nonempty set and let &2 (A) be its power set, the set of all subsets of A.
Show there does not exist any function f, which maps A onto & (A). Thus the power
set is always strictly larger than the set from which it came. Hint: Suppose f is onto.
Consider S={x€A:x¢ f(x)}. If fis onto, then f(y) =S for some y € A. Is
y € f(y)? Note this argument holds for sets of any size.

The empty set is said to be a subset of every set. Why? Consider the statement: If
pigs had wings, then they could fly. Is this statement true or false?

If S ={1,---,n}, show & (S) has exactly 2" elements in it. Hint: You might try a
few cases first.
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14.

15.

16.

17.

18.

19.

20.

Let . denote the set of all sequences which have either O or 1 in every entry. You
have seen sequences in calculus. They will be discussed more formally later. Show
that the set of all such sequences cannot be countable. Hint: Such a sequence can be
thought of as an ordered list ajazas - -- where each g; is either 0 or 1. Suppose you
could list them all as follows.

a) =apanagz---
Ay = az1axazs---
a3 = as31a3azsz - -

Then consider the sequence ajjaxass--- . Obtain a sequence which can’t be in the
list by considering the sequence b1bybs--- where by is obtained by changing ay.
Explain why this sequence can’t be any of the ones which are listed.

Show that the collection of sequences aa; - - - a, such that each gy is either O or 1
such that a; = 0 for all k larger than 7 is countable. Now show that the collection of
sequences consisting of either 0 or 1 such that a; is O for all £ larger than some 7 is
also countable. However, the set of all sequences of 0 and 1 is not countable.

Let . be the set of sequences of 0 or 1. Show there exists a mapping 6 : [0,1] — .
which is onto. Explain why this requires [0, 1] to be uncountable.

Prove Theorem 3.3.3, the theorem about partitioning using an equivalence relation
into equivalence classes.

Let S be a set and consider a function f which maps & (S) to & (S) which satisfies
the following. If A C B, then f (A) C f(B). Then there exists A such that f (A) = A.
Hint: You might consider the following subset of & (S).

¢={BeZ(S):BCf(B)}

Then consider A = U%. Argue A is the “largest” set in ¢ which implies A cannot
be a proper subset of f(A). This is a case of the Tarski fixed point theorem. If X is
a subset of & (S) such that if # C X, then U.Z € X and if f is increasing as above
and f (x) € X for all x € X, then the same result follows.

Another formulation of the Hausdorff maximal theorem is Zorn’s lemma. This says
that if you have a nonempty partially ordered set and every chain has an upper bound,
then there exists a maximal element, one which has no element of the partial order
which is larger. Show these two formulations are equivalent and each is equivalent
to the axiom of choice.

A nonempty set X is well ordered if there exists an order < which is a total order of
the elements of X and in addition has the property that every nonempty subset of X
has a smallest element. Zermelo showed that for every nonempty set X, there exists
< which makes X a well ordered set. To prove Zermelo’s theorem, let # = {SC X :
there exists a well order for S}. Let S; < S, if S| C S, and there exists a well order
for S, <p,which agrees with <; on §;. Now use the Hausdorff maximal theorem.
You need to show its union is all of X. If X = R this well order has NOTHING to do
with the usual order on R. Explain why.
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Chapter 4

Functions and Sequences

4.1 General Considerations

As discussed earlier, the concept of a function is that of something which gives a unique
output for a given input.

Definition 4.1.1 consider two sets, D and R along with a rule which assigns a
unique element of R to every element of D. This rule is called a function and it is denoted
by a letter such as f. The symbol, D(f) = D is called the domain of f. The set R, also
written R (f), is called the range of f. The set of all elements of R which are of the form
S (x) for some x € D is often denoted by f (D). When R = f (D), the function f is said to
be onto. It is common notation to write f : D (f) — R to denote the situation just described
in this definition where f is a function defined on D having values in R.

Example 4.1.2 Consider the list of numbers, {1,2,3,4,5,6,7} = D. Define a function
which assigns an element of D to R = {2,3,4,5,6,7,8} by f (x) =x+ 1 for each x € D.

In this example there was a clearly defined procedure which determined the function.
However, sometimes there is no discernible procedure which yields a particular function.

Example 4.1.3 Consider the ordered pairs, (1,2),(2,-2),(8,3),(7,6) and let the domain
be D={1,2,8,7}, the set of first entries in the given set of ordered pairs, R={2,—2,3,6},
the set of second entries, and let f (1) =2,f(2)=—=2,f(8) =3, and f(7) =6.

Sometimes functions are not given in terms of a formula. For example, consider the
following function defined on the positive real numbers having the following definition.

Example 4.1.4 For x € R define

4.1

Lipy=1
fy=1 n y”x =5 in lgwest terms for m,n € Z
0 if x is not rational

This is a very interesting function called the Dirichlet function. Note that it is not
defined in a simple way from a formula.

Example 4.1.5 Let D consist of the set of people who have lived on the earth except for
Adam and for d € D, let f (d) = the biological father of d. Then f is a function.

55
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This function is not the sort of thing studied in calculus but it is a function just the
same. When D (f) is not specified and f is given by a formula, it is understood to consist
of everything for which f makes sense. The following definition gives several ways to
make new functions from old ones.

Definition 4.1.6 Le: f,g be functions with values in F. Let a,b be points of F.
Then af + bg is the name of a function whose domain is D (f) N\ D(g) which is defined
as (af +bg) (x) = af (x) + bg (x). The function fg is the name of a function which is de-
fined on D(f)ND(g) given by (fg) (x) = f(x)g(x). Similarly for k an integer, f* is the
name of a function defined as f*(x) = (f (x))k. The function f/g is the name of a func-
tion whose domain is D (f)N{x € D(g) : g (x) # 0} defined as (f/g) (x) = f(x) /g (x). If
f:D(f) > X and g:D(g) — Y, then go f is the name of a function whose domain is
{xeD(f): f(x) € D(g)} which is defined as go f (x) = g(f (x)). This is called the com-
position of the two functions.

You should note that f (x) is not a function. It is the value of the function at the point x.
The name of the function is f. Nevertheless, people often write f (x) to denote a function
and it doesn’t cause too many problems in beginning courses. When this is done, the
variable x should be considered as a generic variable free to be anything in D (f).

Sometimes people get hung up on formulas and think that the only functions of impor-
tance are those which are given by some simple formula. It is a mistake to think this way.
Functions involve a domain and a range and a function is determined by what it does. This
is an old idea. See Luke 6:44 where Jesus says that you know a tree by its fruit. See also
Matt. 7 about how to recognize false prophets. You look at what it does to determine what
it is. As it is with false prophets and trees, so it is with functions. ! Although the idea is
very old, its application to mathematics started with Dirichlet” in the early 1800’s because
he was concerned with piecewise continuous functions which would be given by different
descriptions on different intervals. Before his time, they did tend to think of functions in
terms of formulas.

Example 4.1.7 Ler f(t) =t and g(t) = 1+1t. Then fg: R — R is given by fg(t) =
t(141) =t +12.

Example 4.1.8 Let f (1) =2t+ 1 and g(t) =/1+t. Then

gof(t)=v1+Q2t+1)=v2t+2

fort > —1.Ift < —1 the inside of the square root sign is negative so makes no sense.
Therefore, gof: {teR:t>—1} > R

Note that in this last example, it was necessary to fuss about the domain of go f because
g is only defined for certain values of ¢.

The concept of a one to one function is very important. This is discussed in the follow-
ing definition.

'In many religions, including mine, epistemology based on knowledge of good and evil along with known
facts, as urged by Jesus, is disparaged and replaced with other criteria like feelings, proof texts of scripture,
traditions, sacrifice of believers, allegations of miracles, emotions, claimed authority, and social pressure.

2Peter Gustav Lejeune Dirichlet, 1805-1859 was a German mathematician who did fundamental work in
analytic number theory. He also gave the first proof that Fourier series tend to converge to the mid-point of the
jump of the function. He is a very important figure in the development of analysis in the nineteenth century. An
interesting personal fact is that the great composer Felix Mendelsson was his brother in law.
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Definition 4.1.9 ror any function f: D (f) CX — Y, define the following set known
as the inverse image of'y.

o) ={xeD(f): f(x) =y}

There may be many elements in this set, but when there is always only one element in this
set forally € f (D (f)), the function f is one to one sometimes written, 1 — 1. Thus f is one
to one, 1 — 1, if whenever f (x) = f (x1), then x = x1. If f is one to one, the inverse function
f~V is defined on f(D(f)) and f~'(y) = x where f(x) =y. Thus from the definition,
fY(f (x)) = x for all x € D(f) and f(f_1 (y)) =yforally € f(D(f)). Defining id by
id(z) = z this says fo f~' =id and f~'o f =id. Note that this is sloppy notation because
the two id are totally different functions.

Polynomials and rational functions are particularly easy functions to understand be-
cause they do come from a simple formula.

Definition 4.1.10 A function f given by f(x) = a,X" + ap_1X" '+ +aix+ag
is called a polynomial. Here the a; are real or complex numbers and n is a nonnegative
integer. In this case the degree of the polynomial f (x) is n. Thus the degree of a polynomial
is the largest exponent appearing on the variable.

[ is a rational function if f (x) = % where h and g are polynomials.

For example, f (x) = 3x> 4+ 9x% +7x + 5 is a polynomial of degree 5 and %

is a rational function.

Note that in the case of a rational function, the domain of the function might not be all
of F. For example, if f(x) = ’;2 :]8, the domain of f would be all complex numbers not
equal to —1.

Closely related to the definition of a function is the concept of the graph of a function.

Definition 4.1.11 Given two sets, X and Y , the Cartesian product of the two sets,
written as X X Y, is assumed to be a set described as follows.

XxY={(x,y):x€Xandy€eY}.
2 denotes the Cartesian product of F with F. Recall F could be either R or C.

The notion of Cartesian product is just an abstraction of the concept of identifying a
point in the plane with an ordered pair of numbers.

Definition 4.1.12 7. 7: D(f) — R(f) be a function. The graph of f consists of
the set,

{(y):y=f(x) forxeD(f)}.

Note that knowledge of the graph of a function is equivalent to knowledge of the func-
tion. To find f (x), simply observe the ordered pair which has x as its first element and the
value of y equals f (x).
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4.2 Sequences

Functions defined on the set of integers larger than a given integer are called sequences.

Definition 4.2.1 4 Sfunction whose domain is defined as a set of the form
{kk+1,k+2,---}

for k an integer is known as a sequence. Thus you can consider

f), f(k+1), f (k+2),

etc. Usually the domain of the sequence is either N, the natural numbers consisting of
{1,2,3,---} or the nonnegative integers, {0,1,2,3,---}. Also, it is traditional to write
Sf1,/2, etc. instead of f(1),f(2),f(3) etc. when referring to sequences. In the above
context, fy is called the first term, fi the second and so forth. It is also common to write
the sequence, not as f but as { f;};- . or just {f;} for short.

Example 4.2.2 Let {a;};._, be defined by a;, = k* + 1.

This gives a sequence. In fact, a7 = a(7) = 7> + 1 = 50 just from using the formula for
the k' term of the sequence.

It is nice when sequences come in this way from a formula for the k" term. However,
this is often not the case. Sometimes sequences are defined recursively. This happens, when
the first several terms of the sequence are given and then a rule is specified which deter-
mines a, from knowledge of ay,--- ,a,. This rule which specifies a,,| from knowledge
of a;, for k < n is known as a recurrence relation.

Example 4.2.3 Leta; =1, ap = 1. Assuming ay,--- ,an+1 are known, a,+» = an, + an+1-

Thus the first several terms of this sequence, listed in order, are 1, 1, 2, 3, 5, 8,--- . This
particular sequence is called the Fibonacci sequence and is important in the study of repro-
ducing rabbits. Note this defines a function without giving a formula for it. Such sequences
occur naturally in the solution of differential equations using power series methods and in
many other situations of great importance.

For sequences, it is very important to consider something called a subsequence.

Definition 4.2.4 7. {an} be a sequence and let ny < ny < n3z,--- be any strictly
increasing list of integers such that ny is at least as large as the first number in the domain
of the function. Then if by = ay,, {b} is called a subsequence of {a,} . Here a, is in some
given set.

For example, suppose a, = (n2 + 1) .Thusa; =2,a3 =10, etc. If ny =1,ny =3,n3 =
5,--+,ng = 2k — 1, then letting by = a,,, it follows

b = ((2k— 1)2+1) — 42 4kt 2.

However, you might not be able to describe a subsequence by a formula as I just did.

4.3 Exercises

I. Letg(t)=+v2—randlet f(¢t) = % Find go f. Include the domain of go f.

2. Give the domains of the following functions.
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10.
11.
12.
13.
14.
15.

16.

17.

. Let f(¢) be defined by f (¢) = {

@ F) =23 @ f) =y 25
(b) f(x)=vxT—4
© f(x)=vI—2 © fx) =4/

Let f: R — R be defined by f(t) = >+ 1. Is f one to one? Can you find a formula
for f~1?

Suppose a1 = 1,a; = 3, and a3 = —1. Suppose also that for n > 4 it is known that
ap = ap—1+2a,—2+3a,_3. Find a;. Are you able to guess a formula for the k" term
of this sequence?

Let f:{t€R:t+# —1}— R be defined by f (¢) = Find f~! if possible.

t+l

A function f: R — R is a strictly increasing function if whenever x < y, it follows
that f (x) < f(y). If f is a strictly increasing function, does f~! always exist? Ex-
plain your answer.

2t+1ifr <1

. _1 . .
Lifr > 1 . Find f~ if possible.

Suppose f: D(f) = R(f) is one to one, R(f) CD(g),and g: D(g) — R(g) is one
to one. Does it follow that g o f is one to one?

If f:R— Randg:R — R are two one to one functions, which of the following are
necessarily one to one on their domains? Explain why or why not by giving a proof
or an example.

@ f+g © f°
(b) fg @ f/g
Draw the graph of the function f (x) = x> + 1.
Draw the graph of the function f (x) = x> 4 2x 4 2.

Draw the graph of the function f (x) = =

I4+x*
Suppose a, = - and let iy, = 2*. Find by, where by = -
If X; are sets and for some j, X; = 0, the empty set. Verify carefully that [T, X; = 0.

Suppose f (x) + f (;) = 7x and f is a function defined on R\ {0}, the nonzero real
numbers. Find all values of x where f (x) = 1 if there are any. Does there exist any
such function?

Does there exist a function f, satisfying f (x) — f (1) = 3x which has both x and 1
in the domain of f?

In the situation of the Fibonacci sequence show that the formula for the n'* term
n n

can be found and is given by a, = ‘f (HT‘E) - ? (I_T\/g) . Hint: You might

be able to do this by induction but a better way would be to look for a solution to
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the recurrence relation, a,+7 = a, + an+1 of the form . You will be able to show
that there are two values of r which work, one of which is r = HT\[S Next you can
observe that if 7} and 75 both satisfy the recurrence relation then so does cr} +dr;

for any choice of constants c,d. Then you try to pick ¢ and d such that the conditions,
a; = 1 and ap = 1 both hold.

18. In an ordinary annuity, you make constant payments, P at the beginning of each
payment period. These accrue interest at the rate of r per payment period. This
means at the start of the first payment period, there is the payment P = A;. Then this
produces an amount 7P in interest so at the beginning of the second payment period,
you would have rP+ P+ P = Ay. Thus Ay = A; (1+7r) + P. Then at the beginning
of the third payment period you would have A; (1 +r) + P = Az. Continuing in this
way, you see that the amount in at the beginning of the n'" payment period would
be A, given by A, =A,_1(1+7r)+ P and A} = P. Thus A is a function defined on
the positive integers given recursively as just described and A, is the amount at the
beginning of the n" payment period. Now if you wanted to find out A, for large n,
how would you do it? One way would be to use the recurrance relation n times. A
better way would be to find a formula for A,. Look for one in the form A, = CZ" +s
where C,z and s are to be determined. Show that C = £,z = (1+7r),and s = —£.

19. A well known puzzle consists of three pegs and several disks each of a different
diameter, each having a hole in the center which allows it to be slid down each of
the pegs. These disks are piled one on top of the other on one of the pegs, in order
of decreasing diameter, the larger disks always being below the smaller disks. The
problem is to move the whole pile of disks to another peg such that you never place
a disk on a smaller disk. If you have n disks, how many moves will it take? Of
course this depends on n. If n = 1, you can do it in one move. If n =2, you would
need 3. Let A, be the number required for n disks. Then in solving the puzzle,
you must first obtain the top n — 1 disks arranged in order on another peg before
you can move the bottom disk of the original pile. This takes A,_; moves. Explain
why A, =2A,_1 +1,A; = 1 and give a formula for A,. Look for one in the form
A, = Cr" +s. This puzzle is called the Tower of Hanoi. When you have found a
formula for A, explain why it is not possible to do this puzzle if n is very large.

4.4 The Limit of a Sequence

The concept of the limit of a sequence was defined precisely by Bolzano.? The following
is the precise definition of what is meant by the limit of a sequence. Our sequences will

3Bernhard Bolzano lived from 1781 to 1848. He had an Italian father but was born in Bohemia, and he wrote
in German. He was a Catholic priest and held a position in philosophy at the University of Prague. It appears
that Bolzano believed in the words of Jesus and did not hesitate to enthusiastically promote them. This got him in
trouble with the political establishment of Austria who forced him out of the university and did not allow him to
publish. He also displeased the Catholic hierarchy for being too rational.

Bolzano believed in absolute rigor in mathematics. He also was interested in physics, theology, and especially
philosophy. His contributions in philosophy are very influential. He originated anti-psychologism also called
logical objectivism which holds that logical truth exists independent of our opinions about it, contrary to the
notion that truth can in any way depend on our feelings. This is the right way to regard truth in mathematics.

The intermediate value theorem from calculus is due to him. These days, this theorem is considered obvious
and is not discussed well in calculus texts, but Bolzano knew better and gave a proof which identified exactly
what was needed instead of relying on vague intuition.
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have values in F? = {(x = (x1,---,x,)) :x; € F}.
Definition 4.4.1 A sequence {an},_, converges to a, written as

lima, =aora, —a
n—oo

if and only if for every € > O there exists ng such that whenever n > ng , ||a, — a|| < €. Here
a and a, are assumed to be in F? for some integer p > 1. Thus a,, is in the Cartesian product
F x --- X IF where T consists of real or complex numbers and, although other definitions
are used,

la|| = max{|a;| : i < p}

fora= (a1, ,a,) € FP. In this book, it is usually the case that p = 1, but there is no
difficulty in considering a more general case.

Proposition 4.4.2 The usual properties of absolute value hold for ||-|| with addition of
the vectors, and multiplication by a scalar o, as presented in elementary calculus

a+b=(ai+bi, - ,ap+0by), va=(aai, - ,qa,)
Proof: From the triangle inequality for complex numbers,

la-+b]| = max {lai+bil i < p} < max{la i < p} +max{|bi],i < p} = [lal + 6]
4.2)
Also, for o € F, ||otal| = max {|owa;| 1 i < p} = |o|max {|a;| : i < p} = || ||a]|. By defi-
nition, ||a|| > 0 and is O if and only if a; = 0 for each i if and only if a = 0 = (0,---,0).
Also [lal| = [la—b+b]| < [la=bl| + [[b]| so [la]| —[[b]| < [la—b|[. Similarly [[b]| —[|a]| <
b —al| = |la— bl and so [|a]| —[|b[|| < |la —b[|. =
In words the definition says that given any measure of closeness €, the terms of the
sequence are eventually this close to a. Here, the word “eventually” refers to n being suffi-
ciently large. The above definition is always the definition of what is meant by the limit of
a sequence.

Proposition 4.4.3 Let a, = (a’l’7 e ,a;’,) . Then a, — a if and only if for each i < p,
al — a;.

Proof: = is obvious because |a — a;| < ||a, —al|.
< There exists n; such that ‘a;‘ — ai‘ < € whenever k > n;. Let

N >max{n;:i < p}
Then forn > N, ||a, —a|| = max{|a} —a;|,i<p} <e. N

Theorem 4.4.4 Iflim, . a, = a and lim,_.a, = a4 then d = a.

Like many of the other mathematicians, he was concerned with the notion of infinitesimals which had been
popularized by Leibniz. Some tried to strengthen this idea and others sought to get rid of it. They realized
that something needed to be done about this fuzzy idea. Bolzano was one who contributed to removing it from
calculus. He also proved the extreme value theorem in 1830’s and gave the first formal €6 description of continuity
and limits.

This notion of infinitesimals did not completely vanish. These days, it is called non standard analysis. It can be
made mathematically respectable but not in this book.
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Proof: Suppose @ # a. Then let 0 < € < ||d —al| /2 in the definition of the limit. It
follows there exists n, such that if n > ng, then ||a, —a|| < € and ||a, — d|| < €. Therefore,
for such 1, [d—all < d—a| + s —all < e+¢ < la—all )2+ —all /2 = la—al, a
contradiction. l

Example 4.4.5 Let a, = ( 1 i) € F2.

nZfin
Then it seems clear that lim,_,.a, = (0,0). In fact, this is true from the definition.
Let € > 0 be given. Let n; > max (\/8—1, é) . Then if n > ne > Ve~1, it follows that
n+1>¢elandso0< ,ﬁlﬁ =a, <eandalson>1/eso1/n< €. Thus ||a, —(0,0)]| =

max (

ﬁ -0, |é — OD < € whenever 7 is this large.

Note the definition was of no use in finding a candidate for the limit. This had to be
produced based on other considerations. The definition is for verifying beyond any doubt
that something is the limit. It is also what must be referred to in establishing theorems

which are good for finding limits.

Example 4.4.6 Let a, = n®.
Then in this case lim,_,. a, does not exist. This is so because a,, cannot be eventually
close to anything.

Example 4.4.7 Leta, = (—1)".

In this case, lim, . (—1)" does not exist. This follows from the definition. Let € = 1/2.
If there exists a limit, /, then eventually, for all n large enough, |a, —I| < 1/2. However,
lan — any1] =2and 50,2 =|a, —apt1| <l|ay —I|+|l — an+1| < 1/241/2 =1 which cannot
hold. Therefore, there can be no limit for this sequence.

Theorem 4.4.8 Suppose {a,} and {b,} are sequences, a, € F? b, € FP and that

lim a, = a and lim b, = b.
n—oo n—oo

Also suppose x and y are in F. Then

lim xa,, + yb,, = xa+ yb 4.3)
n—soo
Ifa, € F,b, € FP,
lim a,b, = ab 4.4
n—soo
lim af = a9 (4.5)
n—soo
Ifb#0andb €T and a, € F?,
. an g
}59017,, =5 4.6)

Proof: The first of these claims is left for you to do. To do the second, let € > 0 be
given and choose n; such that if n > n; then |a, —a| < 1. Then for such n, the triangle
inequality implies

l|@nby — ab| |anbn — anb|| + [|anb — abl| < |an| [|bx — bl + [|D]| |an — al

(lal+ 1) |6 = bl + [|6[| |an — al -

IN A
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Now let ny be large enough that for n > ny,

€
b, —b| < -7

Such a number n; exists because of the definition of limit. Therefore, let ne > max (ny,n,).
For n > ng,

€
,and |ay —a| < ————~.
" 2(lIpll + 1)

lanbn —abll < (lal+1) [[bn — bl + [[b]| |an — al

€
+||b
H || 2

CED

€

< al+1

This proves 4.4. Then 4.5 follows from this by induction in the above case where b, € F.
Next consider 4.6. Let € > 0 be given and let n; be so large that whenever n >

ni, b, —b| < @. Thus for such n,

a, a a,b—ab, 2
— = <— b—ab b — ab,
bn b bbn — |b|2 [Han a H—i_”a a 1||]
2 2||all
< —|lan—al + b, —Dbl||.
i lon =l = 5 10—l
Now choose n; so large that if n > ny, then
e|b| e b’
a,—al|l < —,and |b, —b| < ———.

Letting n, > max (ny,ny), it follows that for n > n,,

2 elp| | 2]a]_elp?
bl 4 |p[* 4(llal+1)

< 2 Jlay—all + 2l
|| b|

a, a

—— .m
b b <e

|bp — b| <

Another very useful theorem for finding limits is the squeezing theorem.

Theorem 4.4.9 in case an, by, € R, suppose lim,_,a, = a = lim,_«b, and a, <
cn < by for all n large enough. Then lim,_.c, = a.

Proof: Let € > 0 be given and let n| be large enough that if n > ny,|a, —a| < €/2 and
|b, — a| < €/2. Then for such n,|c, — a| < |a, —a|+ |b, — a| < €. The reason for this is that
ifc, > a, then |¢c, —a| = ¢, —a < b, —a <|a, — a| +|b, — a| because b,, > ¢,,. On the other
hand, if ¢, < a, then

lecn—al=a—cy<a—a,<|a—ay|+|b—b,|. 1

As an example, consider the following.

Example 4.4.10 Letc, = (—1)" % and let b, = %, and a, = — 1. Then you may easily show

—
that lim,, e a, = lim,, . b, = 0. Since a,, < ¢, < by, it follows lim,,_,.. ¢, = 0 also.

Theorem 4.4.11 1im, ... = 0. Whenever |r| < 1. Here r € F.
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Proof: If 0 < r < 1 if follows r~' > 1. Why? Letting ot = 1 — 1, it follows r = 1.

Therefore, by the binomial theorem, 0 < 7" = m < ﬁ Therefore, lim,, . 7" = 0 if

0 < r < 1.In general, if |[r| < 1, || = |r|" — O by the first part. B
An important theorem is the one which states that if a sequence converges, so does
every subsequence. You should review Definition 4.2.4 on Page 58 at this point.

Theorem 4.4.12 re: {xn} be a sequence with lim,_,.x, = x and let {xnk} be a
subsequence. Then limy_,co X, = X.

Proof: Let € > 0 be given. Then there exists n, such that if n > ng, then ||x, —x|| < €.
Suppose k > ng. Then ny > k > ne and so Hx,,k — xH < € showing limy . x,;, = x as claimed.
|

Theorem 4.4.13 L. {x.} be a sequence of real numbers and suppose each x, <1
(> 1) for all n large enough, and lim,_,e x, = x. Then x <1(>1). More generally, suppose
{xn} and {y,} are two sequences of real numbers such that lim,_,. x, = x and lim,,_,c. y, =
y. Then if x, <y, for all n sufficiently large, then x < y.

Proof: I will show the second claim because it includes the first as a special case.
Letting € > 0 be given, for all n large enough, |y —y,| < € so y >y, — €. Similarly, for n
large enough, x < x,, + €. Therefore,

Y=X2Yn—€—(Xn+€) 2 (yn—xa)—2€>-2¢

Since € is arbitrary, it follows that y —x > 0.
Another important observation is that if a sequence converges, then it must be bounded.

Proposition 4.4.14 Suppose x, — x. Then ||x,|| is bounded by some M < oo.

Proof: There exists N such that if n > N, then ||x — x,|| < 1. It follows from the triangle
inequality, see Proposition 4.4.2, that for n > N, ||x,|| < 1+ ||x|. There are only finitely
many x; for k < N and so for all ,

Ioell < max {1+ x| : & < N} = M < co.

4.5 Cauchy Sequences

A Cauchy sequence is one which “bunches up”. This concept was developed by Bolzano
and Cauchy. It is a fundamental idea in analysis.

Definition 4.5.1 {an} is a Cauchy sequence if for all € > 0, there exists ng such that
whenever n,m > ng, |a, — ap| < €.

A sequence is Cauchy means the terms are “bunching up to each other” as m,n get
large.

Theorem 4.5.2 The set of terms (values) of a Cauchy sequence in F? is bounded.

Proof: Let € = 1 in the definition of a Cauchy sequence and let n > n;. Then from the
definition, ||a, — a,, || < 1. It follows from the triangle inequality that for all n > ny, ||a,|| <
1+ ||ay, || . Therefore, for all n, [|a, || < 1+ ||y, ||+ XL, |lax||. ®



4.6. THE NESTED INTERVAL LEMMA 65

Theorem 4.5.3 If a sequence {a,} in FP converges, then the sequence is a Cauchy
sequence.

Proof: Let € > 0 be given and suppose a, — a. Then from the definition of con-
vergence, there exists ne such that if n > n,, it follows that ||a, —al| < §. Therefore, if
m,n > ne + 1, it follows that

£ ¢
lan —amll < llan —al +[la—an| < 5+ =¢€
22
showing that, since € > 0 is arbitrary, {a, } is a Cauchy sequence. B
The following theorem is very useful and is likely the most important property of
Cauchy sequences. You know that if a sequence converges, then every subsequence con-
verges to the same thing. However, you can have a sequence which does not converge,
a, = (—1)" for example which has a convergent subsequence, n;, = 2k in this example.
This won’t happen with a Cauchy sequence.

Theorem 4.5.4 Suppose {a,} is a Cauchy sequence in FP and there exists a subse-
quence, {ank} which converges to a. Then {a,} also converges to a.

Proof: Let € > 0 be given. There exists N such that if m,n > N, then ||a,, — a,|| < €/2.
Also there exists K such that if k > K, then ||a — a,|| < €/2. Then let k > max (K,N).
Then for such k,

lax —all < ||ax — an, || +||an, —a|| < €/2+€/2=¢. 1

This theorem holds in all instances where it makes sense to speak of Cauchy sequences.

4.6 The Nested Interval Lemma

In Russia there is a kind of doll called a matrushka doll. You pick it up and notice it comes
apart in the center. Separating the two halves you find an identical doll inside. Then you
notice this inside doll also comes apart in the center. Separating the two halves, you find
yet another identical doll inside. This goes on quite a while until the final doll is in one
piece. The nested interval lemma is like a matrushka doll except the process never stops.
It involves a sequence of intervals, the first containing the second, the second containing
the third, the third containing the fourth and so on. The fundamental question is whether
there exists a point in all the intervals. Sometimes there is such a point and this comes from
completeness.

Lemma 4.6.1 Let I, = [ak,bk] and suppose that for all k = 1,2,---, I O I+1. Then
there exists a point, ¢ € R which is an element of every I.. If the diameters (length) of
these intervals, denoted as diam (I;) converges to 0, then there is a unique point in the
intersection of all these intervals.

Proof: Since I} D I, |, this implies
ak < alﬁLl7 bk > bk+]. (47)

Consequently, if k <[,
a <a <b <k (4.8)
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Now define
czsup{al:l: 1,2,~~~}

By the first inequality in 4.7, and 4.8
k Iy k
a Sc—sup{a.l—k,k+1,~~-}§b 4.9)

for each k = 1,2---. Thus c € I for every k and this proves the lemma. The reason for
the last inequality in 4.9 is that from 4.8, b is an upper bound to {al =kk+1,--- } .
Therefore, it is at least as large as the least upper bound.

For the last claim, suppose there are two points x,y in the intersection. Then |x —y| =
r > 0 but eventually the diameter of I is less than r. Thus it cannot contain both x and y. B

This is really quite a remarkable result and may not seem so obvious. Consider the
intervals I = (0,1/k). Then there is no point which lies in all these intervals because no
negative number can be in all the intervals and 1/k is smaller than a given positive number
whenever £ is large enough. Thus the only candidate for being in all the intervals is 0 and
0 has been left out of them all. The problem here is that the endpoints of the intervals
were not included, contrary to the hypotheses of the above lemma in which all the intervals
included the endpoints.

Corollary 4.6.2 Let R, = Hf{’:l [a;:,b’/:] where Ryi1 C R,. Then N7_ R, # 0. If the
diameter of R, defined as max {bZ —ay k< p} converges to 0, then there is exactly one
point in this intersection.

Proof: Since these rectangles Ry are nested, [a},b7] D [a}t!,b{™"] and so there exists
X €Ny, [aZ,bZ] . Then x = (x1,--- ,x,) € NyR,. In case the diameter of R, converges to 0,
if x,y € MRy, then |[x — y|| < max {b} —a},k < p} and this converges to 0 as n — co. Thus
x=y. 1

4.7 Exercises

1. Find limy—e 3,75 -

3n*+7n+1000

2. Find lim,,_, pe S

247(5")
(5

3. Find lim,,_,
4. Find lim,,_;c /(1% 4 6n) — n. Hint: Multiply and divide by +/(n% + 6n) +n.
5. Find limy, o Y7 18-

6. Suppose {x, +iy,} is a sequence of complex numbers which converges to the com-
plex number x + iy. Show this happens if and only if x, — x and y, — y.

e

= =1

7. For |r| < 1, find lim, .. Y7_, 7. Hint: First show Y7_, %
Theorem 4.4.11.

— ﬁ Then recall
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8.

10.
11.
12.
13.
14.

15.

16.

17.

18.

Using the binomial theorem prove that for all n € N,

1 n 1 n+1
(+3) =(eamr)
n n+1

Hint: Show first that (}) = W By the binomial theorem,

k factors

() -5 () () -t

k=0 k=0

n-(n—1)--(n—k+1)
knk

binomial expansion for (1 + ,h%l) except you replace n with n+ 1 whereever this
occurs. Argue the term got bigger and then note that in the binomial expansion for

Now consider the term and note that a similar term occurs in the

n+1
1 n+1
(1 + m) , there are more terms.

Prove by induction that for all k > 4, 2F < k!

Use the Problems 21 and 8 to verify for all n € N, (1 + %)n <3.

Prove lim,, o0 (l + %)n exists and equals a number less than 3.

Using Problem 10, prove n"+! > (n+1)" for all integers, n > 3.

Find lim,_,. nsinn if it exists. If it does not exist, explain why it does not.

Recall the axiom of completeness states that a set which is bounded above has a least
upper bound and a set which is bounded below has a greatest lower bound. Show that
a monotone decreasing sequence which is bounded below converges to its greatest
lower bound. Hint: Let a denote the greatest lower bound and recall that because of
this, it follows that for all € > 0 there exist points of {a,} in [a,a+ €].

Let Ay = Y{_, gzoyy for n > 2. Show lim, A, exists and find the limit. Hint:
Show there exists an upper bound to the A,, as follows.

LIy (B R
Skk—1) &=\k—1 k) a7

k=2

LetH, =Y}, k% for n > 2. Show lim,,_,. H,, exists. Hint: Use the above problem
to obtain the existence of an upper bound.

Let I, = (—1/n,1/n) and let J, = (0,2/n). The intervals, I, and J, are open in-
tervals of length 2/n. Find N;;_,I, and N°°_,J,. Repeat the same problem for [, =
(—=1/n,1/n] and J, = [0,2/n).

Show the set of real numbers [0, 1] is not countable. That is, show that there can be
no mapping from N onto [0, 1]. Hint: Show that every sequence, the terms consisting
only of 0 or 1 determines a unique point of [0,1]. Call this map y. Show it is onto.
Also show that there is a map from [0, 1] onto ., the set of sequences of zeros and
ones. This will involve the nested interval lemma. Thus there is a one to one and
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onto map ¢ from . to [0,1] by Corollary 3.2.5. Next show that there is a one to
one and onto map from this set of sequences and %7 (N). Consider 0 ({a,}, ) =
{n:a, =1}. Now suppose that f : N — [0,1] is onto. Then 6 o ™! o f is onto
Z (N). Recall that there is no map from a set to its power set. Review why this is.

19. Show that if I and J are any two closed intervals, then there is a one to one and onto
map from / to J. Thus from the above problem, no closed interval, however short
can be countable.

4.8 Compactness

4.8.1 Sequential Compactness

First I will discuss the very important concept of sequential compactness. This is a property
that some sets have. A set of numbers is sequentially compact if every sequence contained
in the set has a subsequence which converges to a point in the set. It is unbelievably useful
whenever you try to understand existence theorems.

Definition 4.8.1 A ser, C F? is sequentially compact if whenever {a,} C K is
a sequence, there exists a subsequence, {ank} such that this subsequence converges to a
point of K.

The following theorem is part of the Heine Borel theorem.

Theorem 4.8.2 Every closed interval |a, D) is sequentially compact.

Proof: Let {x,} C [a,b] = Iy. Consider the two intervals [a,“}2] and [%}2,b] each
of which has length (b—a) /2. At least one of these intervals contains x, for infinitely
many values of n. Call this interval /;. Now do for /; what was done for /. Split it in half
and let /; be the interval which contains x,, for infinitely many values of n. Continue this
way obtaining a sequence of nested intervals Iy 2 I} D I, D Iz--- where the length of I, is
(b—a)/2". Now pick ny such that x,, € I}, np such that n, > n; and x,, € I,n3 such that
n3 > ny and x,, € I3, etc. (This can be done because in each case the intervals contained
X, for infinitely many values of n.) By the nested interval lemma there exists a point ¢
contained in all these intervals. Furthermore, |x, — c| < (b—a)27* and so limy ;. Xn, =

c€la,b]. A

Corollary 4.8.3 R=T1\_, [ax,bs] is sequentially compact in RP.

Proof: Let {x,}, | CR, x, = (x’l', ces ,x;) . Then there is a subsequence, still denoted
with n such that {x{} converges to a point x| € [a1,b1]. Now there exists a further sub-
sequence, still denoted with n such that x converges to x» € [as,b;]. Continuing to take
subsequence, there is a subsequence, still denoted with n such that x] — x € [ay,by] for
each k. By Proposition 4.4.3, this shows that this subsequence converges to x = (x1,-- - ,xp).
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4.8.2 Closed and Open Sets

I have been using the terminology [a, b] is a closed interval to mean it is an interval which
contains the two endpoints. However, there is a more general notion of what it means to be
closed. Similarly there is a general notion of what it means to be open.

Definition 4.8.4 et U be a set of points in FP. A point p € U is said to be an
interior point if whenever ||x— p|| is sufficiently small, it follows x € U also. The set of
points, x which are closer to p than § is denoted by

B(p,0)={xeF:|x—p| <d}.

This symbol, B(p,0) is called an open ball of radius 8. Thus a point p is an interior point
of U if there exists 0 > 0 such that p € B(p,8) C U. An open set is one for which every
point of the set is an interior point. Closed sets are those which are complements of open
sets. Thus H is closed means HC is open.

Note the following:

Proposition 4.8.5 [f U = HC where H is closed, then U is open. Also ® and F” are
both open and closed.

Proof: Note that F? is open obviously. Also @ is obviously open because every point
of 0 is an interior point. Indeed, it has none so they all must be interior points. Therefore,
FF? is also closed because it is the complement of an open set. Now H = U and so, given
that H is closed, then by definition, it must be the complement of an open set, but it is
the complement of U and so U must be open. It follows that @ is open because it is the
complement of a closed set F”. B

Thus open sets are complements of closed sets and closed sets are complements of open
sets. I will use this fact without comment whenever convenient.

What is an example of an open set? The simplest example is an open ball.

Proposition 4.8.6 B(p,$) is an open set and D (p,r) = {x: ||x—p|| < r} is a closed
set.

Proof: It is necessary to show every point of B(p,d) is an interior point. Let x €
B(p,0). Then let r = 6 — ||x— p||. It follows r > 0 because it is given that ||x — p|| < J.
Now consider z € B(x,r). From Proposition 4.4.2, the triangle inequality,

lz=pll <llz=x[[+[lx=pl <r+lx—pll == llx—pl+lx—pll =&

and so z € B(p,8). Thatis B(x,r) C B(p,d). Since x was arbitrary, this has shown every
point of the ball is an interior point. Thus the ball is an open set.
Consider the last assertion. If y ¢ D(p,r), then ||y — p|| > r and you could consider

B(y,|ly—pll—r).Ifz€ B(y,|ly—pl —r), then
lz—pll = llz—=y+y—rl>ly—rl—Ilz—yl
> |y=pl=Uy=pl-r)=r

and so z ¢ D (p,r) which shows that the complement of D (p, r) is open so this set is closed.
|
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Definition 4.8.7 Let A be any nonempty set and let x be a point. Then x is said to
be a limit point of A if for every r > 0, B (x,r) contains a point of A which is not equal to x.

The following proposition is fairly obvious from the above definition and will be used
whenever convenient. It is equivalent to the above definition and so it can take the place of
the above definition if desired.

Proposition 4.8.8 A point x is a limit point of the nonempty set A C FP if and only if
every B(x,r) contains infinitely many points of A, none of which are equal to x. In other
words, there exists a sequence of distinct points of A none equal to x which converges to x.

Proof: < is obvious. Consider = . Let x be a limit point. Let r; = 1. Then B (x,r])
contains a; # x. If {ay,--- ,a,} have been chosen none equal to x and with no repeats in
the list, let 0 < r, < min (1, min{||a; —x||,i = 1,2,---n}) . Then let a,.1 € B (x,r,) \ {x}.

n
Thus a,+ is not equal to any of the earlier a; and every B (x,r) contains B (x,r,) for all n
large enough and hence it contains a; for k > n where the g, are distinct, none equal to x.
|

Example 4.8.9 Consider A =N, the positive integers. Then none of the points of A is a
limit point of A because if n € A, B (n,1/10) contains no points of N which are not equal to
n.

Example 4.8.10 Consider A = (a,b), an open interval in R. If x € (a,b), let
r=min(jx—al,|x—b]|).
Then B (x,r) C A because if |y — x| < r, then

y—a = y—x+x—a>x—a—|y—x|
= |x—a|l-|y—x|>x—a|—-r>0
showing y > a. A similar argument which you should provide shows y < b. Thus y € (a,b)

and x is an interior point. Since x was arbitrary, this shows every point of (a,b) is an
interior point and so (a,b) is open.

Theorem 4.8.11 7 following are equivalent.
1. Ais closed
2. If{an},_, is a sequence of points of A and lim,_,.a, = a, then a € A.
3. A contains all of its limit points.

If a is a limit point, then there is a sequence of distinct points of A none of which equal
a which converges to a.

Proof: 1.<=>2. Say A is closed and @, — a where each a, € A. If a ¢ A, then there
exists € > 0 such that B(a,€) NA = 0. But then a, fails to converge to a so a € A after all.
Conversely, if 2. holds and x ¢ A, B (x, %) must fail to contain any points of A for some
n € N because if not, you could pick a, € B (x,1) NA and obtain lim, ,..a, = x which
would give x € A by 2. Thus A€ is open and A is closed.
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2. = 3. Say a is a limit point of A. Then by Proposition 4.8.8 there is a sequence of
distinct points of A {a,} with a, — a. By 2., a € A.

3. = 1. Given 3., why is A€ open? Let x € AC. By 3. x cannot be a limit point. Hence
there exists B (x,r) which contains at most finitely many points of A. Since x € A®, none
of these are equal to x. Hence, making r still smaller, one can avoid all of these points.
Thus the modified r has the property that B (x,r) contains no points of A and so A is closed
because its complement is open. The last claim is from Proposition 4.8.8. H

Note that part of this theorem says that a set A having all its limit points is the same as
saying that whenever a sequence of points of A converges to a point a, then it follows a € A.
In other words, closed is the same as being closed with respect to containing all limits of
sequences of points of A.

Corollary 4.8.12 Let A be a nonempty set and denote by A’ the set of limit points of A.
Then AUA’ is a closed set and it is the smallest closed set containing A. In fact, A UA =
N{C:Cis closed and C D A} . This set AUA' is denoted as A.

Proof: Is it the case that (A UA’ )C is open? This is what needs to be shown if the given
set is closed. Let p ¢ AUA’. Then since p is neither in A nor a limit point of A, there
exists B(p,r) such that B(p,r) NA = 0. Therefore, B(p,r) NA’ = 0 also. This is because
ifz€ B(p,r)NA’, then

B(z,r—|lp—zll) S B(p,r)

and this smaller ball contains points of A since z is a limit point. This contradiction shows
that B (p,r)NA’ = 0 as claimed. Hence (AUA’) is open because p was an arbitrary point
of (AUA")® . Hence AUA’ is closed as claimed.

It was just shown that AUA’ D N{C:C D A}. Now suppose C 2 A and C is closed.
Then if p is a limit point of A, it follows from Theorem 4.8.11 that there exists a sequence
of distinct points of A converging to p. Since C is closed, and these points of A are all in C,
it follows that p € C. Hence C D AUA' Thus AUA' DN{C:CD2A} DAUA". 1

Theorem 4.8.13 A serk %0 in R? is sequentially compact if and only if it is closed
and bounded. A set is bounded means it is contained in some ball having finite radius. If K
is sequentially compact and if H is a closed subset of K then H is sequentially compact.

Proof: = Suppose K is sequentially compact. Why is it closed? Let k,, — k where each
k, € K. Why is k € K? Since K is sequentially compact, there is a subsequence {knj} such

that lim;j,eo k; = k € K. However, the subsequence converges to k and so k = ke K. By

Theorem 4.8.11, K is closed. Why is K bounded? If it were not, there would exist ||k, || > n

where k, € K and n € N which means this sequence could have no convergent subsequence

because the subsequence would not even be bounded. See Theorems 4.5.3 and 4.5.2.
<=Suppose that K is closed and bounded. Since § is bounded, there exists

R =
k

p
[ar, b]
=1
containing K. If {k,} C K, then from Corollary 4.8.3, there exists a subsequence {k,,j}
such that lim;_,., k,,_/. =k € R. However, K is closed and so in fact, k € K.
The last claim follows from a repeat of the preceding argument. Just use K in place
of R and H in place of K. Alternatively, if K is closed and bounded, then so is H, being a
closed subset of K. B
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What about the sequentially compact sets in C”? This is actually a special case of
Theorem 4.8.13. For z € C?, z=(z1,-- - ,2,) Where z; = xF 4 iy*. Thus

('xlaylaxzayza e ,Xp7yp) = GZ € RZ})

A set K is bounded in C” if and only if {0z : z € K} is bounded in R?”. Also, z,, — zin C?
if and only if 8z, — 6z in R?”. Now K is closed and bounded in C” if and only if 6K =
{6z:z7 €K} is closed and bounded in R?’and so K is closed and bounded in C” if and
only if 8K is sequentially compact in R?”. Thus if {z,} is a sequence in K, there exists a
subsequence, still denoted with n such that 6z, converges in R?” if and only if z, converges
to some z € CP. However, z € K because K is closed. Thus K is sequentially compact in
Cr.

Conversely, if K is sequentially compact, then it must be bounded since otherwise there
would be a sequence {k,} C K with ||k,|| > n and so no subsequence can be Cauchy so
no subsequence can converge. K must also be closed because if not, there would be x ¢ K
and a sequence {k,} C K with k, — x. However, by sequential compactness, there is a
subsequence {knk }::1 , kn, — k € K and so k = x € K after all. This proves most of the
following theorem.

Theorem 4.8.14 Let H C FP. Then H is closed and bounded if and only if H is se-
quentially compact. A sequence {x,} is a Cauchy sequence in FP if and only if it converges.
In particular, F? is complete, p > 1.

Proof: Consider the last claim. If {z,} converges, then it is a Cauchy sequence by
Theorem 4.5.3. Conversely, if {z,} is a Cauchy sequence, then it is bounded by Theorem
4.5.2 so it is contained in some closed and bounded subset of F”. Therefore, a subsequence
converges to a point of this closed and bounded set. However, by Theorem 4.5.4, the
original Cauchy sequence converges to this point. ll

4.8.3 Compactness and Open Coverings

In Theorem 4.8.13 it was shown that sequential compactness in F? is the same as closed
and bounded. Here we give the traditional definition of compactness and show that this is
also equivalent to closed and bounded.

Definition 4.8.15 A set K is calied compact if whenever € is a collection of open
sets such that K C U%, there exists a finite subset of open sets {Uy,--- Uy} C € such that
K C U, U;. Inwords, it says that every open cover admits a finite subcover.

Lemma 4.8.16 If K is a compact set and H is a closed subset of K, then H is also
compact.

Proof: Let ¢ be an open cover of H. Then H, % is an open cover of K. It follows that
there are finitely many sets of &, {U i }']7.121 such that H¢ U U;{l U; D K. Therefore, since no

points of H are in the open set H¢ it follows that U Ui 2 H. |
Now here is the main result, often called the Heine Borel theorem.

Theorem 4.8.17 LetK be a nonempty set in FP. Then the following are equivalent.

1. K is compact
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2. K is closed and bounded
3. K is sequentially compact.

Proof: It was shown above in Theorem 4.8.14 that 2. <= 3. Consider 3. = 1. If ¥
is an open cover of K, then I claim there exists 8 > 0 such that if k € K, then B (k,8) CU
for some U € €. This § is called a Lebesgue number. If not, then there exists k,, € K such
that B (k,,, %) is not contained in any set of ¢ because 1/n is not a Lebesgue number. Then
by sequential compactness, there is a subsequence, still denoted by k,, which converges to
k€ K. Now B (k,8) C U for some 6 > 0 and some U € €. However, this is a contradiction
because for n large, % < g and k, € B (k, g) s0 B (ky, %) C B(k,8) C U which is a contra-
diction. Consider {B (k,0) : k € K} . Finitely many of these sets contain K in their union
since otherwise, there would exist a sequence {k,} such that ||k, — k|| > 6 for all m # n
and so it cannot have any Cauchy subsequence. Hence K would fail to be compact. Thus
K C U™, B(k;, &) for suitable finite set {k;} . Pick U; € ¢ with U; 2 B(k;,8). Then {U;}} |
is an open cover.

It remains to verify that 1.= 2. Suppose that K is compact. Why is it closed and
bounded? Suppose first it is not closed. Then there exists a limit point p which is not in K.
If x € K, then there exists open U, containing x and V, containing p such that U, NV, = 0.
Since K is compact, there are finitely many of these U, which cover K. Say {Uy,,...,Uy, } .
Then let U = U;Uy,,V = NVy,, an open set. Hence p € V and V contains no points of K.
Thus p is not a limit point after all. To see that K is bounded, pick ky € K and consider
{B(ko,n)},_, . This is an open cover of K and the sets are increasing so one of these balls
covers K. Hence K is bounded. B

4.8.4 Complete Separability

By Theorem 2.7.9, the rational numbers are dense in R. They are also countable because
there is an onto map from the Cartesian product of the two countable sets Z and Z\ {0} to
the rationals. Indeed, if m/n is a rational number you consider the ordered pair (m,n) in
Z x Z\ {0} and let f ((m,n)) = m/n. Thus, it is possible to enumerate all rational numbers.
Of course, as shown earlier, this means there exists a one to one mapping from N onto QQ but
this is not important here. The only thing which matters is that you can write Q = {r;};_ ;.
Now the following is the important theorem.

Theorem 4.8.18 Let B(x,r) denote the interval (x—r,x+r). It is the set of all
real numbers y such that y is closer to x than r. Then there are countably many balls
B={B(x,r):x€Q,r € QN (0,0)}. Also every open set is the union of some collection
of these balls.

Proof: Let U be a nonempty open set and let p € U. I need to show that p € BC U
for some B € #. There exists R > 0 such that p € B(p,R) C U. Let x € Q such that
|p—x| < &. This is possible because Q is dense. Then letting & < r < £ for r € Q, it
follows that

| |<R<
— — <r
P=Y=10

andso p € B=B(x,r) € #. Also,if z€ B(x,r), then |z — p| < |z — x|+ [x — p| <r 45 <
%R < Randso p € BCB(p,R) CU showing that U is indeed the union of some subset of
%#. 1
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When you have a countable set of open sets with the property that every open set is the
union of a subset of this countable set, you call this countable set of open sets a countable
basis. When this happens, you say the set is completely separable. . Thus R along with the
usual way of finding distance using the absolute value of the difference of two real numbers
is a completely separable set.

Definition 4.8.19 7here is aiso something called the Lindeldf property.* It says
that if you have any set of open sets €, then there is a countable subset of ¢ denoted
here as € such that U € = U%. Thus this property says that every open cover admits a
countable subcover.

Theorem 4.8.20 R has the Lindelof property.

Proof: Let Z consist of the open intervals having center a rational number and radius a
positive rational number. Then if % is any collection of open sets, let % denote those balls
of % which are contained in some set of 4. For each B € %?, let O (B) be one of the open
sets from % which contains B. Then since every open set of % is the union of sets of 4, it
follows that

U%:UQQU{O(B):BE.@} cCu¥

Solet ¢ = {0 (B):Be 7 } It is a countable set because % is countable, being a count-

able subset of a countable set % and the mapping B — O (B) is onto by definition. Note
that the axiom of choice is used to select O (B) from the set of open sets of " which contain
BN

This is a very useful observation. It holds whenever you have a countable basis. Obvi-
ously much of what is being discussed applies to more general situations.

4.9 Exercises

1. Show the intersection of any collection of closed sets is closed and the union of any
collection of open sets is open.

2. Show that if H is closed and U is open, then H \ U is closed. Next show that U \ H
is open.

3. Show the finite intersection of any collection of open sets is open.
4. Show the finite union of any collection of closed sets is closed.

5. Suppose {Hn}nN=1 is a finite collection of sets and suppose x is a limit point of
UZVZIH,,. Show x must be a limit point of at least one H,,.

6. Give an example of a set of closed sets whose union is not closed.
7. Give an example of a set of open sets whose intersection is not open.

8. Give an example of a set of open sets whose intersection is a closed interval.

4Lindelof was a Finnish mathematician who lived from 1870 to 1946. He did important work in complex
analysis.
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10.
11.
12.
13.

14.

15.
16.

17.

18.
19.

20.

21.

Give an example of a set of closed sets whose union is open.

Give an example of a set of closed sets whose union is an open interval.

Give an example of a set of open sets whose intersection is closed.

Give an example of a set of open sets whose intersection is the natural numbers.

Explain why I and 0 are sets which are both open and closed when considered as
subsets of .

Let A be a nonempty set of points and let A’ denote the set of limit points of A. Show
AUA’ is closed. Hint: You must show the limit points of AUA’ are in AUA’. This is
shown in the chapter but do it yourself.

Let U be any open set in IF. Show that every point of U is a limit point of U.

Suppose {K,} is a sequence of sequentially compact nonempty sets which have the
property that K,, O K+ for all n. Show there exists a point in the intersection of all
these sets, denoted by N, K.

Now suppose {K,} is a sequence of sequentially compact nonempty sets which have
the finite intersection property, every finite subset of { K, } has nonempty intersection.
Show there exists a point in N>_, Kj,.

Show that any finite union of sequentially compact sets is compact.

Start with the unit interval, Iy = [0,1]. In this interval, Iy, remove the following
middle third open interval, (1/3,2/3) resulting in the two closed intervals, I} =
[0,1/3]U[2/3,1]. Next delete the middle third of each of these intervals resulting
inh =1[0,1/9]U[2/9]U[2/3,5/9]U[8/9,1] and continue doing this forever. Show
the intersection of all these /,, is nonempty. Letting P = N;_, I, explain why every
point of P is a limit point of P. Would the conclusion be any different if, instead
of the middle third open interval, you took out an open interval of arbitrary length,
each time leaving two closed intervals where there was one to begin with? This pro-
cess produces something called the Cantor set. It is the basis for many pathological
examples of unbelievably sick functions as well as being an essential ingredient in
some extremely important theorems.

In Problem 19 in the case where the middle third is taken out, show the total length
of open intervals removed equals 1. Thus what is left is very “short”. For your
information, the Cantor set is uncountable. In addition, it can be shown there exists
a function which maps the Cantor set onto [0, 1], for example, although you could
replace [0, 1] with the square [0,1] x [0,1] or more generally, any compact metric
space, something you may study later.

Show that there exists an onto map from the Cantor set P just described onto [0, 1].
Show that this is so even if you do not always take out the middle third, but instead
an open interval of arbitrary length, leaving two closed intervals in place of one. It
turns out that all of these Cantor sets are topologically the same meaning that there
is a one to one onto and continuous mapping from one to another. Hint: Base your
argument on the nested interval lemma. This will yield ideas which go somewhere.
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22. Suppose {H,} is a sequence of sets with the property that for every point x, there
exists r > 0 such that B (x, r) intersects only finitely many of the H,,. Such a collection
of sets is called locally finite. Show that if the sets are all closed in addition to being
locally finite, then the union of all these sets is also closed. This concept of local
finiteness is of great significance although it will not be pursued further here.

23. Show that every uncountable set of points in [F has a limit point. This is not nec-
essarily true if you replace the word, uncountable with the word, infinite. Explain
why.

24. In Section 4.8.4 generalize everything to R”. In this case, the countable dense subset
will be Q7. Also explain why (Q+iQ)” is countable and dense subset of C” and
why C? is completely separable.

4.10 Cauchy Sequences and Completeness

You recall the definition of completeness which stated that every nonempty set of real
numbers which is bounded above has a least upper bound and that every nonempty set of
real numbers which is bounded below has a greatest lower bound and this is a property
of the real line known as the completeness axiom. Geometrically, this involved filling in
the holes. There is another way of describing completeness in terms of Cauchy sequences.
Both of these concepts came during the first part of the nineteenth century and are due to
Bolzano and Cauchy.
The next definition has to do with sequences which are real numbers.

Definition 4.10.1 7 sequence of real numbers, {a,} , is monotone increasing if
for all n, a, < a,1. The sequence is monotone decreasing if for all n, a, > an+1. People
often leave off the word “monotone”.

If someone says a sequence is monotone, it usually means monotone increasing.

There exist different descriptions of completeness. An important result is the following
theorem which gives a version of completeness in terms of Cauchy sequences. This is
often more convenient to use than the earlier definition in terms of least upper bounds and
greatest lower bounds because this version of completeness, although it is equivalent to the
completeness axiom for the real line, also makes sense in many situations where Definition
2.10.1 on Page 27 does not make sense, C for example because by Problem 12 on Page 39
there is no way to place an order on C. This is also the case whenever the sequence is of
points in multiple dimensions.

It is the concept of completeness and the notion of limits which sets analysis apart from
algebra. You will find that every existence theorem in analysis depends on the assumption
that some space is complete. In case of R the least upper bound version corresponds to a
statement about convergence of Cauchy sequences.

Theorem 4.10.2 7re following are equivalent.

1. Every Cauchy sequence in R converges

2. Every non-empty set of real numbers which is bounded above has a least upper
bound.
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3. Every nonempty set of real numbers which is bounded below has a greatest lower
bound.

Proof: 1.= 2. First suppose every Cauchy sequence converges and let S be a nonempty
set which is bounded above. Let by be an upper bound. Pick s; € S. If s; = by, the least
upper bound has been found and equals b;. If (s; +b;1) /2 is an upper bound to S, let this
equal b;. If not, there exists by > sy > (s1 +b;) /2 so let by = by and s; be as just described.
Now let b and s, play the same role as s; and b; and do the same argument. This yields a
sequence {s;,} of points of S which is monotone increasing and another sequence of upper
bounds, {b,} which is monotone decreasing and |s,, — b,| < 27"*! (b; —s1) . Therefore, if
m>n

|bn _bm‘ <by—sm<bp—s5, < 2—n+1 (bl _Sl)

and so {b, } is a Cauchy sequence. Therefore, it converges to some number b. Then b must
be an upper bound of § because if not, there would exist s > b and then b, —b > s—b
which would prevent {b, } from converging to b.

2.= 3.,3. = 2. The claim that every nonempty set of numbers bounded below has a
greatest lower bound follows similarly. Alternatively, you could consider —S = {—x: x € S}
and apply what was just shown. If S is bounded below, then —S is bounded above and so
there exists a least upper bound for —S called —/. Then [ is a lower bound to S. If there
is b > [ such that b is also a lower bound to S, then —b would also be an upper bound to
—S§ and would be smaller than —/ which contradicts the definition of —I. Hence [ is the
greatest lower bound to S. To show 3. = 2., also consider —S and apply 3. to it similar to
what was just done in showing 2.= 3.

2.,3.= 1.Now suppose the condition about existence of least upper bounds and greatest
lower bounds. Let {a,} be a Cauchy sequence. Then by Theorem 4.5.2 {a,} C [a,b] for
some numbers a,b. By Theorem 4.8.2 there is a subsequence, {ank} which converges to
X € [a,b]. By Theorem 4.5.4, the original sequence converges to x also. ll

Theorem 4.10.3 If either of the above conditions for completeness holds, then
whenever {a,} is a monotone increasing sequence which is bounded above, it converges
and whenever {b, } is a monotone sequence which is bounded below, it converges.

Proof: Let a = sup{a, : n > 1} and let € > 0 be given. Then from Proposition 2.10.3
on Page 28 there exists m such that a — € < a,, < a. Since the sequence is increasing, it
follows that for all n > m, a — € < a,, < a. Thus a = lim,_, a,,. The case of a decreasing
sequence is similar. Alternatively, you could consider the sequence {—a,} and apply what
was just shown to this decreasing sequence. l

By Theorem 4.10.2 the following definition of completeness is equivalent to the original
definition when both apply. However, note that convergence of Cauchy sequences does not
depend on an order to it applies to much more general situations. Recall from Theorem
4.8.14 that C and R are complete. Just apply that theorem to the case where p = 1.

4.10.1 Decimals

You are all familiar with decimals. In the United States these are written in the form
.ajapas - -- where the a; are integers between 0 and 9.5 Thus .23417432 is a number writ-
ten as a decimal. You also recall the meaning of such notation in the case of a terminating

SIn France and Russia they use a comma instead of a period. This looks very strange but that is just the way
they do it.
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decimal. For example, .234 is defined as 10 + 102 +
minating decimal?

103 Now what is meant by a nonter-

Definition 4.10.4 7. .ajay - -- be a decimal. Define

n
.alaz---z Z—kk

Proposition 4.10.5 The above definition makes sense. Also every number in [0, 1] can
be written as such a decimal.

=

Proof: Note the sequence {22:1 1%} is an increasing sequence. Therefore, if there

exists an upper bound, it follows from Theorem 4.10.3 that this sequence converges and so
the definition is well defined.

n
;*kkﬁ o =L 1ot

9o (yn 1 \_yn 1 _ 1 ntl 1 _ 1 1
NOWW():kﬂ*)—):kﬂW—T)): 110k =Y 110k —Yis zlok—m—lonﬂ and so

Yio 10k < 190 (110 o +1> < 9 ( ! ) = é. Therefore, since this holds for all n, it follows

the above sequence is bounded above. It follows the limit exists.
Now suppose x€[0,1). Let 7§ <x< ‘”H where a; is an integer between 0 and 9.
If integers ay,- - ,a, each between 0and 9 have been obtained such that Y7, 1 <x<

~1 1 -
Y] fzgk al(-); (Zk | =0). Then from the above, 10" ( — Yo 10k> < 1 and so there
exists a1 such that

an+1 " O ay apy1+1
<10 (x— ) ) < ST
0~ (x kzllok> 10

which shows that la(;’,lil. < ( =Y 1()k) aila,};l.Therefore,

X—’}E;Ioloz ]Ok

because the distance between the partial sum up to n and x is always no more than 1/10".
In case x = 1, just let each a, = 9 and observe that the sum of the geometric series equals
..

An amusing application of the above is in the following theorem. It gives an easy way
to verify that the unit interval is uncountable.

Theorem 4.10.6 The interval [0,1) is not countable.

Proof: Suppose it were. Then there would exist a list of all the numbers in this interval.
Writing these as decimals,

X1 = .d11412a13d14415 - -+
X2 = .d421a220a23A14425 " -+
X3 =

-d31a320a33034435 - * -
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Consider the diagonal decimal, .aj1a2a33a44 - - - . Now define a decimal expansion for an-
other number in [0, 1) as follows. y = .bjbab3bs--- where |by — ay| > 4. Then |y —xi| >

liok.Thus y is not equal to any of the x; which is a contradiction since y € [0,1). B

4.10.2 lim sup and lim inf

Sometimes the limit of a sequence does not exist. For example, if @, = (—1)", then
lim,,_,. a, does not exist. This is because the terms of the sequence are a distance of 1
apart. Therefore there can’t exist a single number such that all the terms of the sequence
are ultimately within 1/4 of that number. The nice thing about limsup and liminf is that
they always exist. First here is a simple lemma and definition. First review the definition of
inf and sup on Page 27 along with the simple properties of these things. Also lim,_, @, = o
means that if / € R is given, then for large enough n,a, > I. A similar definition holds for

limn_m ay — —0,

Definition 4.10.7 Denote by [—oo, 0] the real line along with symbols e and —oo.
It is understood that « is larger than every real number and —oo is smaller than every real
number. Then if {A,} is an increasing sequence of points of [—0,0], limy,_,. A, equals oo if
the only upper bound of the set {A,} is . If {A,} is bounded above by a real number, then
lim,, . A, is defined in the usual way and equals the least upper bound of {A,}. If {A,} is
a decreasing sequence of points of [—eo,o0| | lim,_,e A, equals —oo if the only lower bound
of the sequence {A,} is —oo. If {A,} is bounded below by a real number; then lim,,_,A,, is
defined in the usual way and equals the greatest lower bound of {A,}. More simply, if {A,}
is increasing, lim, A, = sup{A, }and if {A,} is decreasing then lim,_,.. A, = inf{A, }.

Lemma 4.10.8 Let {a,} be a sequence of real numbers and let
U,=sup{ay:k>n}.

Then {U,} is a decreasing sequence. Also if L, = inf{ay : k > n}, then {L,} is an increas-
ing sequence. Therefore, lim,_,. L, and lim,_,.. U,, both exist.

Proof: From the definition, if m <n
Ly,=inf{ay:k>m} <inf{a:k>n} =L,

Thus the L, are increasing. If you take inf of a smaller set, it will be as large as inf of the
larger set. Similarly the U, are decreasing. Thus their limits exist as in the above definition.
]

From the lemma, the following definition makes sense.

Definition 4.10.9 7. {an} be any sequence of points of [—co, o]

lim sup a, = lim sup{a; : k > n}
n—yoo n—peo

lim inf a, = lim inf{ay : k > n}.
n—yoo n—soo

Theorem 4.10.10 Suppose {ay} is a sequence of real numbers and that

lim sup a, and lim inf a,
n—soo n—eo
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are both real numbers. Then lim,_« a, exists if and only if

lim inf a,, = lim sup q,
n—peo n—yoo

and in this case,

lim @, = lim inf a, = lim sup a,.
n—oo n—oo N—so0

Proof: First note that sup {ay : k > n} > inf{ay : k > n} and so from Theorem 4.4.13,

lim sup a, = lim sup{a; : k > n} > lim inf{ay : k > n} =lim inf a,.
n—yo0 n—yoo n—yoo n—yoo

= Suppose lim,_,.a, = a € R. Then given € > 0, there is N such thatif n > N,
a—€e<a,<a-+¢

It follows thatif n > N,a— €& < L, < U, < a-+ €.Passing to a limit, it follows from Theorem
4.4.13
a—¢e<liminf a, <limsupa, <a+¢
n—ree n—soo
and so, since € is arbitrary, liminf and lim sup are equal to the limit a.
<« Suppose liminf,, ;. a, = limsup,_,.,a, = a € R. Then if n is large enough,

a—e<L,<a,<U,<a+e¢

Since ¢ is arbitrary, lim, o, = a. B
With the above theorem, here is how to define the limit of a sequence of points in
[—e0, 00|, the new case being that a,, is allowed to be +eo.

Definition 4.10.11 Ler {a,} be a sequence in [—oo,0]. 1imy_seay exists exactly
when

lim inf a,, = lim sup a,
n—reo n—oo

and in this case

lim a, = lim inf a, = lim sup a,.
n—yeo n—oo N—yo0

The significance of limsup and liminf, in addition to what was just discussed, is con-
tained in the following theorem which follows quickly from the definition.

Theorem 4.10.12 suppose {a,} is a sequence of points of [—o0,c0] . Let

A =1lim sup ay,.
n—yoo

Then if b > A, it follows there exists N such that whenever n > N,a, < b. If c < A, then
ap > c for infinitely many values of n. Let

Y= lim inf a,.
n—oo

Then if d < v, it follows there exists N such that whenever n > N,a, > d. If e > v, it follows
a < e for infinitely many values of n.
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The proof of this theorem is left as an exercise for you. It follows directly from the defi-
nition and it is the sort of thing you must do yourself. Here is one other simple proposition.

Proposition 4.10.13 Let lim,,_,..a, = a > 0 and suppose each b, > 0. Then

lim sup a,b,, = alim sup b,,.
n—soo n—soo
Proof: This follows from the definition. Let A, = sup {axby : k > n}. For all n large
enough, a, > a — € where € is small enough that a — € > 0. Therefore,

An > sup{by:k>n}(a—¢)
for all n large enough. Then

lim sup a,b, = lim A, =
n—oo n—oo

lim sup a,b, > lim (sup{by :k >n}(a—¢€)) = (a—€)lim sup b,
n—soo n—eo n—soo
Similar reasoning shows limsup,_,., a,b, < (a+ €)limsup,_,, b,. Now since € > 0 is ar-
bitrary, the conclusion follows. H

4.10.3 Shrinking Diameters

It is useful to consider another version of the nested interval lemma. This involves a se-
quence of sets such that set (n+ 1) is contained in set n and such that their diameters
converge to 0. It turns out that if the sets are also closed, then often there exists a unique
point in all of them. This is just a more general version of the nested interval theorem which
holds in the context that the sets are not necessarily intervals.

Definition 4.10.14 7t S be a nonempty set. Then diam (S) is defined as
diam (S) = sup{|x—y|: x,y € S}.
This is called the diameter of S.
Theorem 4.10.15 7 {F,};_, be a sequence of closed sets in FP such that
lim diam (F,) =0

n—oo

and F, D F,. 1| for each n. Then there exists a unique p € Ny_ Fy.

Proof: Pick p; € Fi. This is always possible because by assumption each set is non-
empty. Then {p;},_,, € F, and since the diameters converge to 0 it follows {p;} is a
Cauchy sequence. Therefore, it converges to a point, p by completeness of F”. Since each
Fy is closed, it must be that p € Fj for all k. Therefore, p € N2_ F. If g € N2, Fy, then
since both p,q € Fy, |p —q| < diam (F;). It follows since these diameters converge to 0,
|p—q| < € forevery €. Hence p=¢.

A sequence of sets, {G, } which satisfies G, 2 G+ for all n is called a nested sequence
of sets.

The next theorem is a major result called Bair’s theorem. In fact, you just need the
context of a complete metric space but we are emphasizing F? here.
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Definition 4.10.16 4» open set U C P is dense if for every x € FP and r >
0,B(x,r)NU # 0.
Theorem 4.10.17 Lo {U,} be a sequence of dense open sets. Then N,U, is dense.

Proof: Let p € F” and let ro > 0. I need to show DN B(p,ry) # 0. Since Uj is dense,
there exists p; € Uy NB(p,ro), an open set. Let p; € B(p1,r1) C B(p1,71) C U NB(p,ro)
and r; < 27!, This is possible because U; N B (p,ry) is an open set and so there exists 7
such that B (p1,2r1) CUINB(p,ry). But

B(p1,r1) CB(p1,r1) S B(p1,2r1)
because B(p1,r1) ={x€X :d(x,p) <ri}. (Why?)

There exists p, € U NB(p1,r1) because U, is dense. Let

p2 € B(p2,12) € B(p2,12) CU2NB(p1,r1) CUINU2NB(p,10)-
and let r, < 272. Continue in this way. Thus r,, < 27",
B(pnarrl) cU ﬂU20-~-mUnt(par0)7
B(pmrn) C B(Pn—lﬂ’n—l)-
The sequence, {p,} is a Cauchy sequence because all terms of {p;} for k > n are
contained in B (p,,7,), a set whose diameter is no larger than 27", Since F? is complete,

(Theorem 4.8.14) there exists p. such that lim,_. p, = pw. Since all but finitely many
terms of {p,} are in B(py, ), it follows that pe € B(py,, rm) for each m. Therefore,

P € ﬁ;le(pm,rm) - ﬁ;oleiﬂB(p,ro). |

The countable intersection of open sets is called a G4 set.

4.11 The Euclidean Norm

1/2
Fora=(ai,---,a,) € F,define |a| = (Zi’:] |ak\2) . Then it is obvious that |aa| = || |a]
whenever o € F and it is obvious that |a| > 0 and equals 0 if and only if a = 0, the zero
vector. As to the triangle inequality 4.2, by the Cauchy Schwarz inequality,

p P P P
ety = Y et =Y P+ Y il +2 Y Re (xiw)
=1 =1 =1 =1
)4 » )4 s )4
< Y bl Y P +2 ) [l [
=1 =1 =1
Loon 2 Loon Ve 2 2 2
< Y P+l 2 Y Y bl = (Jx[+y])
=1 = =1
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so [x+y| < |x|+]y|. Also, it is obvious that

2 2 2
n[lxll” = 1x7 = [lxll” so v/nlxl] = x| = |||

Thus, with this Euclidean norm F? has the same Cauchy sequences, the same open and
closed sets, and all the same theorems concerning compactness. Thus, from the point of
view of analysis, there is no difference. The reason for the Euclidean norm is that it is
geometrically better.

4.12 Exercises

1.

Suppose x = .3434343434 where the bar over the last 34 signifies that this repeats
forever. In elementary school you were probably given the following procedure for
finding the number x as a quotient of integers. First multiply by 100 to get 100x =
34.34343434 and then subtract to get 99x = 34. From this you conclude that x =
34/99. Fully justify this procedure. Hint: 34343434 = lim,,_se0 34Y0 (l(l)—o)k now
use Problem 7 on Page 66.

. Let a € [0,1]. Show a = .ajazas... for some choice of integers in {0,1,2,---,9},

aj,an,--- if it is possible to do this. Give an example where there may be more than
one way to do this.

. Show every rational number between 0 and 1 has a decimal expansion which either

repeats or terminates.

. Using Corollary 3.2.5, show that there exists a one to one and onto map 6 from the

natural numbers N onto QQ, the rational number. Denoting the resulting countable set
of numbers as the sequence {r,}, show that if x is any real number, there exists a
subsequence from this sequence which converges to that number.

. Consider the number whose decimal expansion is .01001000100001000001- - - . Show

this is an irrational number.

. Prove v/2 is irrational. Hint: Suppose v/2 = p/q where p, q are positive integers and

the fraction is in lowest terms. Then 2¢> = p? and so p? is even. Explain why p = 2r
so p must be even. Next argue g must be even.

. Show that between any two integers there exists an irrational number. Next show

that between any two numbers there exists an irrational number. You can use the fact
that v/2 is irrational if you like.

. Let a be a positive number and let x; = b > 0 where b*> > a. Explain why there exists

such a number, b. Now having defined x,, define x,+| = % (x,, + x“—n) . Verify that

{xn} is a decreasing sequence and that it satisfies x2 > g for all n and is therefore,
bounded below. Explain why lim,,_,. x, exists. If x is this limit, show that 2 =a.
Explain how this shows that every positive real number has a square root. This is an
example of a recursively defined sequence. Note this does not give a formula for x,,,
just a rule which tells how to define x,,; if x,, is known.
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10.

11.

12.

13.

14.

15.

16.
17.
18.
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Let a; = 0 and suppose that a,,+1 = ﬁ. Write a,a3,a4. Now prove that for all n,

it follows that a,, < % + %\@ . Find the limit of the sequence. Hint: You should prove
these things by induction. Finally, to find the limit, let # — oo in both sides and argue

. . . 9
that the limit a, must satisfy a = 5=.

If lim,,—,c a, = a, does it follow that lim, . |a,| = |a|? Prove or else give a counter
example.
Show the following converge to 0.

5
(a) llr(l)]n

(b) 100"

n!

Suppose lim,_,x, = x. Show that then limn_ﬁ,o%ZZ:lxk = x. Give an example
where lim,,_s.. x,, does not exist but lim;,_,e % Y i X does.

Suppose r € (0,1). Show that lim,, . " = 0. Hint: Use the binomial theorem. r =

1 1 1
15 Where 6 > 0. Therefore, ' = 7o < Tons ot

Prove lim,, ;. {/n = 1. Hint: Let e, = /n — 1 so that (1 +e,)" = n. Now observe
that e, > 0 and use the binomial theorem to conclude 1+ ne, + "("2_ 1) e < n. This
nice approach to establishing this limit using only elementary algebra is in Rudin

[23].

Find lim,,—,e0 (x" + 5)1/ " for x > 0. There are two cases here, x < 1 and x > 1. Show
that if x > 1, the limit is x while if x < 1 the limit equals 1. Hint: Use the argument
of Problem 14. This interesting example is in [11].

Find limsup,_,., (—1)" and liminf,_,.. (—1)" . Explain your conclusions.
Give a careful proof of Theorem 4.10.12.
Let {a,} be a sequence in (—eo,0). Let Ay = sup{a, : n > k} so that

A =lim sup a, = lim A,
n—oo n—ee

the A, being a decreasing sequence.

(a) Show that in all cases, there exists B, < A, such that B, is increasing and
lim, e B, = A.

(b) Explain why, in all cases there are infinitely many k such that a; € [By,A,].
Hint: If forall k > m > n, a; < B,, then a; < B, also and so sup {a; : k > m} <
B,,, <A, contrary to the definition of A,,.

(c) Explain why there exists a subsequence {ank} such that limy_e a,, = A.

(d) Show that if ¥ € [—co, o] and there is a subsequence {ay, } which has the prop-
erty that limy_,c,a,, =7, then y < 4.

This shows that limsup,,_,,, @, is the largest in [—oo, 0] such that some subsequence
converges to it. Would it all work if you only assumed that {a,} is not —eco for
infinitely many n? What if a, = —oo for all n large enough? Isn’t this case fairly
easy? The next few problems are similar.
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20.

21.
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23.
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25.

26.

27.
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Let A = limsup,_,., a,. Show there exists a subsequence, {ay, } such that

lim a, = A.
k—yo0

Now consider the set S of all points in [—oe, o] such that for s € S, some subsequence
of {a, } converges to s. Show that S has a largest point and this point is limsup,,_, ., ay.

Let {a,} C R and suppose it is bounded above. Let
S = {x € R such that x < a, for infinitely many n}
Show that for each n, sup (S) < sup{ay : k > n}. Next explain why

sup (S) < lim sup ay.

n—oo

Next explain why the two numbers are actually equal. Explain why such a sequence
has a convergent subsequence. For the last part, see Problem 19 above.

Let A = liminf,_..a,. Show there exists a subsequence, {a, } such that

lim a, = A.
k—roo

Now consider the set, S of all points in [—eo, 0] such that for s € S, some subse-
quence of {a,} converges to s. Show that S has a smallest point and this point is
liminf,_,. a,. Formulate a similar conclusion to Problem 20 in terms of liminf and
a sequence which is bounded below.

Prove that if a, < b, for all n sufficiently large that

lim inf a, <lim inf b,, lim sup a, < lim sup b,,.
n—yo0 n—oo n—yoo n—o0

Prove that limsup,,_,,, (—a,) = —liminf,_,e ay.
Prove that if @ > 0, then limsup,_,,, aa, = alimsup, _, ., a, while if a <0,

lim sup aa, = alim inf a,.
n—yoo n—ee

Prove that if lim,_,. b, = b, then limsup,_,., (b, +a,) = b+ limsup,_, ., a,. Conjec-
ture and prove a similar result for liminf.

Give conditions under which the following inequalities hold.

lim sup (a,+b,) < lim sup a,+lim sup b,

n—oo n—oo n—oo
lim inf (a,+b,) > lim inf a,+lim inf b,.
n—oo n—oo n—soo
Hint: You need to consider whether the right hand sides make sense. Thus you can’t
consider —oo + oo,

Give an example of a nested sequence of nonempty sets whose diameters converge
to 0 which have no point in their intersection.
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28. Give an example of a nested sequence of nonempty sets S, such that S, 2 Sp+1 whose
intersection has more than one point. Next give an example of a nested sequence of
nonempty sets S,, S, 2 Sp+1which has 2 points in their intersection.

29. For F =R or C, suppose IF = U;”_| H, where each H, is closed. Show that at least
one of these must have nonempty interior. That is, one of them contains an open ball.
You can use Theorem 4.10.17 if you like.



Chapter 5

Infinite Series of Numbers

5.1 Basic Considerations

Earlier in Definition 4.4.1 on Page 61 the notion of limit of a sequence was discussed.
There is a very closely related concept called an infinite series which is dealt with in this
section.

Definition 5.1.1 Define Y i, ax = lim, e Y, ax whenever the limit exists and is
finite. In this case the series is said to converge. If the series does not converge, it is said to
diverge. The sequence {Y}_, ai}~_  in the above is called the sequence of partial sums.

This is always the definition. Here it is understood that the ay, are in T, either R or C but it
is the same definition in more general situations.

From this definition, it should be clear that infinite sums do not always make sense.
Sometimes they do and sometimes they don’t, depending on the behavior of the partial
sums. As an example, consider } ;" (—l)k. The partial sums corresponding to this symbol
alternate between —1 and 0. Therefore, there is no limit for the sequence of partial sums.
It follows the symbol just written is meaningless and the infinite sum diverges.

Example 5.1.2 Find the infinite sum, Y, e +1)

1
Note n(n+1) = 5 — iy and so Zn 17 n+1)

=¥ (- ,,%1) = _ﬁ + 1. Therefore,

Proposition 5.1.3 Ler a; > 0. Then {Y}_,, ax},._, is an increasing sequence. If this
sequence is bounded above, then Y, a converges and its value equals

n
sup{Zak:n—m,m—l-l,m}.
k=m

When the sequence is not bounded above, Y ., ay diverges.

Proof: It follows {}}_,, ak} . 18 an increasing sequence because ):”+1 ax—Y 5, 0k =
an+1 > 0. If itis bounded above, then by the form of completeness found in Theorem 4.10.2

87
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on Page 76 it follows that the sequence of partial sums converges to

n
sup{Zak:n:m,m+1,---}

k=m

If the sequence of partial sums is not bounded, then it is not a Cauchy sequence and so it
does not converge. See Theorem 4.5.3 on Page 65. B

In the case where a; > 0, the above proposition shows there are only two alternatives
available. Either the sequence of partial sums is bounded above or it is not bounded above.
In the first case convergence occurs and in the second case, the infinite series diverges. For
this reason, people will sometimes write ) 7, a; < o to denote the case where convergence
occurs and Y7, a; = oo for the case where divergence occurs. Be very careful you never
think this way in the case where it is not true that all a; > 0. For example, the partial
sums of } 7, (—1)* are bounded because they are all either —1 or 0 but the series does not
converge.

One of the most important examples of a convergent series is the geometric series.
This series is ), . The study of this series depends on simple high school algebra and
Theorem 4.4.11 on Page 63. Let S, = Y7_,7*. Then

n n n+1
Sy = Zr]‘, rSy, = Zrk+1: Zr]‘
k=0 k=0 k=1

Therefore, subtracting the second equation from the first yields (1 —r) S, = 1 —r"*! and so

a formula for S, is available. In fact, if r # 1,S,, = 1’1’_' Z:I .By Theorem 4.4.11, lim,, e S, =
1

1= in the case when || < 1. Now if |[r| > 1, the limit clearly does not exist because S, fails

to be a Cauchy sequence (Why?). This shows the following.

Theorem 5.1.4 7he geometric series, Yo" converges and equals ﬁ iflr] <1
and diverges if |r| > 1.

If the series do converge, the following holds.

Theorem 5.1.5 If Yo ar and Y7 by both converge and x,y are numbers, then

Zak: Z Af—j (51)

k=m k=m+j
Zxak—i—ybk :xZak+yZbk (5.2)
k=m k=m k=m
Y a <Y lal (5.3)
k=m k=m

where in the last inequality, the last sum equals o< if the partial sums are not bounded
above.

Proof: The above theorem is really only a restatement of Theorem 4.4.8 on Page 62
and the above definitions of infinite series. Thus
oo n+ j

‘ .

k=m =m+j k=m+j
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To establish 5.2, use Theorem 4.4.8 on Page 62 to write

=)

n n n
Zxak+ybk = r}g&Zxak—i-ybk:r}grolo(xZak—i—yZbk)
k=m k=m k=m

k=m
X 2: ai+y 2: by.
k=m k=m

Formula 5.3 follows from the observation that, from the triangle inequality,

n
Y a
k=m

n oo
<Y al <Y ]
k=m k=m

and so

)

Y

k=m

<Y | m

= lim
n—ree k=m

n
) a
k=m

Recall that if lim,,_,.. A, = A, then lim,,_,« |A,| = |A].

Example 5.1.6 Find Y7 o (3 + %)

From the above theorem and Theorem 5.1.4,

= /5 6 A 1 1
Z 4 )=5Y —46Y —=5 +6 =19.
n;o<2" 3”) ;)2 nz=o3” 1=(1/2)  "1-(1/3)

The following criterion is useful in checking convergence. All it is saying is that the
series converges if and only if the sequence of partial sums is Cauchy. This is what the
given criterion says. However, this is not new information.

Theorem 5.1.7 Let {ax} be a sequence of points in F. The sum Y., a, converges
if and only if for all € > 0, there exists ng such that if g > p > ng, then

<e. (5.4

q
) a
k=p

Proof: Suppose first that the series converges. Then {Y;_, ax}._  is a Cauchy se-
quence by Theorem 4.5.3 on Page 65. Therefore, there exists ne > m such that if ¢ >
p—12>ne >m,

<e. (5.5

q p—1
Ya-Ya
k=m k=m

q
Y a
k=p

Next suppose 5.4 holds. Then from 5.5 it follows upon letting p be replaced with p+ 1
that {y7_, ax}." . is a Cauchy sequence and so, by Theorem 4.8.14, it converges. By the
definition of infinite series, this shows the infinite sum converges as claimed. ll
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5.2 Absolute Convergence

Definition 5.2.1 7he statement that a series Y . ax converges absolutely means
Y. lax| converges. If the series does converge but does not converge absolutely, then it is
said to converge conditionally.

Theorem 5.2.2 If Y., ar converges absolutely, then it converges.

Proof: Let £ > 0 be given. Then by assumption and Theorem 5.1.7, there exists ng
such that whenever ¢ > p > ng, Yi_ » lax| < €. Therefore, from the triangle inequality,
e> Y, la] > ‘Zzzp ak’ . By Theorem 5.1.7, Y7, a converges. B

In fact, the above theorem is really another version of the completeness axiom. Thus
its validity implies completeness. You might try to show this.

One of the interesting things about absolutely convergent series is that you can “add
them up” in any order and you will always get the same thing. This is the meaning of the
following theorem. Of course there is no problem when you are dealing with finite sums
thanks to the commutative law of addition. However, when you have infinite sums strange
and wonderful things can happen because these involve a limit.

Theorem 5.2.3 Let 6 : N — N be one to one and onto. Suppose Y ;.| ay converges
absolutely. Then

Y asu) =

k=1

Proof: From absolute convergence, there exists M such that

Y lal= <i - Y m) <e

k=M+1 k=1 k=1

[ agki

Ak

k=1

Since 0 is one to one and onto, there exists N > M such that

{]721"' 7M} - {9(1)76(2)5"' ,G(N)}.
It follows that it is also the case that Y7 ‘ae(k)‘ < €. This is because the partial sums
of the above series are each dominated by a partial sum for i /. | [a| since every index
0 (k) equals some n for n > M + 1. Then since € is arbitrary, this shows that the partial
sums of } ag(;) are Cauchy. Hence, this series does converge and also

M N
Y a—) ag
k=1 k=1

oo

< Z |ak|<£

k=M+1

Hence

< +

Y a— Y aesn
=1 =1

N

oo M M N
Yoa— Y a|+| Y ak— ) apw)
=1 =1 =1 =1

=

< Z |(1k|+8+ Z |L19<k)’<3€
k=M+1 k=N+1

+

ag(y — ), ao(k)
k=1 k=1

Since € is arbitrary, this shows the two series are equal as claimed. ll
So what happens when series converge only conditionally?
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Example 5.2.4 Consider the series Y., (—l)k%. Show that there is a rearrangement
which converges to 7 although this series does converge. (In fact, it converges to —In2
for those who remember calculus.)

First of all consider why it converges. Notice that if S,, denotes the n'" partial sum, then

1 1

S0 =S = m am—1 <0
1 1
Sone1—Sm-1 = Tl Jr% >0
1
SZn - S2r171 = %

Thus the even partial sums are decreasing and the odd partial sums are increasing. The
even partial sums are bounded below also. (Why?) Therefore, the limit of the even partial
sums exists. However, it must be the same as the limit of the odd partial sums because
of the last equality above. Thus lim,_,. S, exists and so the series converges. Now I will
show later that }' ﬁ and Y7, ﬁ both diverge. Include enough even terms for the
sum to exceed 7. Next add in enough odd terms so that the result will be less than 7. Next
add enough even terms to exceed 7 and continue doing this. Since 1/k converges to 0, this
rearrangement of the series must converge to 7. Of course you could also have picked 5 or
—8 just as well. In fact, given any number, there is a rearrangement of this series which
converges to this number.

Theorem 5.2.5 (comparison test) Suppose {a,} and {b,} are sequences of non neg-
ative real numbers and suppose for all n sufficiently large, a,, < by,. Then

1. IfY> b, converges, then Y >_. a, converges.
2. If Y,y an diverges, then Y., b, diverges.

Proof: Consider the first claim. From the assumption, there exists n* such that n* >
max (k,m) and for all n > n* b, > a,. Then if p > n*,

ia nng‘;n i Z +ibn.

n=m n=n* n=m n=k

Thus the sequence,{Y?_,, an};"zm is bounded above and increasing. Therefore, it converges
by completeness. The second claim is left as an exercise. B

Example 5.2.6 Determine the convergence of y.,._, n2

1 p 1 17 _ 1

Forn>1, - < n(ﬂ Nk Now ):n 2wl 1) ne2 [WI — E] =1- i 1. Therefore,
. 1

use the comparison test with a, = n2 and b, = A=)

A convenient way to implement the comparison test is to use the limit comparison test.
This is considered next.

Theorem 5.2.7 Let an,b, > 0 and suppose for all n large enough,
a, _ ap
0 — < —<b<eo,
<a< by = by <b<

Then Y. a, and Y. b, converge or diverge together.
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Proof: Let n* be such that n > n*, then

Z—: > a and Z—: <b
and so for all such n,
ab, < a, < bb,

and so the conclusion follows from the comparison test. H
The following corollary follows right away from the definition of the limit.

Corollary 5.2.8 Let a,,b, > 0 and suppose

lim 2 = 2 € (0,).

n—e b,

Then Y. a, and Y b, converge or diverge together.

Example 5.2.9 Determine the convergence of Yy, W
n*42n+7

This series converges by the limit comparison test above. Compare with the series of
Example 5.2.6.

1) v

lim " = fim Y2 sl ,/1+ +

n—soo | n—oo n—>oo
(\/n4+2n+7>

Therefore, the series converges with the series of Example 5.2.6. How did I know what to
compare with? I noticed that v/n* 4+ 2n+7 is essentially like Vin# = n? for large enough
n. You see, the higher order term n* dominates the other terms in n* + 2n + 7. Therefore,
reasoning that 1/v/n* +2n+7 is a lot like 1/n? for large n, it was easy to see what to
compare with. Of course this is not always easy and there is room for acquiring skill
through practice.

To really exploit this limit comparison test, it is desirable to get lots of examples of
series, some which converge and some which do not. The tool for obtaining these examples
here will be the following wonderful theorem known as the Cauchy condensation test.

Theorem 5.2.10 L. ay > 0 and suppose the terms of the sequence {a,} are de-
creasing. Thus a, > an+1 for all n. Then

Z a, and Z 2" apn
n=1 n=0
converge or diverge together.

Proof: This follows from the inequality of the following claim.
Claim:

n

2" n
Y 2ay =Y a> Y 2 ay. (5.6)
k=1 k=0
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Proof of the Claim: Note the claim is true for n = 1. Suppose the claim is true for n.
Then, since 2" — 2" = 2", and the terms, a,, are decreasing,

n+l1 on
Z zka k-1 = 2"+1a2n -+ Z 2 Apk-1 > Z"Hazn + Z ag

on+1

+1
> Zak>2 a2n+l+Zak>2 a2,1+1+22k 1 _rtzkflazk
k=0 k=0

By induction, the claim is valid. Then passing to a limit in 5.6

222ka21\—22612k12 Z

HMB
It

azk = Z 2 azk

Thus, if Y77, 2¥ay < o then the partial sums of Y5>, a; are bounded above by Y5> 2%a,«
so these partial sums converge. If Y77 2%a diverges, then

oo = lim = ZZ ay < hm Zak

n—so0 2

and so Y ay, also diverges. Thus the two series converge or diverge together. Bl

Example 5.2.11 Determine the convergence of Y kip where p is a positive number.
These are called the p series.

Let a, = . Then ayn = (2%)" From the Cauchy condensation test the two series

o

Z ~ and Zz" (zp>n -y (2“—!’))"

n=0

converge or diverge together. If p > 1, the last series above is a geometric series having
common ratio less than 1 and so it converges. If p < 1, it is still a geometric series but in
this case the common ratio is either 1 or greater than 1 so the series diverges. It follows
that the p series converges if p > 1 and diverges if p < 1. In particular, Y, n~! diverges
while Y'>_, n~2 converges.

1 # p>1 converges

Yoo Lo p<i diverges

n=1 pP

Example 5.2.12 Determine the convergence of Y., —1
" \/n24+100n

Use the limit comparison test. lim,_,c % =1 and so this series diverges with
(vt)
i
Sometimes it is good to be able to say a series does not converge. The n' term test
gives such a condition which is sufficient for this. It is really a corollary of Theorem 5.1.7.

Theorem 5.2.13 IfY ., an converges, then lim,_,. a, = 0.
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Proof: Apply Theorem 5.1.7 to conclude that

lima, = lim ) a;=0. 1

n—soo n—soo
k=n

It is very important to observe that this theorem goes only in one direction. That is,
you cannot conclude the series converges if lim, . a, = 0. If this happens, you don’t
know anything from this information. Recall lim, ,on~! = 0 but ¥, n~! diverges. The
following picture is descriptive of the situation.

lima, =0

Y a, converges

a, =pn!

5.3 Exercises

1. Determine whether the following series converge and give reasons for your answers.

(@) Ly ——— © L 2

n24n+1
(b) Loy (Vn+1—1/n)
n! 2
© Xom (2;;))!
)Y

@ Ty o ©® Tt ()"

0 X (5)"

—~

2

—

2. Determine whether the following series converge and give reasons for your answers.

zn
(@ Yoo n2+nn
o M
(b) Xy 2t
©) Y Trjr]

1,100

@) Yoz tom

3. Find the exact values of the following infinite series if they converge.

(@ Yis k(Tl_z)

(b) T ey

© L e

(d) ZNf (L _ #)
k=t \(VE ™ VirT

4. Suppose Y ;- ax converges and each a; > 0. Does it follow that } ;> , a,% also con-
verges?
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5.

10.

Find a series which diverges using one test but converges using another if possible.
If this is not possible, tell why.

IfY > ,a, and Y’ b, both converge and a,,b, are nonnegative, can you conclude
the sum, Y, a,b, converges?

If > ,a, converges and a, > 0 for all n and b, is bounded, can you conclude
Y | anby converges?

. . - —n/2
Determine the convergence of the series ) ;> ():Zzl %) "/ .

Is it possible there could exist a decreasing sequence of positive numbers, {a,} such
that lim, yea, =0but }.;°_, (1 — ”{"l—:l) converges? (This seems to be a fairly diffi-
cult problem.)Hint: You might do something like this. Show

fim X = L7X
=1 —In(x) In(l/x)

Next use a limit comparison test with }.° ; In (ﬁ) Go ahead and use what you
learned in calculus about In and any other techniques for finding limits. These things
will be discussed better later on, but you have seen them in calculus so this is a little

review.

Suppose Y a, converges conditionally and each a,, is real. Show it is possible to add
the series in some order such that the result converges to 13. Then show it is possible
to add the series in another order so that the result converges to 7. Thus there is no
generalization of the commutative law for conditionally convergent infinite series.
Hint: To see how to proceed, consider Example 5.2.4.

5.4 More Tests for Convergence

5.4.1 Convergence Because of Cancellation

So far, the tests for convergence have been applied to non negative terms only. Sometimes,
a series converges, not because the terms of the series get small fast enough, but because of
cancellation taking place between positive and negative terms. A discussion of this involves

some simple algebra.
Let {a,} and {b,} be sequences and let

n

A, = Zak, A_1=Ay=0.

k=1
Thenif p < g

q q q q

Z anb, = Z b, (An _Anfl) = Z b,A, — Z b,A,_1

n=p n=p n=p n=p
q q—1 q—1
=Y buAn— Y bur1An=byAq—bpAp 1+ Y Ay(by—buy1) (5.7

n=p n=p—1 n=p

This formula is called the partial summation formula of Dirichlet.
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Theorem 5.4.1 (Dirichlet’s test) Suppose An = Y}, ai is bounded and
lim b, =0,

n—yoo

with by, > b1 for all n. Then Y, a,b, converges.

Proof: This follows quickly from Theorem 5.1.7. Indeed, letting |A,| < C, and using
the partial summation formula above along with the assumption that the b,, are decreasing,

q q—1
Z apby| = quq - prpfl + Z A, (bn - bn+1)
n=p n=p

g—1
< C(|bg|+|bp|) +C Y, (bn—bur1) = C(|bg|+ |bp|) +C(bp—by)
n=p
and by assumption, this last expression is small whenever p and ¢ are sufficiently large. B

Definition 5.4.2 Ifb, > 0 forall n, a series of the form Y, (— l)k brorY, (—l)k_l by
is known as an alternating series.

The following corollary is known as the alternating series test.

Corollary 5.4.3 (alternating series test) If lim,_,wb, = 0, with b, > b, |, then the
series, Yoo (—1)" b, converges.

Proof: Let a, = (—1)". Then the partial sums of ¥, a, are bounded and so Theorem
5.4.1 applies. B
In the situation of Corollary 5.4.3 there is a convenient error estimate available.

Theorem 5.4.4 et b, > 0 for all n such that b,, > by, for all n and
lim b, =0

n—oo

and consider either ¥ (—1)" by or ¥, (—1)" "' b,,. Then

o N
Y (D" Y (=1)"ba| < baal,
n=1 n=1

- 1 y 1

Y ()" b =Y (D) b < |y

n=1 n=1

See Problem 8 on Page 103 for an outline of the proof of this theorem along with
another way to prove the alternating series test.

Example 5.4.5 How many terms must I take in the sum, ¥ 5, (—1)" ,ﬂlﬁ to be closer than

Tlo oYy (—1)" ﬁ?

From Theorem 5.4.4, I need to find »n such that ﬁ < % and then n — 1 is the desired
value. Thus n = 3 and so
> 1 2 1 1
n n
_ _ _ <
2 (=1 n+1 2 (=1 n2+1|~ 10

n=1 n=1
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Definition 5.4.6 A series Y a, is said to converge absolutely if ¥ |ay,| converges. It
is said to converge conditionally if ¥ |ay,| fails to converge but ¥ a, converges.

Thus the alternating series or more general Dirichlet test can determine convergence of
series which converge conditionally.

5.4.2 Ratio And Root Tests

A favorite test for convergence is the ratio test. This is discussed next. It is at the other
extreme from the alternating series test, being completely oblivious to any sort of cancella-
tion. It only gives absolute convergence or spectacular divergence.

Theorem 5.4.7 Suppose |a,| > 0 for all n and suppose

fim 191l _
n—eo|ay|

Then
oo diverges ifr > 1
Z ap{ converges absolutely if r < 1
n=1 test fails if r = 1

Proof: Suppose r < 1. Then there exists n; such that if n > ny, then

An+1
A

0< <R

where r < R < 1. Then |a,+1| < R|ay| for all such n. Therefore,
|anl+p| <R |an1+p,1| <R’ |anl+,,,2| < < RP|ay,| (5.8)

and so if m > n, then |a,,| < R™™™ |a,, |. By the comparison test and the theorem on geo-
metric series, Y |a,| converges. This proves the convergence part of the theorem.

To verify the divergence part, note that if » > 1, then 5.8 can be turned around for some
R > 1. Showing lim,,_,e |a,| = . Since the n'" term fails to converge to 0, it follows the
series diverges.

To see the test fails if 7 = 1, consider Y,n~! and ¥.n 2. The first series diverges while
the second one converges but in both cases, r = 1. (Be sure to check this last claim.) B

The ratio test is very useful for many different examples but it is somewhat unsatisfac-
tory mathematically. One reason for this is the assumption that a, # 0, necessitated by the
need to divide by a,, and the other reason is the possibility that the limit might not exist.
The next test, called the root test removes both of these objections. Before presenting this
test, it is necessary to first prove the existence of the p’* root of any positive number. This
was shown earlier in Theorem 2.11.2 but the following lemma gives an easier treatment of
this issue based on theorems about sequences.

Lemma 5.4.8 Let a > 0 be any nonnegative number and let p € N. Then al/P exists.
This is the unique positive number which when raised to the p'* power gives a.
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Proof: Consider the function f (x) = x” — a. Then there exists b; such that f (b;) >0
and a; such that f(a;) < 0. (Why?) Now cut the interval [a;,b] into two closed intervals
of equal length. Let [az, b2] be one of these which has f (a2) f (b2) < 0. Now do for [ay,b;]
the same thing which was done to get [a2,b;] from [a,b;]. Continue this way obtaining a
sequence of nested intervals [ay,b;] with the property that

bk—ak = Zl_k (b] —al).

By the nested interval theorem, there exists a unique point x in all these intervals. By
Theorem 4.4.8

flar) = f(x), fbx) = f(x).
Then from Theorem 4.4.13,

F (£ ()= Jim £ (@) £ (b) <0
Hence f(x)=0. 1
Theorem 5.4.9 suppose |an|1/” < R < 1 for all n sufficiently large. Then

oo

Z ay converges absolutely.
n=1

If there are infinitely many values of n such that |ay| n > 1, then

=)

Z a, diverges.

n=1

Proof: Suppose first that |an|1/ " < R < 1 for all n sufficiently large. Say this holds for
all n > ng. Then for such n,
V|an| < R.

la,| <R"

Therefore, for such n,

and so the comparison test with a geometric series applies and gives absolute convergence
as claimed.

Next suppose |ay| m > 1 for infinitely many values of n. Then for those values of n,
la,| > 1 and so the series fails to converge by the n'" term test. B

Stated more succinctly the condition for the root test is this: Let

r = lim sup |a,|"/"
n—yoo

then

converges absolutely if 7 < 1
ap{ testfailsif r=1
m diverges if r > 1

[ agki

k

To see the test fails when r = 1, consider the same example given above, Y, % and Y}, n%

Indeed, limn%wnl/ " — 1. To see this, let
en=n"""—150 (1+¢,)" =n

By the binomial theorem, 1+ ne, + @eﬁ <nandsoe? < % showing that e, — 0.

A special case occurs when the limit exists.
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Corollary 5.4.10 Suppose lim, .. |a,| U exists and equals r. Then

o0 converges absolutely if r < 1
Z ap testfailsifr=1
k=m diverges if r > 1

Proof: The first and last alternatives follow from Theorem 5.4.9. To see the test fails
if r = 1, consider the two series ), % and Y7, n% both of which have r = 1 but having
different convergence properties. The first diverges and the second converges. B

5.5 Double Series

Sometimes it is required to consider double series which are of the form

ELm=L(Lu)
k=m j=m k=m \ j=m

In other words, first sum on j yielding something which depends on k and then sum these.
The major consideration for these double series is the question of when

Y Yap=Y Y ap
k=m j=m Jj=mk=m

In other words, when does it make no difference which subscript is summed over first? In
the case of finite sums there is no issue here. You can always write

M N N M

Y Yaw=Y Y ap

k=m j=m Jj=mk=m
because addition is commutative. However, there are limits involved with infinite sums and
the interchange in order of summation involves taking limits in a different order. Therefore,
it is not always true that it is permissible to interchange the two sums. A general rule of
thumb is this: If something involves changing the order in which two limits are taken, you
may not do it without agonizing over the question. In general, limits foul up algebra and
also introduce things which are counter intuitive. Here is an example. This example is a
little technical. It is placed here just to prove conclusively there is a question which needs
to be considered.

Example 5.5.1 Consider the following picture which depicts some of the ordered pairs
(m,n) where m,n are positive integers.

0 0 ¢ 0 —c
0O ¢c 0 — O
b 0 — O 0
0 a O 0 0
The a,b,c are the values of ay,y,. Thus a,, =0 foralln > 1, a1 = a,a;n = b,am(mH) =—c

whenever m > 1, and @y, 1) = ¢ whenever m > 2. The numbers next to the point are the
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values of amy,. You see an, = 0 for all n, ay; = a,ajy = b,ayy, = ¢ for (m,n) on the line
y = 1 +x whenever m > 1, and ay,, = —c for all (m,n) on the line y = x — 1 whenever
m> 2.

Then } > _am=aifn=1,%"_am=b—cifn=2andif n> 2} | am, =0.
Therefore,

s
ngk

amp,=a+b—c.

1m=1

3
Il

Next observe that } > ap, =bif m=1,Y," am =a+cif m=2,and } ;7 ap, =0 if

m > 2. Therefore,
Z Z Qun=b+a+c

m=1n=

and so the two sums are different. Moreover, you can see that by assigning different values
of a,b, and ¢, you can get an example for any two different numbers desired.

Don’t become upset by this. It happens because, as indicated above, limits are taken
in two different orders. An infinite sum always involves a limit and this illustrates why
you must always remember this. This example in no way violates the commutative law of
addition which has nothing to do with limits. Algebra is not analysis. Crazy things happen
when you take limits. Intuition is routinely rendered useless.

However, it turns out that if a;; > 0 for all 7, j, then you can always interchange the
order of summation. This is shown next and is based on the Lemma 2.10.5 which says you
can intercange supremums.

Lemma 5.5.2 If{A,} is an increasing sequence in [—oo, o), then

sup{A,} = ,}LHLA"'

Proof: Let sup ({A, : n € N}) = r. In the first case, suppose r < . Then letting € > 0
be given, there exists n such that A, € (r — €,r]. Since {A,} is increasing, it follows if
m>n, then r— €& <A, <A, <rand so lim,_,A, = r as claimed. In the case where
r = oo, then if a is a real number, there exists n such that A, > a. Since {A;} is increasing,
it follows that if m > n, A,, > a. But this is what is meant by lim,_,. A, = c. The other
case is that » = —oo. But in this case, A,, = —oc for all n and so lim,, .. A,, = —cc.

Theorem 5.5.3 Leta;; > 0. Then

™
TMx

~LEe

HM&Z

l1j

Proof: First note there is no trouble in defining these sums because the g;; are all
nonnegative. If a sum diverges, it only diverges to o and so o is the value of the sum. Next
note that )77 . }° . @;; > sup, Y7, Y ,.a;jbecause forall j, Y7 a;; > Yi.a;;. Therefore,
using Lemma 5.5.2,

ZZ“U > supZZa,j 7sup hm ZZa,,

]rlr ]rlr ]rlr
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= suphmZZa,]—suthm Za,]
n moree noj=p"

lr]r

= SuPZia’/* hmzzau *ZZ“!‘J’

nj=rj=r i=rj=r i=rj=r

Interchanging the i and j in the above argument proves the theorem. B
The following is the fundamental result on double sums.

Theorem 5.5.4 Let a;jj € F and suppose

Y ) aij| <.

i=r j=r
Then o .
LY =) Ya
i=rj=r Jj=ri=r

and every infinite sum encountered in the above equation converges.

Proof: By Theorem 5.5.3 72,377, ’aij| =Y Y, ‘a,ﬂ < oo, Therefore, for each
Jy Yoo, |a,<j| < co and for each 7, Y7, ‘a,-j| < oo, By Theorem 5.2.2 on Page 90, both of
the series },;”, aij, ¥.7-,aij converge, the first one for every j and the second for every i.
Also, Y7, T2 aij| < X7, X2, =X | <XE,XT |aij| < eosoby
Theorem 5.2.2 again, }.7°,. Y72, aij, Y=, Y7, aij both exist. It only remains to verify they
are equal. By similar reasoning you can replace a;; with Rea;; or with Ima;; in the above
and the two sums will exist.

The real part of a finite sum of complex numbers equals the sum of the real parts.
Then passing to a limit, it follows Re}.7" . ¥ .a;; = Y72, };” Rea;; and similarly, one
can conclude that ImY'2, Y5 a;; = Y72, Y7, Imaj;. Note 0 < (|a;j| +Rea;j) < 2]ayj|.
Therefore, by Theorem 5.5.3 and Theorem 5.1.5 on Page 88

Y X [ay]+ £ Y Rea; = L ¥ (jay| + Reay)

/rlr ]rlr ]rlr

(|aij| +Rea;;) = Y. ) |aij| + Y ) Reaj;

i=r j=r i=r j=r i=rj=r

| Il
™ 1M
™ IDs
_|_

I pok

I hok

?E’

j=ri=r i=r j=r

and so

RCZ Za,’j = Z ZReaij = Z Z Reaij = RCZ Z aij
Jj=ri=r j=ri=r i=r j=r i=rj=r
Similar reasoning applies to the imaginary parts. Since the real and imaginary parts of the
two series are equal, it follows the two series are equal. B
One of the most important applications of this theorem is to the problem of multiplica-
tion of series.
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Definition 5.5.5 L. Yo, aiand Y i . b; be two series. For n > r, define
= Z aiby gy
k=r
The series Y ,,_,.cp is called the Cauchy product of the two series.

It isn’t hard to see where this comes from. Formally write the following in the case
r=0:
(ao+ar+ax+az---)(bo+bi+by+b3-)

and start multiplying in the usual way. This yields
aobo + (aoby + boay) + (aobz +aiby +azbo) +

and you see the expressions in parentheses above are just the ¢, forn =0,1,2,--- . There-
fore, it is reasonable to conjecture that }3;° . a; Y7, b; = Y., ¢y and of course there would
be no problem with this in the case of finite sums but in the case of infinite sums, it is
necessary to prove a theorem. The following is a special case of Merten’s theorem.

Theorem 5.5.6 Suppose }.°.a; and Y7 bj both converge absolutely'. Then
Ya Z bj | =Y en
i=r n=r

Proof: Let p;y =1 if r <k <nand py =0if k > n. Then ¢, = Y, pukakbp—i+r-

where ¢, =Y, arbp_iir.

Also,
Z ank |ak‘ |bn7k+r| = Z ‘ak| Z Pnk ‘b)17k+r|
k=rn=r k=r n=r
=Y lael Y. 1busir| = Z || Z |bu——r)| = Z |ak| Z |bm| < eo.
k=r n=k k= m=r

Therefore, by Theorem 5.5.4

Z Cn = Z Zakbn k+r = Z ankakbn k+r

n=rk=r n=rk=r

Z nkbnkarr = Z g Z bnfkﬁ»r = Z ag Z bm u
n=r k=r n=k k=r m=r

||M8

5.6 Exercises

1. Determine whether the following series converge absolutely, conditionally, or not at
all and give reasons for your answers.

!Actually, it is only necessary to assume one of the series converges and the other converges absolutely. This
is known as Merten’s theorem and may be read in the 1974 book by Apostol listed in the bibliography.
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10.

11.
12.

(@ Yoy (—1)" 25 () Yoy (1)
(b) Ly (=1)" 25 - "
. n " (g) Zn: (_1) n7
© Lo (—1) 5y T
) Yo, (-1r e ) Yo (="
© Loy (— )" 5w M) Ty (—1)" s

Suppose Y .-, a, converges. Can the same thing be said about ) ~_, a2? Explain.

A person says a series converges conditionally by the ratio test. Explain why his
statement is total nonsense.

A person says a series diverges by the alternating series test. Explain why his state-
ment is total nonsense.

Find a series which diverges using one test but converges using another if possible.
If this is not possible, tell why.

IfY, ,a, and Y, b, both converge, can you conclude the sum, Y’ | a,b, con-
verges?

If Y, a, converges absolutely, and b, is bounded, does ) ~_, a,b, always converge?
What if it is only the case that )" a, converges?

Prove Theorem 5.4.4. Hint: For Y7, (—1)" b,, show the odd partial sums are all no
larger than >, (—1)" b, and are increasing while the even partial sums are at least
as large as Yo»_ | (—1)" b, and are decreasing. Use this to give another proof of the
alternating series test. If you have trouble, see most standard calculus books.

Use Theorem 5.4.4 in the following alternating series to tell how large n must be so
that |7, (—1 Y ap — Yio (—1 )k a| is no larger than the given number.

1
Vnt1"
n_1

2
sense to write (ZZ;O (-1 \/T?) . What about the Cauchy product of this series?

Consider the series Y;* o (—1)" Show this series converges and so it makes

Does it even converge? What does this mean about using algebra on infinite sums as
though they were finite sums?

Verify Theorem 5.5.6 on the two series } ;7 2% and Yo 37k,

You can define infinite series of complex numbers in exactly the same way as infinite
series of real numbers. That is w = };” , z; means: For every € > 0 there exists N
such that if n > N, then |w —Y}_, zx| < €. Here the absolute value is the one which
applies to complex numbers. That is, |a+ib| = Va? +b2. Show that if {a,} is a
decreasing sequence of nonnegative numbers with the property that lim,_,a, =0
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13.

14.

15.

16.

17.
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and if @ is any complex number which is not equal to 1 but which satisfies || =1,
then Y7 | ®"a, must converge. Note a sequence of complex numbers, {a, + ib,}
converges to a + ib if and only if a, — a and b, — b. See Problem 6 on Page 66.
There are quite a few things in this problem you should think about.

Suppose limy_,c 5 = s. Show it follows lim,,_s % Y 1Sk =S.
Using Problem 13 show that if }% aj—’ converges, then it follows
lim, oo 1 ¥ aj =0.

Show that if {p;};, are the prime numbers, then };° 15 = That is, there are
enough primes that the sum of their reciprocals diverges. Hlnt: Let 7 (n) denote the
number of primes less than equal to n, { Py Pr(n) } Then explain why

£1(E ) (£1) Bty <flon-esth

1 P k=1Pr(n)

and consequently why limy,_,. 7 (n) = o0 and Y5 | i = oo,

1/2
Verify the allegation about the Euclidean norm |x| = ( - |xk|2) that ¥ with
the Euclidean norm yields the same Cauchy sequences, compact sets, and open and
closed sets as F” with the norm ||-|.

Suppose S is an uncountable set and suppose f (s) is a positive number for each s € S.
Also let S denote a finite subset of S. Show that

sup{Zf(s):SgS}m
sES



Chapter 6

Continuous Functions

The concept of function is far too general to be useful in calculus. There are various ways
to restrict the concept in order to study something interesting and the types of restrictions
considered depend very much on what you find interesting. In Calculus, the most funda-
mental restriction made is to assume the functions are continuous. Continuous functions
are those in which a sufficiently small change in x results in a small change in f (x). They
rule out things which could never happen physically. For example, it is not possible for a
car to jump from one point to another instantly. Making this restriction precise turns out to
be surprisingly difficult although many of the most important theorems about continuous
functions seem intuitively clear.

Before giving the careful mathematical definitions, here are examples of graphs of func-
tions which are not continuous at the point xg.

22 o

You see, there is a hole in the picture of the graph of this function and instead of
filling in the hole with the appropriate value, f (xo) is too large. This is called a removable
discontinuity because the problem can be fixed by redefining the function at the point xg.
Here is another example.

You see from this picture that there is no way to get rid of the jump in the graph of
this function by simply redefining the value of the function at xy. That is why it is called

105
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a nonremovable discontinuity or jump discontinuity. Now that pictures have been given of
what it is desired to eliminate, it is time to give the precise definition.

The definition which follows, due to Bolzano, Cau(:hy1 Bolzano, and Weierstrass and
Weierstrass” is the precise way to exclude the sort of behavior described above and all
statements about continuous functions must ultimately rest on this definition from now
on or something which is equivalent to it. I am going to present this in the context of
functions which are defined on D (f) C F? having values in F? where p,q are positive
integers because it is no harder. However, in most of the applications in this book, D (f)
will be in R or C.

Definition 6.0.1 A function f: D (f) CTF? — T is continuous at x € D (f) if for
each € > 0 there exists 8 > 0 such that whenever y € D (f) and ||y — x|| < 0 it follows that
IIf (x) = fF )|l < €. A function f is continuous if it is continuous at every point of D (f).

If f has values in F?, it is of the form x — (fi (x),---, f, (x)) where the f; are real
valued functions.

In sloppy English this definition says roughly the following: A function f is continuous
at x when it is possible to make f(y) as close as desired to f (x) provided y is taken close
enough to x. In fact this statement in words is pretty much the way Cauchy described it.
The completely rigorous definition above is usually ascribed to Weierstrass.

If you are like me, you may find the following equivalent description of continuity
easier to remember and use. I don’t have a very good reason why this is so, but it seems to
be the case, at least for many people. I will use either definition whenever convenient.

Theorem 6.0.2 4 function f is continuous if and only if whenever x, — x with
Xn,X € D(f), it follows that f(x,) — f(x). In words, convergent sequences get taken
to convergent sequences.

! Augustin Louis Cauchy 1789-1857 was the son of a lawyer who was married to an aristocrat. He was born
in France just after the fall of the Bastille and his family fled the reign of terror and hid in the countryside till it
was over. Cauchy was educated at first by his father who taught him Greek and Latin. Eventually Cauchy learned
many languages.

After the reign of terror, the family returned to Paris and Cauchy studied at the university to be an engineer but
became a mathematician although he made fundamental contributions to physics and engineering. Cauchy was
one of the most prolific mathematicians who ever lived. He wrote several hundred papers which fill 24 volumes.
He also did research on many topics in mechanics and physics including elasticity, optics and astronomy. More
than anyone else, Cauchy invented the subject of complex analysis. He is also credited with giving the first
rigorous use of continuity in terms of €,0 arguments in some of his work, although he clung to the notion of
infinitesimals. He might have his name associated with more important topics in mathematics and engineering
than any other person. He was a devout Catholic, a royalist, adhering to the Bourbons, and a man of integrity and
principle, according to his understanding.

He married in 1818 and lived for 12 years with his wife and two daughters in Paris till the revolution of 1830.
Cauchy was a “Legitimist” and refused to take the oath of allegiance to the new ruler, Louis Philippe because
Louis was not sufficiently Bourbon, and ended up leaving his family and going into exile for 8 years. It wasn’t
the last time that he refused to take such an oath.

Notwithstanding his great achievements he was not a popular teacher.

2Wilhelm Theodor Weierstrass 1815-1897 brought calculus to essentially the state it is in now. When he was
a secondary school teacher, he wrote a paper which was so profound that he was granted a doctor’s degree. He
made fundamental contributions to partial differential equations, complex analysis, calculus of variations, and
many other topics. He also discovered some pathological examples such as nowhere differentiable continuous
functions. Cauchy and Bolzano were the first to use the € § definition presented here but this rigorous definition
is associated more with Weierstrass. Cauchy clung to the notion of infinitesimals and Bolzano’s work was not
readily available. The need for rigor in the subject of calculus was only realized over a long period of time and
this definition is part of a trend which went on during the nineteenth century to define exactly what was meant.
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Proof: = Suppose x, — x as described. I need to verify that f (x,) — f(x). I know
that for any € > 0 there exists a suitable § such that the conditions of continuity hold. I also
know that, since x,, — x, eventually, for all n large enough, ||x,, — x|| < 8. Therefore, for all
n large enough, || f (x) — f (x,)|| < &, but this is the definition of what it means to say that
£ () = £(x).

<« Suppose the sequence condition holds. Why is f continuous at x? If it isn’t, then
there exists € > 0 for which there is no suitable definition from the definition of continuity.
Hence 1/n is not a suitable J for this €. It follows that there exists x,, such that ||x, —x|| <
1/n and yet ||f (x,) — f (x)|| > €. But then x,, — x and f (x,) - f (x) where the symbol -
indicates that f (x,) does not converge to f (x). Hence f must be continuous at x after all.
|

This definition or its equivalent formulation rules out the sorts of graphs drawn above.

Consider the second nonremovable discontinuity. The removable discontinuity case is
similar. You could let x,, — xp where each x,, < xy and the limit of f (x,) will fill in the hole
at the bottom of the graph although the actual value of the function at f (xo) is larger. Thus
S (xn) = f (x0) so f is not continuous at xg.

Notice that the concept of continuity as described in the definition is a point property.
That is to say it is a property which a function may or may not have at a single point. Here
is an example.

Example 6.0.3 Let

0 if x is irrational ~

Flo)= { X if x is rational

This function is continuous at x = 0 and nowhere else.

If x, — 0, then |f (x,)| < |x4| and |x,| — 0 so it follows that f (x,) — 0= f(0) and
so the function is continuous at 0. However, if x # 0 and rational, you could consider a
sequence of irrational numbers converging to x, {x,} and f(x,) =0 —0# f(x). If x
is irrational, you could pick a sequence of rational numbers {x,} converging to x and so
S (xn) =xn — x # f(x). Here is another example.

Example 6.0.4 Show the function f (x) = —5x+ 10 is continuous at x = —3.

To do this, note first that f(—3) = 25 and it is desired to verify the conditions for
continuity. Consider the following. |—5x+ 10— (25)| = 5|x— (=3)].

This allows one to find a suitable 6. If € > 0 is given, let 0 < § < %8. Then if 0 <
|x—(=3)| < 9, it follows from this inequality that |-5x+4 10— (25)] = 5|x—(-3)| <
Sle=e.

Sometimes the determination of § in the verification of continuity can be a little more

involved. Here is another example.

Example 6.0.5 Show the function f (x) = \/2x+ 12 is continuous at x = 5.

First note f(5) = v/22. Now consider: |v/2x+ 12 —+/ 22‘ = ’%

2 |
e S <—VDlx—5
T vn S Y2ksl
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whenever |x — 5| < 1 because for such x, /2x+ 12 > 0. Now let € > 0 be given. Choose &
such that 0 < 8 < min (1, g\éﬁ) . Then if |x — 5| < 8, all the inequalities above hold and

2 2 &ev22
s < VS
V22 V22 2

Example 6.0.6 Show f (x) = —3x>+7 is continuous at x =.

V2 +12-v22| <

Suppose x, — x. Then by the theorem on limits, Theorem 4.4.8, —3x2 +7 — —3x> +7
and so this function is continuous at x. In particular, it is continuous at 7.

Proposition 6.0.7 For x € F?, and S CF? S # 0, let
inf{||x—s|| : s € S} =dist(x,5)

Then
dist (x,$) — dist (,5)] < [lx— ] ()

so dist : F? — R is continuous.

Proof: One of dist (x,S),dist(y,S) is larger. Say dist (y,S) > dist (x,S) . Then pick § € §
such that dist (x,S) + & > ||x—§]| . Then

[dist (x,$) —dist(y,5)| = dist(y,$) —dist(x,S) < [ly = 3[| = (|lx—3[| —¢)
[y =l + e =8l = (lx =3l —&) < [ly—x] +e¢

IN

If dist (x,S) > dist(y,S), reverse x,y in the argument. Since € is arbitrary, this shows .
Then letting § = € in the definition for continuity shows x — dist (x,S) is continuous. B

The following is a useful theorem which makes it easy to recognize many examples of
continuous functions.

Theorem 6.0.8 7ne following assertions are valid

1. The function af +bg is continuous at x when f, g are continuous atx € D (f)ND(g)
and a,b € TF.

2. If f has values in F9 and g has values in F are each continuous at x, then fg is
continuous at x. If, in addition to this, g (x) # 0, then f/g is continuous at x.

3. If f is continuous at x, f (x) € D(g) CFP, and g is continuous at f (x) ,then go f is
continuous at x.

4. The function f :FP — R, given by f (x) = ||x|| is continuous.

Proof: All of these follow immediately from the theorem about limits of sequences,
Theorem 4.4.8, and the equivalent definition of continuity given above, Theorem 6.0.2. For
example, consider the third claim about the composition of continuous functions. Suppose
X, — x. Then by continuity of f, f (x,) — f (x) and now, by continuity of g,g (f (x,)) —
g (f (x)). The other claims are similar. B
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6.1 Continuity at Every Point of D (f)

Next is a useful property of continuous functions which has to do with preserving order.

Theorem 6.1.1 suppose f: D(f) — R is continuous at x € D(f) and suppose
S (xn) <1 (>1) for all n sufficiently large, where {x,} is a sequence of points of D(f)
which converges to x. Then f (x) <I1(>1).

Proof: Since f(x,) <[ and f is continuous at x, it follows from Theorem 4.4.13 and
Theorem 6.0.2, f (x) = lim,_ f (x,) < [. The other case is entirely similar. ll
Now here is the main result about inverse images and continuity at every point.

Theorem 6.1.2 4 function f is continuous at every point of its domain D (f) if and
only if either of the two equivalent conditions hold. For

) ={xeD(f): f(x) €5},
1. f~Y(V) =UND/(f) for some U open wheneverV is open.
2. f~Y(H)=CnND(f) for some C closed whenever H is closed.

Proof: Continuous = 1. Letx € f~! (V) so f(x) € B(f (x),€&,) CV for some &, > 0.
Then by continuity, there is 8, > 0 such that f (B (x,6,) "D (f)) C B(f(x),&x) CV and
s0, letting U = U, o1y B (x, 8x) , it follows that /! (V) =UND(f).

1. = Continuous. You could pick a particular open set B(f (x),€) =V and then
1 (Vv)=UnD(f) foropen U and so if x € f~! (V) then there is &, such that B (x, 8,) C
U and soif y € B(x,8,)ND(f), then f(y) € B(f (x),€) which is the standard definition
of continuity at x.

1. = 2. Let H be closed. Then HC is open and so f~! (H®) = U ND(f) for U open.
But then f~! (H) = U ND(f) where U is closed. (D(f)=f"'(H)Uf™' (H))

2.= 1. Let U be open. Then U€ is closed and so f~! (US) = CND(f) for a closed
set C. But then CEND (f) = f~' (U) where C€ is open. B

This suggests the following definition.

Definition 6.1.3 et S bea nonempty set. Then one can define relatively open and
relatively closed subsets of S as follows. A set O C S is relatively open if O = U NS where
U is open. A set K C S is relatively closed if there is a closed set C such that K = SNC.

In words, the above theorem says that a function is continuous at every point of its
domain if and only if inverse images of open sets are relatively open if and only if inverse
images of closed sets are relatively closed.

6.2 Exercises

1. Let f(x) =2x+7. Show f is continuous at every point x. Hint: You need to let
€ > 0 be given. In this case, you should try § < £/2. Note that if one § works in the
definition, then so does any smaller J.

2. Suppose D (f) =[0,1]U{9} and f(x) =x on [0, 1] while f(9) = 5. Is f continuous
at the point, 9?7 Use whichever definition of continuity you like.
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10.

11.

CHAPTER 6. CONTINUOUS FUNCTIONS

. Let f(x) = x>+ 1. Show f is continuous at x = 3. Hint: Consider the follow-

ing which comes from algebra. |f (x) — f(3)| = |2 +1—(9+1)| = [x+3||]x—3].
Thus if |x—3| < 1, it follows from the triangle inequality, |x| < 14+3 =4 and so
|f (x) — f(3)] <4|x—3]. Complete the argument by letting 6 < min(1,&/4). The
symbol, min means to take the minimum of the two numbers in the parenthesis.

Let f (x) = 2x> + 1. Show f is continuous at x = 1.

Let f(x) = x> +2x. Show f is continuous at x = 2. Then show it is continuous at
every point.

Let f(x) = |2x+3|. Show f is continuous at every point. Hint: Review the two
versions of the triangle inequality for absolute values.

Let f(x) = ﬁ Show f is continuous at every value of x.

. If x € R, show there exists a sequence of rational numbers, {x, } such that x, — x and

a sequence of irrational numbers, {x}, } such that x), — x. Now consider the following

function.
(x) = 1 if x is rational
=1 0if xis irrational *

Show using the sequential version of continuity in Theorem 6.0.2 that f is discontin-
uous at every point.

If x € R, show there exists a sequence of rational numbers, {x, } such that x,, — x and
a sequence of irrational numbers, {x,} such that x/, — x. Now consider the following
function.

Flx) = x if x is rational
Y=\ 0if xis irrational

Show using the sequential version of continuity in Theorem 6.0.2 that f is continuous
at 0 and nowhere else.

Suppose y is irrational and y, — y where y, is rational. Say y, = p,/g,. Show that
lim;, e g, = . Now consider the function

[ Oif xis irrational
)= é ifx= § where the fraction is in lowest terms

Show that f is continuous at each irrational number and discontinuous at every
nonzero rational number.

Suppose f is a function defined on R. Define

osf (x) =sup{|f(y) = f(2)]:y,2€B(x,8)}

Note that these are decreasing in 6. Let @ f (x) = infg-o @5 f (x). Explain why f is
continuous at x if and only if @f (x) = 0. Next show that

o e 1
(1107 () =0} = Ui {00 (0 < 1}
Now show that U7, {x: O/ f (x) < %} is an open set. Explain why the set of
points where f is continuous must always be a G5 set. Recall that a G set is the
countable intersection of open sets.
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6.3

Show that the set of rational numbers is not a G set. That is, there is no sequence
of open sets whose intersection is the rational numbers. Extend to show that no
countable dense set can be Gg. Using Problem 11, show that there is no function
which is continuous at a countable dense set of numbers but discontinuous at every
other number.

Use the sequential definition of continuity described above to give an easy proof of
Theorem 6.0.8.

Let f(x) = y/x show f is continuous at every value of x in its domain. For now,
assume /x exists for all positive x. Hint: You might want to make use of the identity,
VX —/y = -~ at some point in your argument.

VEEY
Using Theorem 6.0.8, show all polynomials are continuous and that a rational func-
tion is continuous at every point of its domain. Hint: First show the function given as
f(x) = x is continuous and then use the Theorem 6.0.8. What about the case where
x can be in F? Does the same conclusion hold?

Let f(x) = { (1) gi ; g and consider g (x) = f (x) (x—x°) . Determine where g is

continuous and explain your answer.

Suppose f is any function whose domain is the integers. Thus D (f) = Z, the set of
whole numbers, ---,—3,—2,—1,0,1,2,3,--- . Then f is continuous. Why? Hint: In
the definition of continuity, what if you let § = %? Would this & work for a given
€ > 07 This shows that the idea that a continuous function is one for which you can
draw the graph without taking the pencil off the paper is a lot of nonsense.

Give an example of a function f which is not continuous at some point but |f] is
continuous at that point.

Find two functions which fail to be continuous but whose product is continuous.
Find two functions which fail to be continuous but whose sum is continuous.
Find two functions which fail to be continuous but whose quotient is continuous.

Suppose f is a function defined on R and f is continuous at 0. Suppose also that
f(x+y)=f(x)+f(y). Show that if this is so, then f must be continuous at every
value of x € R. Next show that for every rational number, r, f(r) = rf(1). Finally
explain why f (r) = rf (1) for every r a real number. Hint: To do this last part, you
need to use the density of the rational numbers and continuity of f.

Show that if r is an irrational number and 22 — r where p,, ¢, are positive integers,
then it must be that p, — oo and g, — o°. Hint: If not, extract a convergent subse-
quence for p, and g, argue that to which these converge must be integers. Hence r
would end up being rational.

The Extreme Values Theorem

The extreme values theorem says continuous functions achieve their maximum and mini-
mum provided they are defined on a sequentially compact set.
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Example 6.3.1 Let f (x) = 1/x forx € (0,1).

Clearly, f is not bounded. Does this violate the conclusion of the above lemma? It does
not because the end points of the interval involved are not in the interval. The same function
defined on [.000001, 1) would have been bounded although in this case the boundedness of
the function would not follow from the above lemma because it fails to include the right
endpoint.

The next theorem is known as the max min theorem or extreme value theorem.

Theorem 6.3.2 Let K CF? be sequentially compact and let f : K — R be continu-
ous. Then f achieves its maximum and its minimum on K. This means there exist, x1,x, € K

such that for all x e K, f (x1) < f(x) < f(x2).

Proof: Let A =sup{f(x) : x € K}. Thenif / < A, there exists x € K such that f (x) >/
since otherwise, A is not as defined since ! would be a smaller upper bound. Thus there
exists a sequence {x,} € K such that lim,_,e f (x,) = A. This is called a maximizing se-
quence. Since K is sequentially compact, there exists a subsequence {x,,k } which converges
to x € K. Therefore, A = limy_,o. f (x,,k) = f(x) so f achieves its maximum value. A simi-
lar argument using a minimizing sequence and 1) = inf { f (x) : x € K} shows f achieves its
minimum value on K. B

In fact a continuous function takes compact sets to compact sets. This is another of
those big theorems which tends to hold whenever it makes sense. Therefore, I will be
vague about the domain and range of the function f.

Theorem 6.3.3 Let D(f) D K where K is a compact set. Then f(K) is also com-
pact.

Proof: Suppose % is an open cover of f (K). Then by Theorem 6.1.2, since f is con-
tinuous, it satisfies the inverse image of open sets being open condition. For U € €,

1 (U)=0ynD(f), where Oy is open

Thus {Oy : U € €'} is an open cover of K. Hence there exist {Oy,,---,0y,} each open
whose union contains K. It follows that {Uj,---,U,} is an open cover of f (K). B

You could also do the following: If { f (x,,) } is a sequence in f (K), then there is a sub-
sequence {xnk} such that limy_,.. x,, = x € K by compactness of K. Hence by continuity,
f(xn,) = f(x) € £(K) so f(K) is sequentially compact. By Theorem 4.8.17, f(K) is
compact.

6.4 The Intermediate Value Theorem

The next big theorem is called the intermediate value theorem and the following picture
illustrates its conclusion. It gives the existence of a certain point. This theorem is due to
Bolzano around 1817. He identified completeness of R as the reason for its validity.
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You see in the picture there is a horizontal line, y = ¢ and a continuous function which
starts off less than c at the point a and ends up greater than c at point b. The intermediate
value theorem says there is some point between a and b shown in the picture as z such that
the value of the function at this point equals c. It may seem this is obvious but without
completeness the conclusion of the theorem cannot be drawn. Nevertheless, the above
picture makes this theorem very easy to believe.

Proposition 6.4.1 Suppose f : [a,b] — R is continuous and suppose

f(a)f(b) <0.
Then there exists x € |a,b| such that f (x) = 0.

Proof: When we have an interval [a,,b,] in this argument, ¢, will be the midpoint
(an+by) /2. Letag = a,by = b. If [a,, by) has been chosen such that f (a,) f (b,) <0, con-
sider [a,, cn) and [c,, by]. Either f (a,) f (cn) <0 or f(cy) f (by) < 0 since if both products
are positive, then f (a,) and f (b,) are either both positive or both negative contradicting
f(an) f(by) <0. Pick one of the intervals for which the product is non-positive. Let the
left endpoint be a,y; and the right endpoint be b,,11 s0 f(au11) f (bys1) < 0. Now these
nested intervals have exactly one point in their intersection because they have diameters
converging to 0. Call it x. Then (f (x))? = lim,_e. f (@) f (by) < 0. This is by Theorem
6.1.1. Thus f(x) =0. ®

It is easy to generalize this Proposition.

Theorem 6.4.2 Suppose f : [a,b] — R is continuous and suppose either f (a) < c¢ <
F(b) or f(a) > c> f(b). Then there exists x € (a,b) such that f (x) = 0.

Proof: Apply the above proposition to g (x) = f (x) — ¢ obtaining a point x € (a,b) with
¢(0)=f(x)—c—0.m

Lemma 6.4.3 Let ¢ : [a,b] — R be a continuous function and suppose @ is one to one,
written as 1 — 1 on (a,b). Then ¢ is either strictly increasing or strictly decreasing on
[a,D].

Proof: First it is shown that ¢ is either strictly increasing or strictly decreasing on

(a,b).
If ¢ is not strictly decreasing on (a,b), then there exists x; < yi, x1,y1 € (a,b) such that

(@0 (1) — ¢ (x1)) (1 —x1) > 0.
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If for some other pair of points, x, < y, with x2,y» € (a,b), the above inequality does not
hold, then since ¢ is 1 — 1,

(0 (2) — ¢ (x2)) (y2 —x2) <O.
Letx; =tx;+ (1 —#)x2 and y; =ty; + (1 — ) y2. Then x; < y; for all 7 € [0, 1] because
tx; <ty and (1—t)x2 < (1 —l)yz

with strict inequality holding for at least one of these inequalities since not both ¢ and
(1 —t) can equal zero. Now define

h(t) = (0 (v) = 0 () (v —xi).

Since 4 is continuous and % (0) < 0, while (1) > 0, there exists r € (0,1) such that
h(t) = 0. Therefore, both x; and y, are points of (a,b) and ¢ (y;) — ¢ (x;) = O contradicting
the assumption that ¢ is one to one. It follows ¢ is either strictly increasing or strictly
decreasing on (a,b).

This property of being either strictly increasing or strictly decreasing on (a,b) carries
over to [a,b] by the continuity of ¢. Suppose ¢ is strictly increasing on (a,b). (A similar
argument holds for ¢ strictly decreasing on (a,b).) If x > a, then let z, be a decreasing
sequence of points of (a,x) converging to a. Then by continuity of ¢ at a,

0(@)=lim 6 (30) < 0.(21) < 9.x).
Therefore, ¢ (a) < ¢ (x) whenever x € (a,b) . Similarly ¢ (b) > ¢ (x) for all x € (a,b). B

Corollary 6.4.4 Let f: (a,b) — R be one to one and continuous. Then f ((a,b)) is an
open interval, (c,d) and ' : (¢,d) — (a,b) is continuous.

Proof: Since f is either strictly increasing or strictly decreasing, it maps open intervals
to open intervals. Letting / be an open interval, ( f’l)_1 (I) = f(I) which is an open
interval. Therefore, if V is open, (f*‘)_1 V) = (f*‘)_1 (Urevly) = Urey (f*')_1 (L)
which is an open set because it is the union of open sets. Here x € I, C V and the open
interval I, exists because V is open. By Theorem 6.1.2, f~! is continuous. H

6.5 Connected Sets

Some sets are connected and some are not. The term means roughly that the set is in
one “one piece”. The concept is a little tricky because it is defined in terms of not being
something else. In some of the theorems below, I will be vague about where the sets
involved in the discussion are because it is often the case that it doesn’t matter. However,
you can think of the sets as being in F? where F is either R or C. First recall the following
definition.

Definition 6.5.1 Lez S be a set. Then § , called the closure of S consists of SUS’
where S' denotes the set of limit points of S.

Recall Corollary 4.8.12 which says that SUS’, denoted as S is the intersection of all
closed sets which contain S and is a closed set.
Note that it is obvious from the above definition thatif S C 7, then S C T.
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Definition 6.5.2 A set S is said to be separated if it is of the form
S=AUB, where ANB=BNA=0
A set S is connected if it is not separated.

Example 6.5.3 Consider S = [0,1) U (1,2]. This is separated. Therefore, it is not con-
nected.

To see this, note that [0,1) = [0, 1] which has empty intersection with (1,2]. Similarly
(1,2] = [1,2] and has empty intersection with [0, 1).
One of the most important theorems about connected sets is the following.

Theorem 6.5.4 Suppose U and V are connected sets having nonempty intersection.
Then U UV is also connected.

Proof: Suppose U UV = AUB where ANB = BNA = 0. Consider the sets ANU and
BNU. Since

(ANU)N(BNU)=(ANU)N(BNU) =0,

It follows one of these sets must be empty since otherwise, U would be separated. It follows
that U is contained in either A or B. Similarly, V must be contained in either A or B. Since
U and V have nonempty intersection, it follows that both V and U are contained in one of
the sets A, B. Therefore, the other must be empty and this shows U UV cannot be separated
and is therefore, connected. H

How do connected sets relate to continuous real valued functions?

Theorem 6.5.5 Let f: X — R be continuous where X is connected. Then f(X) is
also connected.

Proof: To do this you show f(X) is not separated. Suppose to the contrary that
f(X) =AUB where A and B separate f (X). Then consider the sets f~! (A) and f~' (B).
If z € f~1(B), then f(z) € B and so f (z) is not a limit point of A. Therefore, there exists
an open ball U of radius € for some € > 0 containing f (z) such that U NA = (. But then,
the continuity of f and the definition of continuity imply that there exists 6 > 0 such that
f(B(z,8)) CU. Therefore z is not a limit point of f~!(A). Since z was arbitrary, it fol-
lows that f~! (B) contains no limit points of f~!(A). Similar reasoning implies £~ (A)
contains no limit points of f~!(B). It follows that X is separated by f~! (A) and f~! (B),
contradicting the assumption that X was connected. ll

On R the connected sets are pretty easy to describe. A set, [ is an interval in R if and
only if whenever x,y € I then (x,y) C I. The following theorem is about the connected sets
inR.

Theorem 6.5.6 A set C in R is connected if and only if C is an interval.

Proof: Let C be connected. If C consists of a single point p, there is nothing to prove.
The interval is just [p, p]. Suppose p < g and p,q € C. You need to show (p,q) C C. If
x € (p,q)\C,let CN(—o0,x) =A, and CN (x,) = B. Then C = AUB and the sets A and
B separate C contrary to the assumption that C is connected.

Conversely, let I be an interval. Suppose / is separated by A and B. Pickx € A and y € B.
Suppose without loss of generality that x < y. Now define the set, S = {¢ € [x,y] : [x,f] C A}
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and let  be the least upper bound of S. Then / € A so [ ¢ B which implies [ € A. Butif / ¢ B,
then for some & > 0,
(l,I+6)NB=0

contradicting the definition of / as an upper bound for S. Therefore, I € B which implies
[ ¢ A after all, a contradiction. It follows I must be connected. ll

Another useful idea is that of connected components. An arbitrary set can be written
as a union of maximal connected sets called connected components. This is the concept of
the next definition.

Definition 6.5.7 Let S be a set and let p € 8. Denote by C, the union of all con-
nected subsets of S which contain p. This is called the connected component determined by

p-

Theorem 6.5.8 Le:c » be a connected component of a set S. Then C), is a connected
set and if C, NCy # 0, then C, = C,,.

Proof: Let € denote the connected subsets of S which contain p. If C,, = A UB where
ANB=BNA =0, then p is in one of A or B. Suppose without loss of generality p € A.
Then every set of 4 must also be contained in A since otherwise, as in Theorem 6.5.4, the
set would be separated. But this implies B is empty. Therefore, C,, is connected. From this,
and Theorem 6.5.4, the second assertion of the theorem is proved. B

This shows the connected components of a set are equivalence classes and partition the
set.

Probably the most useful application of this is to the case where you have an open set
and consider its connected components.

Theorem 6.5.9 Let U be an open set on R. Then each connected component is
open. Thus U is an at most countable union of disjoint open intervals.

Proof: Let C be a connected component of U. Let x € C. Since U is open, there
exists 6 > 0 such that (x—0,x+ ) C U. Hence this open interval is also contained in C
because it is connected and shares a point with C which equals the union of all connected
sets containing x. Thus each component is both open and connected and is therefore, an
open interval. Each of these disjoint open intervals contains a rational number. Therefore,
there are countably many of them because there are countably many rational numbers. l

That the rational numbers are at most countable is easy to see. You know the integers are
countable because they are the union of two countable sets. Thus Z x (Z\ {0}) is countable
because of Theorem 3.2.7. Now let 6 : Z x (Z\ {0}) — Q be defined as 6 (m,n) = . This
is onto. Hence Q is at most countable. This is sufficient to conclude there are at most
countably many of these open intervals.

To emphasize what the above theorem shows, it states that every open set in R is the
countable union of open intervals. It is really nice to be able to say this.

6.6 Exercises

1. Give an example of a continuous function defined on (0, 1) which does not achieve
its maximum on (0,1).
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10.

11.

12.

13.

14.

Give an example of a continuous function defined on (0,1) which is bounded but
which does not achieve either its maximum or its minimum.

Give an example of a discontinuous function defined on [0, 1] which is bounded but
does not achieve either its maximum or its minimum.

Give an example of a continuous function defined on [0, 1) U (1,2] which is positive
at 2, negative at 0 but is not equal to zero for any value of x.

Let f(x) = x> +ax* + bx> + cx® + dx + e where a,b,c,d, and e are numbers. Show
there exists real x such that f (x) = 0.

Give an example of a function which is one to one but neither strictly increasing nor
strictly decreasing.

Show that the function f (x) = x" —a, where n is a positive integer and a is a number,
is continuous.

Use the intermediate value theorem on the function f (x) = x’ — 8 to show v/8 must
exist. State and prove a general theorem about n'" roots of positive numbers.

Prove /2 is irrational. Hint: Suppose v/2 = p /q where p, g are positive integers and
the fraction is in lowest terms. Then 2¢> = p? and so p? is even. Explain why p = 2r
so p must be even. Next argue g must be even.

Let f(x) = x — /2 for x € Q, the rational numbers. Show that even though f (0) <
0 and f(2) > 0, there is no point in Q where f(x) = 0. Does this contradict the
intermediate value theorem? Explain.

It has been known since the time of Pythagoras that v/2 is irrational. If you throw out
all the irrational numbers, show that the conclusion of the intermediate value theorem
could no longer be obtained. That is, show there exists a function which starts off
less than zero and ends up larger than zero and yet there is no number where the
function equals zero. Hint: Try f (x) = x*> — 2. You supply the details.

A circular hula hoop lies partly in the shade and partly in the hot sun. Show there
exist two points on the hula hoop which are at opposite sides of the hoop which
have the same temperature. Hint: Imagine this is a circle and points are located by
specifying their angle, 6 from a fixed diameter. Then letting T (0) be the temperature
in the hoop, T (6 +27) =T (6). You need to have T (6) = T (6 + ) for some 6.
Assume T is a continuous function of 6.

A car starts off on a long trip with a full tank of gas. The driver intends to drive the
car till it runs out of gas. Show that at some time the number of miles the car has
gone exactly equals the number of gallons of gas in the tank.

Suppose f is a continuous function defined on [0, 1] which maps [0,1] into [0, 1].
Show there exists x € [0, 1] such that x = f (x). Hint: Consider /# (x) =x— f (x) and
the intermediate value theorem. This is a one dimensional version of the Brouwer
fixed point theorem.
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15. Let f be a continuous function on [0, 1] such that f(0) = f(1). Let n be a positive
integer larger than 2. Show there must exist ¢ € [0,1— 1] such that f (c+1) =
f(c). Hint: Consider & (x) = f (x+ 1) — f (x). Consider the subintervals [~ £]
fork=1,---,n— 1. You want to show that /& equals zero on one of these intervals. If
h changes sign between two successive intervals, then you are done. Assume then,
that this does not happen. Say & remains positive. Argue that f (0) < f (%) . Thus
(=) > F()=f (=L + 1) It follows that h (1 — 1) <O but 2 (1—2) > 0.

16. Use Theorem 6.5.5 and the characterization of connected sets in R to give a quick
proof of the intermediate value theorem.

17. A set is said to be totally disconnected if each component consists of a single point.
Show that the Cantor set is totally disconnected but that every point is a limit point
of the set. Hint: Show it contains no intervals other than single points.

18. A perfect set is a non empty closed set such that every point is a limit point. Show
that no perfect set in R can be countable. Hint: You might want to use the fact that
the set of infinite sequences of 0 and 1 is uncountable. Show that there is a one to
one mapping from this set of sequences onto a subset of the perfect set.

19. Suppose f : K — R where K is a compact set and f is continuous. Show that f
achieves its maximum and minimum by using Theorem 6.3.3 and the characteri-
zation of compact sets in R given earlier which said that such a set is closed and
bounded. Hint: You need to show that a closed and bounded set in R has a largest
value and a smallest value.

6.7 Uniform Continuity

There is a theorem about the integral of a continuous function which requires the notion of
uniform continuity. Uniform continuity is discussed in this section. Consider the function
f(x) =1 for x € (0,1). This is a continuous function because, by Theorem 6.0.8, it is
continuous at every point of (0,1). However, for a given € > 0, the § needed in the €,6
definition of continuity becomes very small as x gets close to 0. The notion of uniform
continuity involves being able to choose a single § which works on the whole domain of f.
Here is the definition.

Definition 6.7.1 Le: f be a function. Then f is uniformly continuous if for every
€ > 0, there exists a 6 depending only on € such that if |x —y| < & then |f (x) — f (v)| < €.

It is an amazing fact that under certain conditions continuity implies uniform continuity.
Theorem 6.7.2 Let f: K — T be continuous where K is a sequentially compact set
inIFP. Then f is uniformly continuous on K.

Proof: If this is not true, there exists € > 0 such that for every 6 > 0 there exists a pair
of points, xg and yg such that even though ||x5 —ys|| < 8, || (xs) — f (vs)|| > €. Taking
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a succession of values for d equal to 1,1/2,1/3,---, and letting the exceptional pair of
points for 8§ = 1/n be denoted by x, and y,,

1
[Pen =yl < 1 (o) = f )| = &

Now since K is sequentially compact, there exists a subsequence, {xnk} such that x, —

z€ K. Now ny > k and 50 ||x,,, — yn, || < §. Consequently, y,, — z also. x,, is like a person
walking toward a certain point and y,, is like a dog on a leash which is constantly getting
shorter. Obviously y,, must also move toward the point also. Indeed,

1
e =2 < lyme = v [ 4 [l =[] < 2+ o ==

and the right side converges to 0 as k — oo.
By continuity of f and Theorem 6.1.1,

0=11F @)~ £ @I = Jim |If (xn) = £ ()| 2

an obvious contradiction. Therefore, the theorem must be true. l
The following corollary follows from this theorem and Theorems 4.8.14, 4.8.13 which
give closed and bounded sets are sequentially compact.

Corollary 6.7.3 Suppose K is any closed and bounded set in FP. Then if f is continuous
on K, it follows that f is uniformly continuous on K.

6.8 Exercises

1. A function f : F? — F is Holder continuous if there exists a constant, K such that

If () = f Il < K[Jx = y[|*

for all x,y € D. Show every Holder continuous function is uniformly continuous.
When a = 1, this is called a Lipschitz function or Lipschitz continuous function.

2. Let x — dist(x,S) be defined in Proposition 6.0.7. Show it is uniformly continuous
on FP.

3. If ||x, — yu|| — 0 and x,, — z, show that y, — z also. This was used in the proof of
Theorem 6.7.2.

4. Consider f : (1,00) — R given by f(x) = % Show f is uniformly continuous even
though the set on which f is defined is not sequentially compact.

5. If f is uniformly continuous, does it follow that | f] is also uniformly continuous? If
| f] is uniformly continuous does it follow that f is uniformly continuous? Answer the
same questions with “uniformly continuous” replaced with “continuous”. Explain
why.
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10.

11.

12.

6.9

CHAPTER 6. CONTINUOUS FUNCTIONS

Let f: D — R be a function. This function is said to be lower semicontinuous® at
x € D if for any sequence {x,} C D which converges to x it follows

£x) <tim inf £ (x,).

Suppose D is sequentially compact and f is lower semicontinuous at every point of
D. Show that then f achieves its minimum on D.

Let f: D — R be a function. This function is said to be upper semicontinuous at
x € D if for any sequence {x,} C D which converges to x it follows

f(x) > lim sup f (x).

n—soo

Suppose D is sequentially compact and f is upper semicontinuous at every point of
D. Show that then f achieves its maximum on D.

. Show that a real valued function is continuous if and only if it is both upper and

lower semicontinuous.

Give an example of a lower semicontinuous function which is not continuous and an
example of an upper semicontinuous function which is not continuous.

Suppose {fo : & € A} is a collection of continuous functions. Let
F(x)=inf{fy (x): @ € A}
Show F is an upper semicontinuous function. Next let
G(x)=sup{fu(x):a €A}
Show G is a lower semicontinuous function.
Let f be a function. epi (f) is defined as
{(6y) > £ ().

It is called the epigraph of f. We say epi (f) is closed if whenever (x,,y,) € epi(f)
and x,, — x and y, — y, it follows (x,y) € epi(f). Show f is lower semicontinuous
if and only if epi (f) is closed. What would be the corresponding result equivalent to
upper semicontinuous?

Suppose K C F? is a compact set and f : K — F4 is continuous and one to one. Show
that /= : f(K) — K is continuous.

Sequences and Series of Functions

When you understand sequences and series of numbers it is easy to consider sequences and
series of functions.

3The notion of lower semicontinuity is very important for functions which are defined on infinite dimensional
sets. In more general settings, one formulates the concept differently.
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Definition 6.9.1 sequence of functions is a map defined on N or some set of inte-
gers larger than or equal to a given integer, m which has values which are functions. It is
written in the form {f,}, _, where f, is a function. It is assumed also that the domain of
all these functions is the same.

In the above, where do the functions have values? Are they real valued functions? Are
they complex valued functions? Are they functions which have values in R"? It turns out
it does not matter very much and the same definition holds. However, if you like, you can
think of them as having values in . This is the main case of interest here.

Example 6.9.2 Suppose f, (x) = x" for x € [0,1]. Here is a graph of the functions f (x) =

x,x2, 3, x4 2.

Definition 6.9.3 7. {fu} be a sequence of functions. Then the sequence converges
pointwise to a function f if for all x € D, the domain of the functions in the sequence,

f(x) = lim f, (x)

n—soo

This is always the definition regardless of where the f,, have their values.

Thus you consider for each x € D the sequence {f, (x)} and if this sequence converges
for each x € D, the thing it converges to is called f (x).

Example 6.9.4 In Example 6.9.2 find lim,,_,c ;.

Forx € [0,1),limy e x” = f, (x) =0. Atx =1, f,, (1) = 1 for all n so lim,,e0 f (1) = 1.
Therefore, this sequence of functions converges pointwise to the function f (x) given by
f(x)=0if 0 <x < 1and f(1) = 1. However, given small € > 0, and n, there is always
some x such that |f (x) — f, (x)| > €. Just pick x less than 1 but close to 1. Then f(x) =0
but f, (x) will be close to 1.

Pointwise convergence is a very inferior thing but sometimes it is all you can get. It’s
undesirability is illustrated by Example 6.9.4. The limit function is not continuous although
each f,, is continuous. Now here is another example of a sequence of functions.

Example 6.9.5 Let f, (x) = Lsin (n’x).

In this example, |f;, (x)| < 1 so this function is close to 0 for all x at once provided n is
large enough. There is a difference between the two examples just given. They both involve
pointwise convergence, but in the second example, the pointwise convergence happens for
all x at once. In this example, you have uniform convergence.

Definition 6.9.6 Le: {fn} be a sequence of functions defined on D. Then {f,} is
said to converge uniformly to f if it converges pointwise to f and for every € > 0 there
exists N such that for all n > N, sup,cp |f (x) — fn (x)| < €
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The following picture illustrates the above definition.

The dashed lines define a small tube centered about the graph of f and the graph of the
function f;, fits in this tube for all n sufficiently large. In the picture, the function f is being
approximated by f;, which is very wriggly.

The reason uniform convergence is desirable is that it drags continuity along with it and
imparts this property to the limit function.

Theorem 6.9.7 Let {fu} be a sequence of functions defined on D which are contin-
uous at z and suppose this sequence converges uniformly to f. Then f is also continuous at
z. If each f,, is uniformly continuous on D, then f is also uniformly continuous on D.

Proof: Let € > 0 be given and pick z € D. By uniform convergence, there exists N such
that if n > N, then for all x € D,

If () = fa (X)| < &/3. 6.1

Pick such an n. By assumption, f;, is continuous at z. Therefore, there exists § > 0 such
that if |z — x| < 0 then | f, (x) — £ (z)| < €/3. It follows that for |x —z| < &,

) =@ < 1F &)= fal)l+1fn () = fa @)+ /(@) = f (2]
< €/3+¢€/3+¢€/3=¢

which shows that since € was arbitrary, f is continuous at z.

In the case where each f;, is uniformly continuous, and using the same f,, for which 6.1
holds, there exists a 6 > 0 such that if |y —z| < &, then |f, (z) — fu (¥)| < €/3. Then for
|y - ZI < 67

FO) =@ < [FO) =m0 =@+ () - ()]
< €/3+¢€/3+¢€/3=¢

This shows uniform continuity of f. l

Definition 6.9.8 L. {fx} be a sequence of functions defined on D. Then the se-
quence is said to be uniformly Cauchy if for every € > 0 there exists N such that whenever

m,n Z Na suprD |fm ('x) _fl’l (x)‘ <E&.

Then the following theorem follows easily.

Theorem 6.9.9 L. {fu} be a uniformly Cauchy sequence of F valued functions
defined on D. Then there exists f defined on D such that { f,,} converges uniformly to f.
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Proof: For each x € D, {f, (x)} is a Cauchy sequence. Therefore, it converges to some
number because of completeness of F. (Recall that completeness is the same as saying
every Cauchy sequence converges.) Denote by f (x) this number. Let € > 0 be given and
let N be such that if n,m > N, | f,, (x) — f (x)| < €/2 for all x € D. Then for any x € D, pick
n > N and it follows from Theorem 4.4.13

)~ £ ()] = lim [fu ()~ fu ()] < e/2< e

Corollary 6.9.10 Let {f,} be a uniformly Cauchy sequence of functions continuous
on D. Then there exists f defined on D such that {f,} converges uniformly to f and f is
continuous. Also, if each f, is uniformly continuous, then so is f.

Proof: This follows from Theorem 6.9.9 and Theorem 6.9.7. B
Here is one more fairly obvious theorem.

Theorem 6.9.11 L. {fa} be a sequence of functions defined on D. Then it con-
verges pointwise if and only if the sequence { f, (x)} is a Cauchy sequence for every x € D.
It converges uniformly if and only if { f,} is a uniformly Cauchy sequence.

Proof: If the sequence converges pointwise, then by Theorem 4.5.3 the sequence
{f. (x)} is a Cauchy sequence for each x € D. Conversely, if { f,, (x)} is a Cauchy sequence
for each x € D, then since f, has values in I, and F is complete, it follows the sequence
{fu (x)} converges for each x € D. (Recall that completeness is the same as saying every
Cauchy sequence converges.)

Now suppose { f,} is uniformly Cauchy. Then from Theorem 6.9.9 there exists f such
that {f,,} converges uniformly on D to f. Conversely, if {f,,} converges uniformly to f on
D, then if € > 0 is given, there exists N such thatifn > N,

|f (x) = fu(x)| < &/2
for every x € D. Thenif m,n > N and x € D,
o () = fin )] < 1o () = f )+ (0) = fn (¥)| < €/2+€/2=¢.

Thus {f,} is uniformly Cauchy. B

Note that the above theorem would hold just as well if the functions had values in any
complete space meaning that Cauchy sequences converge. As before, once you understand
sequences, it is no problem to consider series.

Definition 6.9.12 7. {f} be a sequence of functions def